

Active Dendrites Contribute to Hippocampal Place Field Formation Mark Sheffield, Department of Neurobiology, The University of Chicago

2 m linear VR track

CA1 somatic population imaging

Co-acquired CA1 somatic and basal dendritic imaging

Switching the Virtual Environment Causes Remapping of the Hippocampal Cognitive Map

Linear track 1

Virtual teleportation

Mean place field position

78 Place cells covering linear track 1

Mean place field position

Cell number

The majority of place fields appear within the first ~15 laps of exposure to a novel environment

Branch spiking throughout the arbor can vary between place field traversals

Soma & all branches

Place field transient 1

Soma & no branches

Branch spike prevalence across basal dendrites is highest when place fields first appear

Branch spike prevalence predicts future place field location

Localized dendritic branch spikes in CA1 basal dendrites

Ex-vivo evoked dSpike

10 um

7 spines 0.5 ms laser duration 0.12 ms interstim interval <0.5 ms to stimulate them all

In-vivo spontaneous dSpike

dSpikes occur prior to the formation of delayed place fields

Interneurons that target CA1 dendrites could regulate dendritic spikes

Axons in CA1 basal dendritic layer

Nature Reviews | Neuroscience Ethan Goldberg & Douglas Coulter (2013)

Dendritic inhibition is transiently reduced during novel environment exposure

Inducible knock out of NMDA receptors in CA1 neurons disrupts active dendritic signals

Branch spikes reduced during place field formation in NR1KO

Localized dendritic spikes absent during place field Formation in NR1KO

NMDA KO in CA1 neurons decreases the number of place fields that form

Acknowledgements

Dombeck Lab:

Mark Howe

Jim Heys

Mike Adoff

Brad Randall

Jason Climer

Funding:

NSF 1516235 NIH 1R01MH101297

Acknowledgements

<u>Sheffield Lab:</u> Can Dong (Grad student) Chery Cherian (Tech) Jo DiPietro (Post Doc) Madeline Klinger (Tech)

Funding:

UChicago Start up Whitehall Foundation Sloan Fellowship

