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Overall objectives and assessment of the program

The central goal of the Simons Institute program on Algorithms and Complexity in Algebraic Ge-
ometry was to increase exchange and collaboration between algebraic geometers on the one hand
and computer scientists on the other. Two developments over the past few years made such a pro-
gram timely. First, advances in computer science have spawned the field of computational algebraic
geometry, which has led to the development and implementation of new, efficient algorithms for
algebraic and numerical problems. Second, algebraic geometry has been used to prove complex-
ity lower bounds and shows promise to do much more; indeed, arguably the most viable current
approach to tackling the most central problems in complexity theory, such as P versus NP, is the
Geometric Complexity Theory (GCT) program pioneered by Ketan Mulmuley and collaborators,
and has algebraic geometry as its cornerstone. Additional goals included making progress on cer-
tain specific problems (some of which are discussed below), and attracting new researchers to the
use of algebraic geometry in complexity theory and algorithm design.

One and a half years after its completion, it is already evident that the program was spec-
tacularly successful in attracting new researchers to the area, establishing collaborations between
algebraic geometers and theoretical computer scientists, and making significant progress on the
major questions in the field.

Major progress and outcomes

Geometric Complexity Theory (GCT). The program proposal included the major goal of clarifying
the role of the GCT program with regard to the fundamental lower bound questions in theoretical
computer science, at least as far as algebraic models of computation are concerned. This goal was
achieved in a very strong sense! Several insights were obtained successively during and after the
program that will necessitate a major rethinking of the GCT program; in particular, it is now clear
that a considerably finer methodology than that originally proposed will be required for the GCT
program to be successful.

Christian Ikenmeyer, a Research Fellow in the program, and Greta Panova, a young combina-
torialist, started a collaboration during their stay at the Simons Institute and achieved a major
breakthough in [88]: they proved that the vanishing of rectangular Kronecker coefficients cannot be
used to prove super-polynomial determinantal complexity lower bounds for the permanent. Very
recent follow-up work by Bürgisser, Ikenmeyer and Panova [40] goes a step further and shows that
the permanent versus determinant problem cannot be resolved using occurrence obstructions. Al-
though this is an impossibility result, it should be seen as a spectacular success of the program
because it forces a major revision of the GCT program.

The necessity of a better understanding of Kronecker coefficients was stressed throughout the
program. These natural quantities are the tensor product multiplicities of symmetric group rep-
resentations. The article [87] by Ikenmeyer, Mulmuley and Walter disproves a conjecture in GCT
by showing that deciding the positivity of Kronecker coefficients is NP-hard, by building a sur-
prisingly constructive link between algebraic combinatorics and computational complexity. On the
other hand, the asymptotic version of the Kronecker positivity problem (and its natural generaliza-
tion to multiplicities of Lie group representations) was shown to be in NP and coNP and therefore
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is likely to be polynomial time solvable [37]. This is very surprising in view of the intricate polyhe-
dral structure of the moment cones. The asymptotic positivity problem has close links to quantum
information theory, so it is not surprising that the latter results were obtained in collaboration with
physicists Matthias Christandl and Michael Walter.

The paper by Landsberg and Ressayre [105] on Valiant’s conjecture assuming symmetry is an
instance of an outcome of the program in several stages. First, Alpert, Bogart and Velasco answered
a question posed by Ressayre at the first program workshop, pointing towards a new direction for
investigating Valiant’s conjecture. The paper [105] is the first step in that direction, proving
Valiant’s conjecture in a restricted model.

The method of shifted partial derivatives for proving complexity lower bounds has received
great attention over many years. During the program, Klim Efremenko, Joseph Landsberg, Hal
Schenk and Jerzy Weyman [58] showed that this method cannot be used to prove a significant new
separation of the permanent and determinant, but at the same time identified generalizations of
the method that hold promise for proving new lower complexity bounds.

