Quantum Speedup for Graph Sparsification, Cut Approximation and Laplacian Solving

Simon Apers ${ }^{1}$ Ronald de Wolf ${ }^{2}$

${ }^{1}$ Inria, France and CWI, the Netherlands
${ }^{2}$ QuSoft, CWI and University of Amsterdam, the Netherlands

Simons Institute, April 2020
(arXiv:1911.07306)

Graphs

graphs are nice

graphs are nice

- all over computer science, discrete math, biology, ...

graphs are nice

- all over computer science, discrete math, biology, ...
- describe relations, networks, groups, ...

graphs are nice

- all over computer science, discrete math, biology, ...
- describe relations, networks, groups, ...
sparse graphs are nicer

graphs are nice

- all over computer science, discrete math, biology, ...
- describe relations, networks, groups, ...

sparse graphs are nicer

- less space to store

graphs are nice

- all over computer science, discrete math, biology, ...
- describe relations, networks, groups, ...

sparse graphs are nicer

- less space to store
- less time to process

graphs are nice

- all over computer science, discrete math, biology, ...
- describe relations, networks, groups, ...

sparse graphs are nicer

- less space to store
- less time to process
- example: expanders are more interesting than complete graphs

graphs are nice

- all over computer science, discrete math, biology, ...
- describe relations, networks, groups, ...
sparse graphs are nicer
- less space to store
- less time to process
- example: expanders are more interesting than complete graphs
can we compress general graphs to sparse graphs ?

Graph Sparsification

undirected, weighted graph $G=(V, E, w)$ n nodes and m edges, $m \leq\binom{ n}{2}$

undirected, weighted graph $G=(V, E, w)$ n nodes and m edges, $m \leq\binom{ n}{2}$

adjacency-list access
query (i, k) returns k-th neighbor j of node i

Graph Sparsification

"graph sparsification"

= reduce number of edges, while preserving interesting quantities

$\vec{\square}$

Graph Sparsification

what are "interesting quantities"?

Graph Sparsification

what are "interesting quantities"?
extremal cuts, eigenvalues, random walk properties, ...

Graph Sparsification

what are "interesting quantities"?
extremal cuts, eigenvalues, random walk properties, ...
\rightarrow typically captured by graph Laplacian L_{G}

Graph Sparsification

what are "interesting quantities"?
extremal cuts, eigenvalues, random walk properties, ...
\rightarrow typically captured by graph Laplacian L_{G}

$$
\begin{gathered}
L_{G}=D-A \\
\text { with } \\
(D)_{i i}=\sum_{j} w(i, j) \text { and }(A)_{i j}=w(i, j)
\end{gathered}
$$

Graph Laplacian

equivalently,

Graph Laplacian

equivalently,

$$
L_{G}=\sum_{(i, j) \in E} w(i, j) L_{(i, j)}
$$

Graph Laplacian

equivalently,

$$
\begin{gathered}
L_{G}=\sum_{(i, j) \in E} w(i, j) L_{(i, j)} \\
\text { with } \\
L_{(i, j)}=\left(e_{i}-e_{j}\right)\left(e_{i}-e_{j}\right)^{T}=\left[\begin{array}{cccc}
0 & \cdots & 0 \\
\vdots & {\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]_{(i, j)}} & \vdots \\
0 & & \cdots & 0
\end{array}\right]
\end{gathered}
$$

Graph Laplacian

mainly interested in quadratic forms in L_{G}

Graph Laplacian

mainly interested in quadratic forms in L_{G}
$x^{T} L_{G} x$

Graph Laplacian

mainly interested in quadratic forms in L_{G}

$$
x^{T} L_{G} x=\sum_{(i, j)} w(i, j) x^{T} L_{(i, j)} x
$$

Graph Laplacian

mainly interested in quadratic forms in L_{G}

$$
x^{T} L_{G} x=\sum_{(i, j)} w(i, j) x^{T} L_{(i, j)} x=\sum_{(i, j)} w(i, j)(x(i)-x(j))^{2}
$$

Graph Laplacian

mainly interested in quadratic forms in L_{G}

$$
x^{T} L_{G} x=\sum_{(i, j)} w(i, j) x^{T} L_{(i, j)} x=\sum_{(i, j)} w(i, j)(x(i)-x(j))^{2}
$$

Graph Laplacian

mainly interested in quadratic forms in L_{G}

$$
x^{T} L_{G} x=\sum_{(i, j)} w(i, j) x^{T} L_{(i, j)} x=\sum_{(i, j)} w(i, j)(x(i)-x(j))^{2}
$$

e.g., if x_{S} indicator vector on $S \subseteq V$:

Graph Laplacian

mainly interested in quadratic forms in L_{G}

$$
x^{T} L_{G} x=\sum_{(i, j)} w(i, j) x^{T} L_{(i, j)} x=\sum_{(i, j)} w(i, j)(x(i)-x(j))^{2}
$$

e.g., if x_{S} indicator vector on $S \subseteq V$:

$x_{S}^{T} L_{G} x_{S}$

Graph Laplacian

mainly interested in quadratic forms in L_{G}

$$
x^{T} L_{G} x=\sum_{(i, j)} w(i, j) x^{T} L_{(i, j)} x=\sum_{(i, j)} w(i, j)(x(i)-x(j))^{2}
$$

e.g., if x_{S} indicator vector on $S \subseteq V$:

$$
x_{S}^{T} L_{G} x_{S}=\sum_{(i, j)} w(i, j)\left(x_{S}(i)-x_{S}(j)\right)^{2}
$$

Graph Laplacian

mainly interested in quadratic forms in L_{G}

$$
x^{T} L_{G} x=\sum_{(i, j)} w(i, j) x^{T} L_{(i, j)} x=\sum_{(i, j)} w(i, j)(x(i)-x(j))^{2}
$$

e.g., if x_{S} indicator vector on $S \subseteq V$:

$$
x_{S}^{T} L_{G} x_{S}=\sum_{(i, j)} w(i, j)\left(x_{S}(i)-x_{S}(j)\right)^{2}=\sum_{i \in S, j \in S^{c}} w(i, j)
$$

Graph Laplacian

mainly interested in quadratic forms in L_{G}

$$
x^{T} L_{G} x=\sum_{(i, j)} w(i, j) x^{T} L_{(i, j)} x=\sum_{(i, j)} w(i, j)(x(i)-x(j))^{2}
$$

e.g., if x_{S} indicator vector on $S \subseteq V$:

$$
x_{S}^{T} L_{G} x_{S}=\sum_{(i, j)} w(i, j)\left(x_{S}(i)-x_{S}(j)\right)^{2}=\sum_{i \in S, j \in S^{c}} w(i, j)=\operatorname{cut}_{G}(S)
$$

