Overview of elliptic curve isogenies based public-key cryptography assumptions

David Jao

Department of Combinatorics & Optimization University of Waterloo

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

February 24, 2020

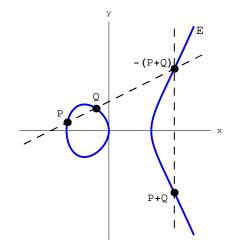
Definition

An elliptic curve over a field F is a nonsingular curve E of the form

$$E: y^2 = x^3 + ax + b,$$

for fixed constants $a, b \in F$.

The set of projective points on an elliptic curve forms a group, with identity $\infty = [0:1:0]$.



Isogenies

Definition

An isogeny is a morphism ϕ of algebraic varieties between two elliptic curves, such that ϕ is a group homomorphism.

Concretely:

$$\phi \colon E \to E'$$

$$\phi(x, y) = (\phi_x(x, y), \phi_y(x, y))$$

$$\phi_x(x, y) = \frac{f_1(x, y)}{f_2(x, y)}$$

$$\phi_y(x, y) = \frac{g_1(x, y)}{g_2(x, y)}$$

where f_1, f_2, g_1 , and g_2 are all polynomials. The degree of an isogeny is its degree as an algebraic map.

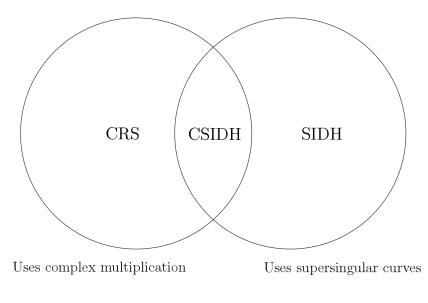
Hash functions

CGL: Charles, Goren, Lauter (https://ia.cr/2006/021).

Public-key cryptosystems

- CRS: Couveignes (http://ia.cr/2006/291), Rostovstev and Stolbunov (http://ia.cr/2006/145).
- SIDH: Supersingular Isogeny Diffie-Hellman Jao and De Feo (http://ia.cr/2011/506).
- CSIDH: Commutative SIDH Castryck, Lange, Martindale, Panny, Renes (http://ia.cr/2018/383).

Diagram of isogeny-based public-key cryptosystems



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Every isogeny is a group homomorphism and thus has a kernel

$$\ker \phi = \{ P \in E : \phi(P) = \infty \}.$$

Given an elliptic curve E and a finite subgroup K of E, one can show that there exists a unique (up to isomorphism) separable isogeny $\phi_K : E \to E/K$ such that ker $\phi_K = K$ and deg $\phi_K = |K|$.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Vélu's formulas (1971) give an explicit construction of ϕ_{κ} .

Isogenies of degree 2

• Let
$$E: y^2 = x^3 + ax + b$$
.

- ▶ Suppose $K = \{\infty, P\}$. Then $P + P = \infty$, so $P = (x_P, 0)$ with $x_P^3 + ax_P + b = 0$.
- We have

$$E/K : y^2 = x^3 + (a - 5(3x_P^2 + a))x + (b - 7x_P(3x_P^2 + a))$$

$$\phi_K(x, y) = \left(x + \frac{3x_P^2 + a}{x - x_P}, \ y - \frac{y(3x_P^2 + a)}{(x - x_P)^2}\right)$$

Isogenies of degree 3

• Let
$$E: y^2 = x^3 + ax + b$$
.

• Suppose $K = \{\infty, P, -P\}$. Then $P = (x_P, y_P)$ with $3x_P^4 + 6ax_P^2 - a^2 + 12bx_P = 0$ and $y_P^2 = x_P^3 + ax_P + b$.

We have

$$E/K : y^{2} = x^{3} + (a - 10(3x_{P}^{2} + a))x + (b - 28y_{P}^{2} - 14x_{P}(3x_{P}^{2} + a))$$
$$\phi_{K}(x, y) = \left(x + \frac{2(3x_{P}^{2} + a)}{x - x_{P}} + \frac{4y_{P}^{2}}{(x - x_{P})^{2}}, y - \frac{8yy_{P}^{2}}{(x - x_{P})^{3}} - \frac{2y(3x_{P} + a)}{(x - x_{P})^{2}}\right)$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Isogenies of degree 2^e in SIDH

- Evaluating an isogeny of degree d using Vélu's formulas directly takes O(d) operations, too slow when d is large.
- Instead, we use isogenies of prime power degree, and evaluate them step by step.
- ▶ Suppose $K \cong \mathbb{Z}/2^e \mathbb{Z}$. Then the subgroup tower

$$0 \subset \mathbb{Z}/2\mathbb{Z} \subset \mathbb{Z}/4\mathbb{Z} \subset \cdots \subset \mathbb{Z}/2^e\mathbb{Z}$$

allows us to factor $\phi_K \colon E \to E/K$ into the composition of isogenies

$$E \to E/(\mathbb{Z}/2\mathbb{Z}) \to E/(\mathbb{Z}/4\mathbb{Z}) \to \dots \to E/(\mathbb{Z}/2^e\mathbb{Z})$$

- Each individual isogeny has degree 2 and is easy to compute.
- The composition of all the isogenies is ϕ_K , of degree 2^e .
- A similar trick works for any prime power ℓ^e where ℓ is small.

