Active Dendrites in the Formation of Hippocampal Place Fields
Calvin Lab Auditorium
Hippocampal place cell ensembles form a cognitive map of space during exposure to novel environments. However, surprisingly little evidence exists to support the idea that synaptic plasticity in place cells is involved in forming new place fields. Here we used high-resolution functional imaging to determine the signaling patterns in CA1 soma, dendrites, and axons associated with place field formation when mice are exposed to novel virtual environments. We found that putative local dendritic spikes often occur prior to somatic place field firing. Subsequently, the first occurrence of somatic place field firing was associated with widespread regenerative dendritic events, which decreased in prevalence with increased novel environment experience. This transient increase in regenerative events was likely facilitated by a reduction in dendritic inhibition. Since regenerative dendritic events can provide the depolarization necessary for Hebbian potentiation, these results suggest that activity-dependent synaptic plasticity underlies the formation of many CA1 place fields.
Attachment | Size |
---|---|
Active Dendrites in the Formation of Hippocampal Place Fields | 2.56 MB |