Graph Laplacian

> as it turns out, quadratic forms

$$
\begin{aligned}
& x^{T} L_{G} x \text { and } x^{T} L_{G}^{+} x \text { for } x \in \mathbb{R}^{n} \\
& \text { describe cut values, eigenvalues, } \\
& \text { effective resistances, hitting times, } \ldots
\end{aligned}
$$

Graph Laplacian

> as it turns out, quadratic forms

$$
\begin{aligned}
& x^{T} L_{G} x \text { and } x^{T} L_{G}^{+} x \text { for } x \in \mathbb{R}^{n} \\
& \text { describe cut values, eigenvalues, } \\
& \text { effective resistances, hitting times, } \ldots
\end{aligned}
$$

\rightarrow interested in preserving quadratic forms!

Spectral Sparsification

Spectral Sparsification

= approximately preserve all quadratic forms

Spectral Sparsification

= approximately preserve all quadratic forms

definition: H is ϵ-spectral sparsifier of G

Spectral Sparsification

= approximately preserve all quadratic forms

definition: H is ϵ-spectral sparsifier of G iff

$$
x^{T} L_{H} x=(1 \pm \epsilon) x^{T} L_{G} x \quad \text { for all } x \in \mathbb{R}^{n}
$$

Spectral Sparsification

= approximately preserve all quadratic forms

definition: H is ϵ-spectral sparsifier of G iff

$$
x^{T} L_{H} x=(1 \pm \epsilon) x^{T} L_{G} x \quad \text { for all } x \in \mathbb{R}^{n}
$$

$$
\begin{gathered}
\text { equivalently: } \\
x^{T} L_{H}^{+} x=(1 \pm O(\epsilon)) x^{T} L_{G}^{+} x
\end{gathered}
$$

Spectral Sparsification

= approximately preserve all quadratic forms

definition: H is ϵ-spectral sparsifier of G iff

$$
x^{T} L_{H} x=(1 \pm \epsilon) x^{T} L_{G} x \quad \text { for all } x \in \mathbb{R}^{n}
$$

equivalently:

$$
x^{T} L_{H}^{+} x=(1 \pm O(\epsilon)) x^{T} L_{G}^{+} x
$$

equivalently:

$$
(1-\epsilon) L_{G} \preceq L_{H} \preceq(1+\epsilon) L_{G}
$$

Spectral Sparsification

how sparse can we go ?

Spectral Sparsification

how sparse can we go ?

Karger '94, Benczúr-Karger '96, Spielman-Teng '04, Batson-Spielman-Srivastava '08:

Theorem

Spectral Sparsification

how sparse can we go ?

Karger '94, Benczúr-Karger '96, Spielman-Teng '04, Batson-Spielman-Srivastava '08:

Theorem

- every graph has ϵ-spectral sparsifier H with a number of edges

$$
\widetilde{O}\left(n / \epsilon^{2}\right)
$$

Spectral Sparsification

how sparse can we go ?

Karger '94, Benczúr-Karger '96, Spielman-Teng '04, Batson-Spielman-Srivastava '08:

Theorem

- every graph has ϵ-spectral sparsifier H with a number of edges

$$
\widetilde{O}\left(n / \epsilon^{2}\right)
$$

- H can be found in time $\widetilde{O}(m)$

Spectral Sparsification

how sparse can we go ?

Karger '94, Benczúr-Karger '96, Spielman-Teng '04, Batson-Spielman-Srivastava '08:

Theorem

- every graph has ϵ-spectral sparsifier H with a number of edges

$$
\widetilde{O}\left(n / \epsilon^{2}\right)
$$

- H can be found in time $\widetilde{O}(m)$

$$
\text { (only relevant when } \epsilon \leq \sqrt{n / m} \text {) }
$$

Applications

important building stone of many
$\widetilde{O}(m)$ cut approximation algorithms

Applications

important building stone of many
$\widetilde{O}(m)$ cut approximation algorithms

- max cut (Arora-Kale '16)
- min cut (Karger '00)
- min st-cut (Peng '16)
- sparsest cut (Sherman '09)
- ...

Applications

crucial component of Spielman-Teng breakthrough Laplacian solver:

Applications

crucial component of Spielman-Teng breakthrough Laplacian solver:

Theorem (Spielman-Teng '04)
Let G be a graph with m edges. The Laplacian system $L_{G} x=b$ can be approximately solved in time $\widetilde{O}(m)$.

Applications

crucial component of Spielman-Teng breakthrough Laplacian solver:

Theorem (Spielman-Teng '04)
Let G be a graph with m edges. The Laplacian system $L_{G} x=b$ can be approximately solved in time $\widetilde{O}(m)$.
= Gödel prize 2015

Applications

crucial component of Spielman-Teng breakthrough Laplacian solver:

Theorem (Spielman-Teng '04)
Let G be a graph with m edges. The Laplacian system $L_{G} x=b$ can be approximately solved in time $\widetilde{O}(m)$.

- electrical flows and max flows
- spectral clustering
$\widetilde{O}(m)$ approximation algorithms for
- random walk properties
- learning from data on graphs
- ...

Our Contribution

classically, $\widetilde{O}(m)$ runtime is optimal for most graph algorithms

Our Contribution

classically, $\widetilde{O}(m)$ runtime is optimal for most graph algorithms
can we do better using a quantum computer?

Our Contribution

classically, $\widetilde{O}(m)$ runtime is optimal for most graph algorithms
can we do better using a quantum computer?

(disclaimer: not with this one we won't)

Our Contribution

this work:

Our Contribution

this work:
(1) quantum algorithm to find ϵ-spectral sparsifier H in time

$$
\widetilde{O}(\sqrt{m n} / \epsilon)
$$

Our Contribution

this work:
(1) quantum algorithm to find ϵ-spectral sparsifier H in time

$$
\widetilde{O}(\sqrt{m n} / \epsilon)
$$

(2) matching $\widetilde{\Omega}(\sqrt{m n} / \epsilon)$ lower bound

Our Contribution

this work:

(1) quantum algorithm to find ϵ-spectral sparsifier H in time

$$
\widetilde{O}(\sqrt{m n} / \epsilon)
$$

(2) matching $\widetilde{\Omega}(\sqrt{m n} / \epsilon)$ lower bound
(3) applications: quantum speedup for

- max cut, min cut, min st-cut, sparsest cut, ...