Here is another fine example of a fruitful interaction between areas of pure math (invariant
theory), algorithms and complexity theory, and quantum computation, that was triggered by the
program. In his talk at the first workshop, Avi Wigderson posed the problem of computing the
rank of a matrix of linear forms over the free skew field (the non-commutative rank problem). This
problem turns out to be intimately connected to a problem in invariant theory, namely bounding
the generating degree of the invariant ring of tuples of matrices with simultaneous left/right SL-
action. Following this, Gábor Ivanyos, Youming Qiao, and K.V. Subrahmanyam [89,90] studied the
invariant-theoretic problems for this invariant ring and proved exponential degree bounds. After
the preprints [89,90] had appeared, Wigderson and his collaborators, Ankit Garg, Leonid Gurvits
and Rafael Oliveira, showed that an existing algorithm of Gurvits can be used to give a polynomial-
time algorithm for the non-commutative rank problem. This led to progress in derandomization,
a core problem of theoretical computer science, namely to a polynomial time algorithm for non-
commutative rational identity of formulas (allowing also divisions). Finally, Harm Derksen, an
invariant theorist, with his student Visu Makam, discovered that a clever use of one lemma in [90]
even yields a polynomial bound for the invariant ring under question, thus greatly clarifying the
picture.

Polynomial Equation Solving. Smale’s 17th problem, which is one of the leading problems in the
field from the complexity point of view, was completely solved in 2015 by postdoc Pierre Lairez
using a clever derandomization idea [100]. While Lairez was not a participant of the program, he
was directly influenced by it and was invited to present his breakthrough result at the program’s
reunion meeting.

It may sound surprising that it was unknown whether there is a numerically stable algorithm
for computing eigenvalue-eigenvector pairs for complex matrices that is provably polynomial time.
In [6], Diego Armentano, Carlos Beltrán, Peter Bürgisser, Felipe Cucker and Michael Shub resolved
this long-standing open problem in numerical linear algebra that was originally posed by James
Demmel.

Further seminal progress in the complexity of solving systems of polynomial equations is the
article [51] by Cucker, Krick and Shub, which describes and analyzes a numerically stable algorithm
for computing the homology of real projective varieties. This work deepens our understanding of
the complexity framework when solving systems of polynomial equations of positive dimension.

On the more practical side, Jon Hauenstein and his collaborators made progress in numerical
algebraic geometry in various directions. In a project with Oeding, Ottaviani and Sommese [78],
methods were developed to compute low-rank decompositions of tensors using the software Bertini,
and this was used to derive new cases of generic identifiability. Recent work with Brake and
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Vinzant [28] offers an exciting connection to tropical geometry, demonstrating how the numerical
monodromy approach can be used to compute the tropicalization of real and complex curves.

Exponential families are fundamental to statistics and machine learning. In the work [119] by
Mateusz Michalek, Bernd Sturmfels, Caroline Uhler and Piotr Zwiernik, this theory is embedded
into the context of algebraic geometry. The theory of exponential varieties, developed here for the
first time, can be seen as a conceptual generalization of toric geometry, which arises from the very
special case of discrete exponential families.

In [134], Research Fellow Cynthia Vinzant resolved a widely circulated conjecture in frame theory
known as the 4M-4 conjecture, due to A. Bandeira, J. Cahill, D. Mixon and A. Nelson. The
resolution uses methods from algebraic geometry, as extensively discussed at the program.

Tensors and Multilinear Algebra. The program advanced the study of tensors and their decompo-
sitions from both a practical and theoretical perspective.

