Quantum Speedup for Graph Sparsification, Cut Approximation and Laplacian Solving
Simon Apers (INRIA)
Graph sparsification underlies a large number of algorithms, ranging from approximation algorithms for cut problems to solvers for linear systems in the graph Laplacian. In its strongest form, "spectral sparsification" reduces the number of edges to near-linear in the number of nodes, while approximately preserving the cut and spectral structure of the graph. In this work we demonstrate a quantum speedup for spectral sparsification. We also prove that our algorithm is tight up to polylog-factors. The algorithm builds on a string of existing results on sparsification, graph spanners, quantum algorithms for shortest paths, and efficient construction for k-wise independent random strings. Our algorithm implies a quantum speedup for solving Laplacian systems and for approximating a range of cut problems such as min cut and sparsest cut.
Attachment | Size |
---|---|
slidessimonapers.pdf | 1.11 MB |