Laplacian solving, approximating resistances and random walk properties, spectral clustering, ...
this work:
(1) quantum algorithm to find ϵ-spectral sparsifier H in time

$$
\widetilde{O}(\sqrt{m n} / \epsilon)
$$

(2) matching $\widetilde{\Omega}(\sqrt{m n} / \epsilon)$ lower bound
(3) applications: quantum speedup for

- max cut, min cut, min st-cut, sparsest cut, ...
- Laplacian solving, approximating resistances and random walk properties, spectral clustering, ...

Classical Sparsification Algorithm

Classical Sparsification Algorithm

Sparsification by edge sampling:

(1) associate probabilities $\left\{p_{e}\right\}$ to every edge
(2) keep every edge e with probability p_{e}, rescale its weight by $1 / p_{e}$

Classical Sparsification Algorithm

Sparsification by edge sampling:

(1) associate probabilities $\left\{p_{e}\right\}$ to every edge
(2) keep every edge e with probability p_{e}, rescale its weight by $1 / p_{e}$

ensures that

$$
\mathbb{E}\left(w_{e}^{H}\right)=w_{e}^{G}
$$

Classical Sparsification Algorithm

Sparsification by edge sampling:

(1) associate probabilities $\left\{p_{e}\right\}$ to every edge
(2) keep every edge e with probability p_{e}, rescale its weight by $1 / p_{e}$

ensures that

$$
\mathbb{E}\left(w_{e}^{H}\right)=w_{e}^{G}
$$

and hence

$$
\mathbb{E}\left(L_{H}\right)=\mathbb{E}\left(\sum w_{e} L_{e}\right)=L_{G}
$$

Classical Sparsification Algorithm

Sparsification by edge sampling:

(1) associate probabilities $\left\{p_{e}\right\}$ to every edge
(2) keep every edge e with probability p_{e}, rescale its weight by $1 / p_{e}$

ensures that

$$
\mathbb{E}\left(w_{e}^{H}\right)=w_{e}^{G}
$$

and hence

$$
\mathbb{E}\left(L_{H}\right)=\mathbb{E}\left(\sum w_{e} L_{e}\right)=L_{G}
$$

how to ensure concentration?

Classical Sparsification Algorithm

Sparsification by edge sampling:

(1) associate probabilities $\left\{p_{e}\right\}$ to every edge
(2) keep every edge e with probability p_{e}, rescale its weight by $1 / p_{e}$

ensures that

$$
\mathbb{E}\left(w_{e}^{H}\right)=w_{e}^{G}
$$

and hence

$$
\mathbb{E}\left(L_{H}\right)=\mathbb{E}\left(\sum w_{e} L_{e}\right)=L_{G}
$$

how to ensure concentration?
[Spielman-Srivastava '08]: give high p_{e} to edges with high effective resistance!

Classical Sparsification Algorithm

effective resistance $R_{(i, j)}$

Classical Sparsification Algorithm

effective resistance $R_{(i, j)}$
$=$ resistance between i, j
after replacing all edges with resistors

Classical Sparsification Algorithm

effective resistance $R_{(i, j)}$
$=$ resistance between i, j
after replacing all edges with resistors
$\stackrel{\text { (Ohm's law) }}{=}$ voltage difference required between i, j when sending unit current from i to j

Classical Sparsification Algorithm

effective resistance $R_{(i, j)}$
$=$ resistance between i, j
after replacing all edges with resistors
$\stackrel{\text { (Ohm's law) }}{=}$ voltage difference required between i, j when sending unit current from i to j
\rightarrow small if many short and parallel paths from i to j !

Classical Sparsification Algorithm

effective resistance $R_{(i, j)}$

$$
\text { red edge: } R_{e}=1
$$

black edges: $R_{e} \in O(1 / n)$
? how to identify high-resistance edges ?
? how to identify high-resistance edges ?
[Koutis-Xu '14]:
a graph spanner must contain all high-resistance edges
? how to identify high-resistance edges ?
[Koutis-Xu '14]:
a graph spanner must contain all high-resistance edges
$=$

- subgraph F of G with $\widetilde{O}(n)$ edges
? how to identify high-resistance edges ?
[Koutis-Xu '14]:
a graph spanner must contain all high-resistance edges
$=$
- subgraph F of G with $\widetilde{O}(n)$ edges
- all distances stretched by factor $\leq \log n$: for all i, j

$$
d_{G}(i, j) \leq d_{F}(i, j) \leq \log (n) d_{G}(i, j)
$$

? how to identify high-resistance edges ?
[Koutis-Xu '14]:
a graph spanner must contain all high-resistance edges
$=$

- subgraph F of G with $\widetilde{O}(n)$ edges
- all distances stretched by factor $\leq \log n$: for all i, j

$$
d_{G}(i, j) \leq d_{F}(i, j) \leq \log (n) d_{G}(i, j)
$$

? how to identify high-resistance edges ?
[Koutis-Xu '14]:
a graph spanner must contain all high-resistance edges
$=$

- subgraph F of G with $\widetilde{O}(n)$ edges
- all distances stretched by factor $\leq \log n$: for all i, j

$$
d_{G}(i, j) \leq d_{F}(i, j) \leq \log (n) d_{G}(i, j)
$$

[Koutis-Xu '14]:
 a graph spanner must contain all high-resistance edges!

proof idea for $R_{e}=1$:
> [Koutis-Xu '14]:
> a graph spanner must contain all high-resistance edges!
> proof idea for $R_{e}=1$:

- if $R_{e}=1$, there are no alternative paths between endpoints

[Koutis-Xu '14]:
 a graph spanner must contain all high-resistance edges!

$$
\text { proof idea for } R_{e}=1 \text { : }
$$

- if $R_{e}=1$, there are no alternative paths between endpoints
- hence, e must be present in spanner

Classical Sparsification Algorithm

Iterative sparsification:
(1) construct $\widetilde{O}\left(1 / \epsilon^{2}\right)$ spanners and keep these edges
(2) keep any remaining edge with probability $1 / 2$, and double its weight

Classical Sparsification Algorithm

Iterative sparsification:

