Computational and Statistical Tradeoffs via Convex Relaxation
Modern massive datasets create a fundamental problem at the intersection of the computational and statistical sciences: how to provide guarantees on the quality of statistical inference given bounds on computational resources such as time or space. Our approach to this problem is to define a notion of “algorithmic weakening,” in which a hierarchy of algorithms is ordered by both computational efficiency and statistical efficiency, allowing the growing strength of the data at scale to be traded off against the need for sophisticated processing. We illustrate this approach in the setting of denoising problems, using convex relaxation as the core inferential tool. Hierarchies of convex relaxations have been widely used in theoretical computer science to yield tractable approximation algorithms to many computationally intractable tasks. In this talk we show how to endow such hierarchies with a statistical characterization and thereby obtain concrete tradeoffs relating algorithmic runtime to amount of data.
Joint work with Michael Jordan.