Talks
Fall 2020

Zap Q-learning with Nonlinear Function Approximation

Wednesday, December 2nd, 2020, 9:00 am9:30 am

Add to Calendar

Speaker: 

Sean Meyn (University of Florida)

Zap Q-learning is a recent class of reinforcement learning algorithms, motivated primarily as a means to accelerate convergence. Stability theory has been absent outside of two restrictive classes: the tabular setting, and optimal stopping. This paper introduces a new framework for analysis of a more general class of recursive algorithms known as stochastic approximation. Based on this general theory, it is shown that Zap Q-learning is consistent under a non-degeneracy assumption, even when the function approximation architecture is nonlinear. Zap Q-learning with neural network function approximation emerges as a special case, and is tested on examples from OpenAI Gym. Based on multiple experiments with a range of neural network sizes, it is found that the new algorithms converge quickly and are robust to choice of function approximation architecture.

AttachmentSize
PDF icon Slides17.65 MB