(1) construct $\widetilde{O}\left(1 / \epsilon^{2}\right)$ spanners and keep these edges
(2) keep any remaining edge with probability $1 / 2$, and double its weight
(i.e., we set $p_{e}=1$ for spanner edges and $p_{e}=1 / 2$ for other edges)

Classical Sparsification Algorithm

Iterative sparsification:

(1) construct $\widetilde{O}\left(1 / \epsilon^{2}\right)$ spanners and keep these edges
(2) keep any remaining edge with probability $1 / 2$, and double its weight
(i.e., we set $p_{e}=1$ for spanner edges and $p_{e}=1 / 2$ for other edges)

Theorem (Spielman-Srivastava '08, Koutis-Xu '14)
W.h.p. output is ϵ-spectral sparsifier with $m / 2+\widetilde{O}\left(n / \epsilon^{2}\right)$ edges

Classical Sparsification Algorithm

Iterative sparsification:

(1) construct $\widetilde{O}\left(1 / \epsilon^{2}\right)$ spanners and keep these edges
(2) keep any remaining edge with probability $1 / 2$, and double its weight
(i.e., we set $p_{e}=1$ for spanner edges and $p_{e}=1 / 2$ for other edges)

Theorem (Spielman-Srivastava '08, Koutis-Xu '14)
W.h.p. output is ϵ-spectral sparsifier with $m / 2+\widetilde{O}\left(n / \epsilon^{2}\right)$ edges
\rightarrow repeat $O(\log n)$ times: ϵ-spectral sparsifier with $\widetilde{O}\left(n / \epsilon^{2}\right)$ edges

Quantum Sparsification Algorithm

Quantum Sparsification Algorithm

= quantum spanner algorithm
$+k$-independent oracle

+ a magic trick

Quantum Spanner Algorithm

Quantum Spanner Algorithm

Theorem ("easy")
There is a quantum spanner algorithm with query complexity

$$
\widetilde{O}(\sqrt{m n})
$$

Quantum Spanner Algorithm

Theorem ("easy")
There is a quantum spanner algorithm with query complexity

$$
\widetilde{O}(\sqrt{m n})
$$

- greedy spanner algorithm:

Quantum Spanner Algorithm

Theorem ("easy")
There is a quantum spanner algorithm with query complexity

$$
\widetilde{O}(\sqrt{m n})
$$

- greedy spanner algorithm:
(1) set $F=\left(V, E_{F}=\emptyset\right)$

Quantum Spanner Algorithm

Theorem ("easy")
There is a quantum spanner algorithm with query complexity

$$
\widetilde{O}(\sqrt{m n})
$$

- greedy spanner algorithm:
(1) set $F=\left(V, E_{F}=\emptyset\right)$
(2) iterate over every edge $(i, j) \in E \backslash E_{F}$:
if $\delta_{F}(i, j)>\log n$, add (i, j) to F

Quantum Spanner Algorithm

Theorem ("easy")
There is a quantum spanner algorithm with query complexity

$$
\widetilde{O}(\sqrt{m n})
$$

- greedy spanner algorithm:
(1) set $F=\left(V, E_{F}=\emptyset\right)$
(2) iterate over every edge $(i, j) \in E \backslash E_{F}$:
if $\delta_{F}(i, j)>\log n$, add (i, j) to F
- quantum greedy spanner algorithm:

Quantum Spanner Algorithm

Theorem ("easy")
There is a quantum spanner algorithm with query complexity

$$
\widetilde{O}(\sqrt{m n})
$$

- greedy spanner algorithm:
(1) set $F=\left(V, E_{F}=\emptyset\right)$
(2) iterate over every edge $(i, j) \in E \backslash E_{F}$:
if $\delta_{F}(i, j)>\log n$, add (i, j) to F
- quantum greedy spanner algorithm:
(1) set $F=\left(V, E_{F}=\emptyset\right)$

Quantum Spanner Algorithm

Theorem ("easy")
There is a quantum spanner algorithm with query complexity

$$
\widetilde{O}(\sqrt{m n})
$$

- greedy spanner algorithm:
(1) set $F=\left(V, E_{F}=\emptyset\right)$
(2) iterate over every edge $(i, j) \in E \backslash E_{F}$:
if $\delta_{F}(i, j)>\log n$, add (i, j) to F
- quantum greedy spanner algorithm:
(1) set $F=\left(V, E_{F}=\emptyset\right)$
(2) until no more edges are found, do:

Grover search for edge (i, j) such that $\delta_{F}(i, j)>\log n$. add (i, j) to F

Quantum Spanner Algorithm

Theorem ("easy")
There is a quantum spanner algorithm with query complexity

$$
\widetilde{O}(\sqrt{m n})
$$

- greedy spanner algorithm:
(1) set $F=\left(V, E_{F}=\emptyset\right)$
(2) iterate over every edge $(i, j) \in E \backslash E_{F}$:
if $\delta_{F}(i, j)>\log n$, add (i, j) to F
- quantum greedy spanner algorithm:
(1) set $F=\left(V, E_{F}=\emptyset\right)$
(2) until no more edges are found, do:

Grover search for edge (i, j) such that $\delta_{F}(i, j)>\log n$. add (i, j) to F
\rightarrow can prove: $\widetilde{O}(n)$ edges are found using $\widetilde{O}(\sqrt{m n})$ queries

Quantum Spanner Algorithm

Theorem ("less easy")
There is a quantum spanner algorithm with time complexity

$$
\widetilde{O}(\sqrt{m n})
$$

Quantum Spanner Algorithm

Theorem ("less easy")

There is a quantum spanner algorithm with time complexity

$$
\widetilde{O}(\sqrt{m n})
$$

= (roughly)
[Thorup-Zwick '01]
classical construction of a spanner by growing small shortest-path trees (SPTs)

Quantum Spanner Algorithm

Theorem ("less easy")
There is a quantum spanner algorithm with time complexity

$$
\widetilde{O}(\sqrt{m n})
$$

$$
=\text { (roughly) }
$$

[Thorup-Zwick '01]
classical construction of a spanner by growing small shortest-path trees (SPTs)
$+$
[Dürr-Heiligman-Høyer-Mhalla '04] quantum speedup for constructing SPTs

Quantum Sparsification Algorithm

Iterative sparsification:
(1) use quantum algorithm to construct $\widetilde{O}\left(1 / \epsilon^{2}\right)$ spanners, keep these edges
(2) keep any remaining edge with probability $1 / 2$, and double its weight

Quantum Sparsification Algorithm

Iterative sparsification:
(1) use quantum algorithm to construct $\widetilde{O}\left(1 / \epsilon^{2}\right)$ spanners, keep these edges
(2) keep any remaining edge with probability $1 / 2$, and double its weight
\rightarrow after 1 iteration: "intermediate" graph with $\approx m / 2$ edges

Quantum Sparsification Algorithm

Iterative sparsification:

(1) use quantum algorithm to construct $\widetilde{O}\left(1 / \epsilon^{2}\right)$ spanners, keep these edges
(2) keep any remaining edge with probability $1 / 2$, and double its weight
\rightarrow after 1 iteration: "intermediate" graph with $\approx m / 2$ edges
? how to keep track in time $o(m)$?

