Suvrit Sra
Research Faculty, Laboratory for Information and Decision Systems, MIT
Suvrit Sra is a computer scientist who works in machine learning and optimization. Sra works on several theoretical, algorithmic, and applied questions in machine learning and data science. He is interested in all aspects of optimization for ML, especially scalable convex and nonconvex optimization. Sra is fascinated by geometric optimization, a growing topic with lots of cool math. Beyond OPT & ML, he has a strong interest in matrix theory, differential geometry, metric geometry, probability theory, algebraic combinatorics, fixed-point theory, and several other areas in math.
Program Visits
- Data Structures and Optimization for Fast Algorithms, Fall 2023. Workshop Organizer.
- Foundations of Machine Learning, Spring 2017. Visiting Scientist.