Robustly Learning Mixtures of (Clusterable) Gaussians via the SoS Proofs to Algorithms Method
Sam Hopkins, UC Berkeley
Zoom link will be sent out to program participants.
Gaussian Mixture Models (GMMs) are the canonical generative models for non-homogeneous data: they have been studied in statistics and (later) computer science for more than 100 years. A seminal algorithm of Moitra and Vailiant shows that for every fixed k, mixtures of k Gaussians in d dimensions can be learned in time polynomial in d. However, this algorithm is highly non-robust: if the underlying distribution of samples is merely close to being a GMM (or if any samples are corrupted), their algorithm fails to learn the distribution.
We design and analyze a new, robust algorithm to learn high-dimensional GMMs, under the assumption that the mixture is clusterable — that is, all pairs of Gaussians in the mixture have total variation distance close to 1. Prior robust algorithms for learning GMMs work only for spherical Gaussians — that is, with covariance (upper bounded by) identity.
In this talk I will attempt to emphasize the SoS Proofs to Algorithms method which we use to design and analyze our algorithm. This method, which offers a mechanical way to turn a sufficiently simple proof of identifiability of parameters of a distribution into an efficient algorithm to learn those parameters, has proven to be exceptionally powerful in a wide range of high-dimensional statistics settings.