Tensor decomposition consists of writing a tensor as a sum of simpler (indecomposable) ones. In
many cases of interest this decomposition is unique and gives a canonical form for the tensor, which
is called identifiable. Since tensors are used in mathematical modeling in many areas, from signal
processing and topic search on the web to other engineering applications, this has become a hot
topic. During the program, researchers in algebraic geometry, numerical analysis and complexity
theory began to collaborate together on tensors and their applications. The work [78] is a fine ex-
ample of this interaction, and originated from discussions between Giorgio Ottaviani, Luke Oeding
and Jon Hauenstein, all long-term participants of the program, around the number of decompo-
sitions of a generic tensor on complex numbers. Andrew Sommese and Jon Hauenstein, founders
of the software Bertini, realized that with homotopic techniques it is possible to predict with high
probability the number of decompositions, starting from a generic one and repeating different loops
until the number of new solutions stabilizes. As a result, two new cases of identifiability were
discovered numerically. Following this discovery, vector bundle techniques from algebraic geometry
actually yielded a proof that in these cases we actually have identifiability.

In a different direction, Luke Oeding’s work with Robeva and Sturmfels [123] forged a brand new
connection between tensors in algebraic geometry and finite frame theory in functional analysis.

The topic of eigenvalues and singular values of tensors received considerable attention during the
program; for some outcomes see [2,29,30], which deal with structural, probabilistic, and algorithmic
aspects. This is related to the topic of orthogonally decomposable tensors, which is currently re-
ceiving much attention in the scientific computing and theoretical CS literature. Boralevi, Draisma,
Horobet and Robeva [24] provided for the first time an intrinsic characterization of those tensors.

Further Highlights. Research Fellow Ben Rossman, in a collaboration with Li-Yang Tan (a Fellow in
the companion program on Algorithmic Spectral Graph Theory) and Rocco Servedio of Columbia
University, solved a 30-year old open problem in complexity theory by proving that the polynomial
hierachy is infinite relative to a random oracle [132]. This paper received the Best Paper Award in
the 56th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2015.

Digest of selected feedback from participants

As hoped for, the program managed to attract extremely talented young algebraic geometers, who
were previously not very familiar with complexity theory, to work on questions in complexity. An
illustrative example is the wide range of collaborations established by Research Fellow Mateusz
Michalek, who worked with no fewer than eleven co-authors on seven published research projects
(with more still in the pipeline). In their feedback, several of the algebraic geometers at the
program explicitly mentioned how much they valued the opportunity to exchange the ideas between
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participants with different ranges of expertise, and in particular with researchers from algorithms
and complexity theory.

The program was enormously useful for getting graduate students and postdoctoral Fellows
involved in state-of-the-art research, as it allowed for direct interaction with many of the world’s
experts. It is clear that the program has helped to shape the scientific future of several young
and promising researchers. In her feedback, senior algebraic geometer Teresa Krick wrote that she
especially appreciated meeting a lot of new people, mostly younger researchers who are just starting
their career, many of whom were women.

Finally we note that many intriguing connections emerged during the semester between this
program and its sister program Algorithmic Spectral Graph Theory (fueled in part by shared se-
nior participants such as Pablo Parillo from MIT, and collaborations between Fellows from the
two programs such as that between Rossman and Tan mentioned earlier). Indeed, the connec-
tions were strong enough that the reunion workshops of the two programs were scheduled with
some overlap, allowing participants to spend time at both. One interesting example of such a
connection was provided by Lek-Heng Lim in the following remark in his research report: “The
mysterious Grothendieck constant, which plays an important role in the Unique Games Conjecture
and Semidefinite Programming approximations of NP-hard problems, and the exponent of matrix
multiplication, which plays an important role in Algebraic Computational Complexity Theory, are
intimately related. The former is the spectral norm of the structure tensor of matrix-matrix prod-
uct whereas the latter is its rank.” This and other connections will continue to be explored in the
future.

Program activities

Workshops and Boot Camp. The program began with the Algebraic Geometry Boot Camp, which
featured introductory lectures around the major themes of the semester. Particularly exciting was
a detailed exposition of the Coppersmith-Wingrad method for bounding the exponent of matrix
multiplication, along with very recent improvements, by V. Vassilevska Williams. Another highlight
were the homework sessions, where participants were given the opportunity to actually apply the
theoretical material presented in the lectures to concrete computational problems.