Quantum Sparsification Algorithm

Iterative sparsification:

(1) use quantum algorithm to construct $\widetilde{O}\left(1 / \epsilon^{2}\right)$ spanners, keep these edges
(2) keep any remaining edge with probability $1 / 2$, and double its weight
\rightarrow after 1 iteration: "intermediate" graph with $\approx m / 2$ edges
? how to keep track in time $o(m)$?

Query Access to Random String

8 maintain (offline) random string $x \in\{0,1\}^{\binom{n}{2}}$

edge (i, j) discarded edge $\left(i^{\prime}, j^{\prime}\right)$ kept

Query Access to Random String

8 maintain (offline) random string $x \in\{0,1\}^{\binom{n}{2}}$

edge (i, j) discarded edge $\left(i^{\prime}, j^{\prime}\right)$ kept
(oblivious to the graph!)

Query Access to Random String

8 maintain (offline) random string $x \in\{0,1\}^{\binom{n}{2}}$

edge (i, j) discarded edge $\left(i^{\prime}, j^{\prime}\right)$ kept (oblivious to the graph!)

$$
\text { query }(i, k) \longrightarrow(j, x(i, j))
$$

Query Access to Random String

8 maintain (offline) random string $x \in\{0,1\}\binom{(n)}{2}$

edge (i, j) discarded edge $\left(i^{\prime}, j^{\prime}\right)$ kept (oblivious to the graph!)

$$
\text { query }(i, k) \longrightarrow(j, x(i, j))
$$

Query Access to Random String

problem:

time $\Omega\left(n^{2}\right)$ to generate random $\left.x \in\{0,1\} \begin{array}{c}n \\ 2\end{array}\right)$

Query Access to Random String

problem:

time $\Omega\left(n^{2}\right)$ to generate random $x \in\{0,1\} \begin{gathered}\binom{n}{2}\end{gathered}$

- classical solution: "lazy sampling" (generate bits on demand)

Query Access to Random String

problem:

time $\Omega\left(n^{2}\right)$ to generate random $x \in\{0,1\} \begin{gathered}\binom{n}{2}\end{gathered}$

- classical solution: "lazy sampling" (generate bits on demand)
- quantum this is not possible: can address all bits in superposition

Rid of Random String

luckily, we can outsmart this quantum demon:

Rid of Random String

luckily, we can outsmart this quantum demon:

Fact

k/2-query quantum algorithm cannot distinguish uniformly random string from k-wise independent string *
= easy consequence of polynomial method
[Beals-Buhrman-Cleve-Mosca-de Wolf '98]

Rid of Random String

luckily, we can outsmart this quantum demon:

Fact

k/2-query quantum algorithm cannot distinguish uniformly random string from k-wise independent string *
= easy consequence of polynomial method
[Beals-Buhrman-Cleve-Mosca-de Wolf '98]

* k-wise independent string $x \in\{0,1\}^{\binom{n}{2}}$
behaves uniformly random on every subset of k bits

Rid of Random String

aim for quantum algorithm making $\sim \sqrt{m n}$ queries, so suffices to use k-wise independent $\binom{n}{2}$-bit string with $k \sim \sqrt{m n}$

Rid of Random String

aim for quantum algorithm making $\sim \sqrt{m n}$ queries, so suffices to use k-wise independent $\binom{n}{2}$-bit string with $k \sim \sqrt{m n}$
? can we efficiently query such a string ?
(without explicitly generating it!)

Rid of Random String

aim for quantum algorithm making $\sim \sqrt{m n}$ queries, so suffices to use k-wise independent $\binom{n}{2}$-bit string with $k \sim \sqrt{m n}$

? can we efficiently query such a string ?

(without explicitly generating it!)
\rightarrow use recent results on "efficient k-independent hash functions"

Rid of Random String

aim for quantum algorithm making $\sim \sqrt{m n}$ queries, so suffices to use k-wise independent $\binom{n}{2}$-bit string with $k \sim \sqrt{m n}$

> ? can we efficiently query such a string? (without explicitly generating it!)
\rightarrow use recent results on "efficient k-independent hash functions"

Theorem (Christiani-Pagh-Thorup '15)

Can construct in preprocessing time $\widetilde{O}(k)$ a k-independent oracle that simulates queries to k-wise independent string in time $\widetilde{O}(1)$ per query.

Rid of Random String

aim for quantum algorithm making $\sim \sqrt{m n}$ queries, so suffices to use k-wise independent $\binom{n}{2}$-bit string with $k \sim \sqrt{m n}$

? can we efficiently query such a string ? (without explicitly generating it!)

\rightarrow use recent results on "efficient k-independent hash functions"

Theorem (Christiani-Pagh-Thorup '15)

Can construct in preprocessing time $\widetilde{O}(k)$ a k-independent oracle that simulates queries to k-wise independent string in time $\widetilde{O}(1)$ per query.

Corollary

Any k-query quantum algorithm that queries a uniformly random string can be simulated in time $\widetilde{O}(k)$ without random string.

