Crypto Reading Group
Elette Boyle (Technion Israel Institute of Technology)
Calvin Lab Room 116
Function Secret Sharing
Motivated by the goal of securely searching and updating distributed data, we introduce the notion of function secret sharing (FSS), a form of “additive secret sharing” for {\em functions} f: {0,1}^n → G, where G is an abelian group.
An m-party FSS scheme for function class F allows one to split any function f from F into m succinctly described functions f_i, such that: (1) for every input x, f(x) is equal to the sum of evaluations \sum_i f_i(x), and (2) any strict subset of "share functions" f_i hides f. FSS provides a natural generalization of distributed point functions, as introduced by (Gilboa-Ishai Eurocrypt 2014), which coincide with the special case of two parties and the class F of point functions (which evaluate to 0 at all but one point).
We present two types of results:
- We obtain efficiency improvements and extensions of the original distributed point function construction.
- We then initiate a systematic study of general FSS, providing constructions for richer function classes, and establishing relations with other cryptographic primitives.
Joint work with Niv Gilboa and Yuval Ishai.