Competing Bandits in Matching Markets
Michael Jordan, Lydia Liu and Horia Mania
380 Soda Hall
Stable matching, a classical model for two-sided markets, has long been studied assuming known preferences. In reality agents often have to learn about their preferences through exploration. With the advent of massive online markets powered by data-driven matching platforms, it has become necessary to better understand the interplay between learning and market objectives. We propose a statistical learning model in which one side of the market does not have a priori knowledge about its preferences for the other side and is required to learn these from stochastic rewards. Our model extends the standard multi-armed bandits framework to multiple players, with the added feature that arms have preferences over players. We study both centralized and decentralized approaches to this problem and show surprising exploration-exploitation trade-offs compared to the single player multi-armed bandits setting.