Quantum Sparsification Algorithm

Quantum Sparsification Algorithm

Quantum iterative sparsification:
(1) use quantum algorithm to construct $\widetilde{O}\left(1 / \epsilon^{2}\right)$ spanners, keep these edges
(2) construct k-independent oracle that marks remaining edges with probability $1 / 2$, and double weights

Quantum Sparsification Algorithm

Quantum iterative sparsification:
(1) use quantum algorithm to construct $\widetilde{O}\left(1 / \epsilon^{2}\right)$ spanners, keep these edges
(2) construct k-independent oracle that marks remaining edges with probability $1 / 2$, and double weights
\rightarrow per iteration: complexity $\widetilde{O}\left(\sqrt{m n} / \epsilon^{2}\right)$

Quantum Sparsification Algorithm

Quantum iterative sparsification:

(1) use quantum algorithm to construct $\widetilde{O}\left(1 / \epsilon^{2}\right)$ spanners, keep these edges
(2) construct k-independent oracle that marks remaining edges with probability $1 / 2$, and double weights
\rightarrow per iteration: complexity $\widetilde{O}\left(\sqrt{m n} / \epsilon^{2}\right)$

Theorem

There is a quantum algorithm that constructs an ϵ-spectral sparsifier with $\widetilde{O}\left(n / \epsilon^{2}\right)$ edges in time

$$
\widetilde{O}\left(\sqrt{m n} / \epsilon^{2}\right)
$$

A Magic Trick

MEundifiatyen

A Magic Trick

to improve ϵ-dependency:

A Magic Trick

to improve ϵ-dependency:
(1) create rough ϵ-spectral sparsifier H for $\epsilon=1 / 10$
$\rightarrow \widetilde{O}(\sqrt{m n})$ using our quantum algorithm

A Magic Trick

to improve ϵ-dependency:
(1) create rough ϵ-spectral sparsifier H for $\epsilon=1 / 10$
$\rightarrow \widetilde{O}(\sqrt{m n})$ using our quantum algorithm
(2) estimate effective resistances for H
$\rightarrow \widetilde{O}(n)$ using classical Laplacian solving

A Magic Trick

to improve ϵ-dependency:
(1) create rough ϵ-spectral sparsifier H for $\epsilon=1 / 10$
$\rightarrow \widetilde{O}(\sqrt{m n})$ using our quantum algorithm
(2) estimate effective resistances for H
$\rightarrow \widetilde{O}(n)$ using classical Laplacian solving
$=$ approximation of effective resistances of G !

A Magic Trick

to improve ϵ-dependency:
(1) create rough ϵ-spectral sparsifier H for $\epsilon=1 / 10$
$\rightarrow \widetilde{O}(\sqrt{m n})$ using our quantum algorithm
(2) estimate effective resistances for H
$\rightarrow \widetilde{O}(n)$ using classical Laplacian solving
$=$ approximation of effective resistances of G !
(3) sample $\widetilde{O}\left(n / \epsilon^{2}\right)$ edges from G using these estimates
\rightarrow in time $\widetilde{O}\left(\sqrt{m n / \epsilon^{2}}\right)$ using Grover search

A Magic Trick

to improve ϵ-dependency:
(1) create rough ϵ-spectral sparsifier H for $\epsilon=1 / 10$
$\rightarrow \widetilde{O}(\sqrt{m n})$ using our quantum algorithm
(2) estimate effective resistances for H
$\rightarrow \widetilde{O}(n)$ using classical Laplacian solving
$=$ approximation of effective resistances of G !
(3) sample $\widetilde{O}\left(n / \epsilon^{2}\right)$ edges from G using these estimates
\rightarrow in time $\widetilde{O}\left(\sqrt{m n / \epsilon^{2}}\right)$ using Grover search

Theorem (our main result)

There is a quantum algorithm that constructs an ϵ-spectral sparsifier with $\widetilde{O}\left(n / \epsilon^{2}\right)$ edges in time

$$
\widetilde{O}(\sqrt{m n} / \epsilon)
$$

A Magic Trick

to improve ϵ-dependency:
(1) create rough ϵ-spectral sparsifier H for $\epsilon=1 / 10$
$\rightarrow \widetilde{O}(\sqrt{m n})$ using our quantum algorithm
(2) estimate effective resistances for H
$\rightarrow \widetilde{O}(n)$ using classical Laplacian solving
$=$ approximation of effective resistances of G !
(3) sample $\widetilde{O}\left(n / \epsilon^{2}\right)$ edges from G using these estimates
\rightarrow in time $\widetilde{O}\left(\sqrt{m n / \epsilon^{2}}\right)$ using Grover search

Theorem (our main result)

There is a quantum algorithm that constructs an ϵ-spectral sparsifier with $\widetilde{O}\left(n / \epsilon^{2}\right)$ edges in time

$$
\widetilde{O}(\sqrt{m n} / \epsilon)
$$

* assuming $\epsilon \geq \sqrt{n / m}$, it holds that $\widetilde{O}(\sqrt{m n} / \epsilon) \in \widetilde{O}(m)$

this work:

(1) quantum algorithm to find ϵ-spectral sparsifier H in time

$$
\widetilde{O}(\sqrt{m n} / \epsilon)
$$

(2) matching $\widetilde{\Omega}(\sqrt{m n} / \epsilon)$ lower bound
(3) applications: quantum speedup for

- max cut, min cut, min st-cut, sparsest cut, ...
- Laplacian solving, approximating resistances and random walk properties, spectral clustering, ...

Matching Quantum Lower Bound

intuition:

finding k marked elements among M elements takes
$\Omega(\sqrt{M k})$ quantum queries

Matching Quantum Lower Bound

intuition:

finding k marked elements among M elements takes
$\Omega(\sqrt{M k})$ quantum queries

> "hence"
finding $\widetilde{O}\left(n / \epsilon^{2}\right)$ edges of sparsifier among m edges takes time

$$
\widetilde{\Omega}(\sqrt{m n} / \epsilon)
$$

Unsparsifiable Graph

Unsparsifiable Graph

random bipartite graph on $1 / \epsilon^{2}$ nodes

Unsparsifiable Graph

$$
\epsilon^{2} n \text { copies }
$$

$=$ random graph $H(n, \epsilon)$ with n nodes and $O\left(n / \epsilon^{2}\right)$ edges

Unsparsifiable Graph

$$
\epsilon^{2} n \text { copies }
$$

$=$ random graph $H(n, \epsilon)$ with n nodes and $O\left(n / \epsilon^{2}\right)$ edges

Theorem (Andoni-Chen-Krauthgamer-Qin-Woodruff-Zhang '16)
Any ϵ-spectral sparsifier of $H(n, \epsilon)$ must contain a constant fraction of its edges.