The workshop on Geometric Complexity Theory faced daunting challenges: both the algebraic
geometry and theoretical computer science required to approach the core questions of GCT require
considerable background, and few participants had both. To meet this challenge, the workshop
had an extensive focus on tutorials given by experts in the respective areas. This overall structure
turned out to be quite successful; for example, several prominent invariant theorists attending the
Boot Camp commented that they were surprised by the deep connections between their field and
complexity theory that have been revealed by the GCT program.

The workshop on Solving Systems of Polynomial Equations focused on recent algorithmic ad-
vances, both numerical and symbolic, on novel domains of application, and on fundamental issues of
complexity in algebraic geometry. The range of topics was broad and included the role of condition
in numerical equation solving (Smale’s 17th problem), understanding and solving systems of sparse
polynomials (fewnomials) and its recently discovered fascinating link to fundamental complexity
lower bound questions (the real tau-conjecture), convex algebraic geometry (fusing convex opti-
mization theory and real algebraic geometry), and current software tools such as Bertini, Singular
and Macaulay2. It is remarkable that many of the senior participants of this workshop had first
met at a program at MSRI in Berkeley during the Fall of 1998, but had not gathered as a group
since then. The workshop helped to present, discuss and celebrate the substantial advances in the
field since that time, as well as to welcome a spectacular group of younger researchers to the field
and set the agenda for future developments.
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The workshop on Tensors and Multilinear Algebra was centered around tensor rank and its
associated decomposition. The workshop was received with enthusiasm and saw a constant stream
of participants from the Algorithmic Spectral Graph Theory program as well as faculty, postdocs
and graduate students from the Math and EECS Departments attending the talks. This is not
surprising given the growing interest in tensors across a range of disciplines; indeed, it is notable
that not only did tensors play a prominent role in all four workshops in the Algebraic Geometry
program, but also featured in two of the three workshops in the parallel program on Algorithmic
Spectral Graph Theory.

The fourth and final workshop on Symbolic and Numerical Methods for Tensors and Represen-
tation Theory was a tutorial workshop, sponsored jointly with MSRI, aimed at enabling junior
researchers (especially graduate students) to gain familiarity with the computer algebra software
Macaulay2, to learn some of the main research questions and themes of the semester, and to expe-
rience first-hand how computational techniques contribute to this research.

Regular Seminars and Other Activities. The program also featured a diverse array of regular weekly
seminars hosted by long-term participants and attended by program visitors as well as campus
faculty and students.

Research fellows Michael Forbes and Klim Efremenko co-organized a lively seminar on Algebraic
Complexity, which was important for introducing algebraic geometers to basic problems and con-
cepts from theoretical computer science (black box and white box derandomization, hitting sets,
polynomial identity testing, shallow circuits, etc.).

Jonathan Hauenstein (University of Notre Dame) and Gregorio Malajovich (Federal University
of Rio de Janeiro) organized a seminar on Polynomial Equation Solving, which focused on various
aspects of solving polynomial equations, both from a theoretical complexity point-of-view as well
as in the context of practical applications.

Bernd Sturmfels (UC Berkeley) ran a weekly seminar on Computational Algebraic Geometry
that connected PhD students from UC Berkeley with the visitors of the Simons Institute program.
This inspiring seminar featured expositions by senior Institute visitors, as well as research talks by
postdocs and gradudate students both from Berkeley and elsewhere.

Finally, Joseph Landsberg (Texas A&M University) taught a lively and very well attended grad-
uate course on Geometry and Complexity Theory, covering in depth the two most central topics in
the program: the complexity of matrix multiplication, and permanent vs determinant problems.
The notes from Landsberg’s class are available on the Simons Institute webpage and will be be
published soon as a graduate text by Cambridge University Press [103].
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