Hiding a Sparsifier

Hiding a Sparsifier

$$
\text { given } n, m, \epsilon \text { : }
$$

we "hide" $H(n, \epsilon)$ in larger $G(n, m, \epsilon)$ with n nodes and m edges

Hiding a Sparsifier

$$
\text { given } n, m, \epsilon:
$$

we "hide" $H(n, \epsilon)$ in larger $G(n, m, \epsilon)$ with n nodes and m edges

$\rightarrow \epsilon$-spectral sparsifier of $G(n, m, \epsilon)$ must find constant fraction of $H(n, \epsilon)$

Proving a Lower Bound

Proving a Lower Bound

"hidden" copy of random graph:
every edge of sparsifier is hidden among $N=m /\left(n \epsilon^{2}\right)$ entries

Proving a Lower Bound

"hidden" copy of random graph:
every edge of sparsifier is hidden among $N=m /\left(n \epsilon^{2}\right)$ entries original graph:

Proving a Lower Bound

"hidden" copy of random graph:
every edge of sparsifier is hidden among $N=m /\left(n \epsilon^{2}\right)$ entries original graph:

$$
=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

hidden graph:

Proving a Lower Bound

forgetting about graphs:

Proving a Lower Bound

forgetting about graphs:

$$
A=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] \in\{0,1\}^{n \times n}
$$

Proving a Lower Bound

forgetting about graphs:

$$
\begin{gathered}
A=\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] \in\{0,1\}^{n \times n} \\
=O R_{N, \text { blockwise }}\left(\left[\begin{array}{llll}
00000001000 & 00000000000 & 00000000000 & 0010000000 \\
0001000000 & 000000000 & 000000011_{0} & 0000_{000000} \\
00000000000 & 00000010000 & 0000000010 & 0000000000 \\
0000000000 & 0000000000 & 00000110000 & 0000100000
\end{array}\right] \in\{0,1\}^{\mathrm{Nn} \times N n}\right)
\end{gathered}
$$

Proving a Lower Bound

forgetting about graphs:

$$
A=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] \in\{0,1\}^{n \times n}
$$

task:
output constant fraction of 1-bits of A, each described by $O R_{N}$-function

Proving a Lower Bound

forgetting about graphs:

task:
output constant fraction of 1-bits of A, each described by $O R_{N}$-function
$=$ relational problem composed with $O R_{N}$

Proving a Lower Bound

? quantum lower bound for composition of relational problem and $O R_{N}$-function?

Proving a Lower Bound

? quantum lower bound for composition of relational problem and $O R_{N}$-function?

Theorem (proof by A. Belov and T. Lee, to be published)

The quantum query complexity of an efficiently verifiable relational problem, with lower bound L, composed with the $O R_{N}$-function, is

$$
\Omega(L \sqrt{N})
$$

Proving a Lower Bound

? quantum lower bound for composition of relational problem and $O R_{N}$-function?

Theorem (proof by A. Belov and T. Lee, to be published)

The quantum query complexity of an efficiently verifiable relational problem, with lower bound L, composed with the $O R_{N}$-function, is

$$
\Omega(L \sqrt{N}) .
$$

$$
\text { for } L=\widetilde{\Omega}(n) \text { and } N=m /\left(n \epsilon^{2}\right) \text { : }
$$

Corollary

The quantum query complexity of explicity outputting an ϵ-spectral sparsifier of a graph with n nodes and m edges is

$$
\widetilde{\Omega}(\sqrt{m n} / \epsilon) .
$$

this work:
(1) quantum algorithm to find ϵ-spectral sparsifier H in time

$$
\widetilde{O}(\sqrt{m n} / \epsilon)
$$

(2) matching $\widetilde{\Omega}(\sqrt{m n} / \epsilon)$ lower bound
(3) applications: quantum speedup for

- max cut, min cut, min st-cut, sparsest cut, ...
- Laplacian solving, approximating resistances and random walk properties, spectral clustering, ...

Quantum Speedups by Quantum Sparsification

Quantum Speedups by Quantum Sparsification

graph quantity P, approximately preserved under sparsification

Quantum Speedups by Quantum Sparsification

graph quantity P, approximately preserved under sparsification
$+$
classical $\widetilde{O}(m)$ algorithm for P

Quantum Speedups by Quantum Sparsification

graph quantity P, approximately preserved under sparsification

quantum sparsify G to H in $\widetilde{O}(\sqrt{m n} / \epsilon)$

+ classical algorithm on H in $\widetilde{O}\left(n / \epsilon^{2}\right)$

Quantum Speedups by Quantum Sparsification

graph quantity P,
approximately preserved under sparsification
$+$
classical $\widetilde{O}(m)$ algorithm for P
\downarrow
quantum sparsify G to H in $\widetilde{O}(\sqrt{m n} / \epsilon)$

+ classical algorithm on H in $\widetilde{O}\left(n / \epsilon^{2}\right)$
approximate $\widetilde{O}(\sqrt{m n} / \epsilon)$ quantum algorithm for P

Cut Approximation

MIN CUT:

find cut $\left(S, S^{c}\right)$ that minimizes cut value $\operatorname{cut}_{G}(S)$

Cut Approximation

MIN CUT:

find cut $\left(S, S^{c}\right)$ that minimizes cut value $\operatorname{cut}_{G}(S)$

classically: can find MIN CUT in time $\widetilde{O}(m)$ (Karger ' ${ }^{\prime} 00$)

Cut Approximation

MIN CUT of ϵ-spectral sparsifier H gives ϵ-approximation of MIN CUT of G

Cut Approximation

MIN CUT of ϵ-spectral sparsifier H gives ϵ-approximation of MIN CUT of G

quantum sparsify G to H in $\widetilde{O}(\sqrt{m n} / \epsilon)$

+ classical MIN CUT on H in $\widetilde{O}\left(n / \epsilon^{2}\right)$ (Karger '00)
$=\widetilde{O}(\sqrt{m n} / \epsilon)$ quantum algorithm for ϵ-MIN CUT

Cut Approximation

	Classical	Quantum (this work)
ϵ-MIN CUT	$\widetilde{O}(m)$ (Karger'00)	$\widetilde{O}(\sqrt{m n} / \epsilon)$
ϵ-MIN st-CUT	$\widetilde{O}\left(m+n / \epsilon^{5}\right)$ (Peng'16)	$\widetilde{O}\left(\sqrt{m n} / \epsilon+n / \epsilon^{5}\right)$
$\sqrt{\log n}$-SPARSEST CUT/	$\widetilde{O}\left(m+n^{1+\delta}\right)$	$\widetilde{O}\left(\sqrt{m n}+n^{1+\delta}\right)$
-BAL. SEPARATOR	(Sherman'09)	
.878 -MAX CUT	$\widetilde{O}(m)$ (Arora-Kale'07)	$\widetilde{O}(\sqrt{m n})$

Laplacian Solving

Laplacian Solving

general linear system $A x=b$

Laplacian Solving

general linear system $A x=b$
given A and b, with $n n z(A)=m$,
complexity of approximating x is $\widetilde{O}\left(\min \left\{m n, n^{\omega}\right\}\right)(\omega<2.373)$

Laplacian Solving

Laplacian system $L x=b$

Laplacian Solving

Laplacian system $L x=b$

given L and b, with $n n z(L)=m$, complexity of approximating x is $\widetilde{O}(m)$ [Spielman-Teng '04]

Laplacian Solving

Laplacian system $L x=b$

given L and b, with $n n z(L)=m$,
complexity of approximating x is $\widetilde{O}(m)$ [Spielman-Teng '04]

$$
+
$$

if H sparsifier of G then $L_{H}^{+} b \approx L_{G}^{+} b$

Laplacian Solving

Laplacian system $L x=b$

given L and b, with $n n z(L)=m$, complexity of approximating x is $\widetilde{O}(m)$ [Spielman-Teng '04]

$$
+
$$

if H sparsifier of G then $L_{H}^{+} b \approx L_{G}^{+} b$

quantum algorithm to sparsify G to H in $\widetilde{O}(\sqrt{m n} / \epsilon)$

+ solve $L_{H} x=b$ classically in $\widetilde{O}\left(n / \epsilon^{2}\right)$

Laplacian Solving

Laplacian system $L x=b$

given L and b, with $n n z(L)=m$,
complexity of approximating x is $\widetilde{O}(m)$ [Spielman-Teng '04]

$$
+
$$

if H sparsifier of G then $L_{H}^{+} b \approx L_{G}^{+} b$

quantum algorithm to sparsify G to H in $\widetilde{O}(\sqrt{m n} / \epsilon)$

+ solve $L_{H} x=b$ classically in $\widetilde{O}\left(n / \epsilon^{2}\right)$
$=$
quantum algorithm for Laplacian solving in $\widetilde{O}(\sqrt{m n} / \epsilon)$

Laplacian Solving

$$
\text { Laplacian system } L x=b
$$

given L and b, with $n n z(L)=m$,
complexity of approximating x is $\widetilde{O}(m)$ [Spielman-Teng '04]

$$
+
$$

if H sparsifier of G then $L_{H}^{+} b \approx L_{G}^{+} b$
\downarrow
quantum algorithm to sparsify G to H in $\widetilde{O}(\sqrt{m n} / \epsilon)$

+ solve $L_{H} x=b$ classically in $\widetilde{O}\left(n / \epsilon^{2}\right)$

$$
=
$$

quantum algorithm for Laplacian solving in $\widetilde{O}(\sqrt{m n} / \epsilon)$
(+ quantum reduction for symmetric, diagonally dominant systems)

Laplacian Solving and Friends

	Classical	Quantum (this work)
ϵ-SDD Solving ϵ-Effective Resistance (single)	$\widetilde{O}(m)($ ST'04)	$\widetilde{O}(\sqrt{m n} / \epsilon)$
ϵ-Effective Resistance (all)	$\widetilde{O}(m)$	$\widetilde{O}(\sqrt{m n} / \epsilon)$ prior: $\widetilde{O}\left(\sqrt{m n} / \epsilon^{2}\right)$
$O(1)$-Cover Time (Spielman-Srivastava'08)	$\widetilde{O}(m)$ (Ding-Lee-Peres'10)	$\widetilde{O}\left(\sqrt{m n} / \epsilon+n / \epsilon^{4}\right)$
k bottom eigenvalues	$\widetilde{O}\left(m+k n / \epsilon^{2}\right)$	$\widetilde{O}(\sqrt{m n})$
Spectral k-means clustering	$\widetilde{O}(m+n \operatorname{poly}(k))$	$\widetilde{O}(\sqrt{m n}+n \operatorname{poly}(k))$

summary:

summary:

- quantum algorithm for spectral sparsification in time $\widetilde{O}(\sqrt{m n} / \epsilon)$

summary:

- quantum algorithm for spectral sparsification in time $\widetilde{O}(\sqrt{m n} / \epsilon)$
- matching $\widetilde{\Omega}(\sqrt{m n} / \epsilon)$ lower bound

summary:

- quantum algorithm for spectral sparsification in time $\widetilde{O}(\sqrt{m n} / \epsilon)$
- matching $\widetilde{\Omega}(\sqrt{m n} / \epsilon)$ lower bound
- speedup for cut approximation, Laplacian solving, ...

summary:

- quantum algorithm for spectral sparsification in time $\widetilde{O}(\sqrt{m n} / \epsilon)$
- matching $\widetilde{\Omega}(\sqrt{m n} / \epsilon)$ lower bound
- speedup for cut approximation, Laplacian solving, ...

open questions:

summary:

- quantum algorithm for spectral sparsification in time $\widetilde{O}(\sqrt{m n} / \epsilon)$
- matching $\widetilde{\Omega}(\sqrt{m n} / \epsilon)$ lower bound
- speedup for cut approximation, Laplacian solving, ...

open questions:

- matching lower bounds for applications?
e.g., $\Omega(\sqrt{m n} / \epsilon)$ for approximate min cut or Laplacian solving?

summary:

- quantum algorithm for spectral sparsification in time $\widetilde{O}(\sqrt{m n} / \epsilon)$
- matching $\widetilde{\Omega}(\sqrt{m n} / \epsilon)$ lower bound
- speedup for cut approximation, Laplacian solving, ...

open questions:

- matching lower bounds for applications?
e.g., $\Omega(\sqrt{m n} / \epsilon)$ for approximate min cut or Laplacian solving?
- our $\widetilde{O}(\sqrt{m n} / \epsilon)$ sparsification algorithm is tight for weighted graphs. can we do better for unweighted graphs?

summary:

- quantum algorithm for spectral sparsification in time $\widetilde{O}(\sqrt{m n} / \epsilon)$
- matching $\widetilde{\Omega}(\sqrt{m n} / \epsilon)$ lower bound
- speedup for cut approximation, Laplacian solving, ...

open questions:

- matching lower bounds for applications?
e.g., $\Omega(\sqrt{m n} / \epsilon)$ for approximate min cut or Laplacian solving?
- our $\widetilde{O}(\sqrt{m n} / \epsilon)$ sparsification algorithm is tight for weighted graphs. can we do better for unweighted graphs?
thank you! stay safe!