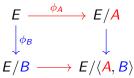
SIDH overview

- 1. Public parameters: Supersingular elliptic curve E over \mathbb{F}_{p^2} .
- 2. Alice chooses a kernel $A \subset E(\mathbb{F}_{p^2})$ of size 2^e and sends E/A.
- 3. Bob chooses a kernel $B \subset E(\mathbb{F}_{p^2})$ of size 3^f and sends E/B.
- 4. The shared secret is

$$E/\langle A, B \rangle = (E/A)/\phi_A(B) = (E/B)/\phi_B(A).$$

Diffie-Hellman (DH)

 $g \longrightarrow g^{x}$ $\downarrow \qquad \qquad \downarrow$ $g^{y} \longrightarrow g^{xy}$

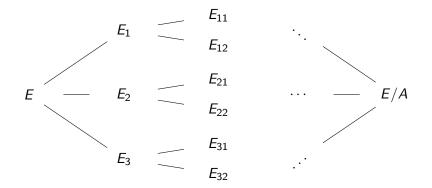


(日) (日) (日) (日) (日) (日) (日) (日) (日)

Attacks

Hard problem: Given E and E/A, find A.

Fastest known (passive) attack is a meet-in-the-middle collision search or claw search on a search space of size $deg(\phi)$.



More details: Jaques and Schanck (https://ia.cr/2019/103)

Complex multiplication action

For an ordinary elliptic curve E/\mathbb{F}_p , there is a free and transitive group action

*:
$$\operatorname{Cl}(\operatorname{End}(E)) \times \mathcal{ELL}(\mathbb{F}_p) \to \mathcal{ELL}(\mathbb{F}_p)$$

where

- End(E) is the ring of endomorphisms of E
- Cl(End(E)) denotes the ideal class group of End(E)
- *ELL*(𝔽_p) is the set of isomorphism classes of elliptic curves over 𝔽_p with endomorphism ring isomorphic to End(*E*)
 defined by

$$\begin{split} [\mathfrak{a}] * E &= E / \ker \mathfrak{a} = E / \{P \in E : \forall \ \phi \in \mathfrak{a}, \ \phi(P) = \infty \} \\ &= E / \bigcap_{\phi \in \mathfrak{a}} \ker \phi. \end{split}$$

Couveignes-Rostovstev-Stolbunov (CRS)

Public parameters: Ordinary elliptic curve E/\mathbb{F}_p and complex multiplication action *: $Cl(End(E)) \times \mathcal{ELL}(\mathbb{F}_p) \rightarrow \mathcal{ELL}(\mathbb{F}_p)$.

- 1. Alice chooses a group element $\mathfrak{a} \in G$ and sends $\mathfrak{a} * E$.
- 2. Bob chooses a group element $\mathfrak{b} \in G$ and sends $\mathfrak{b} * E$.
- 3. The shared secret is $(\mathfrak{ab}) * E = \mathfrak{a} * (\mathfrak{b} * E) = \mathfrak{b} * (\mathfrak{a} * E)$.

$$\begin{array}{cccc}
E & \stackrel{\phi_{\mathfrak{a}}}{\longrightarrow} \mathfrak{a} * E \\
\downarrow & \downarrow \\
\mathfrak{b} * E & \longrightarrow (\mathfrak{a}\mathfrak{b}) * E
\end{array}$$

CSIDH uses the same group action, but over a supersingular curve.

(日) (日) (日) (日) (日) (日) (日) (日)

From isogenies to hidden subgroups

- The hard problem in CRS and CSIDH is to compute group action inverses: Given G × X → X and x₀, x₁ ∈ X, find γ ∈ G such that γx₁ = x₀.
- Let $\phi \colon \mathbb{Z}/2 \to \operatorname{Aut}(G)$ be given by $\phi(b)(g) = g^{(-1)^b}$.
- Consider the function $f: G \rtimes_{\phi} \mathbb{Z}/2 \to X$, $f(g, b) = gx_b$.
- Since the group action is free, we have

$$f(g_1, b_1) = f(g_2, b_2) \iff b_1 = 0, b_2 = 1, \text{ and } g_1^{-1}g_2 = \gamma$$

or $b_1 = 1, b_2 = 0, \text{ and } g_2^{-1}g_1 = \gamma$
or $b_1 = b_2$ and $g_1 = g_2$

Hence f hides the subgroup $\{(0,0), (\gamma,1)\} \subset G \rtimes_{\phi} \mathbb{Z}/2$.

If we solve the hidden subgroup problem for f, then we will have found γ.

Dihedral hidden subgroup problem

Reference: Kuperberg, arXiv:quant-ph/0302112

- ▶ For simplicity, suppose $G = \mathbb{Z}/N$ and $D_N = \mathbb{Z}/N \rtimes \mathbb{Z}/2$.
- Suppose f hides the subgroup $H = \{(0,0), (\gamma,1)\} \subset D_N$.
- Form the state

$$rac{1}{\sqrt{|D_N|}}\sum_{d\in D_N}\ket{d}\ket{f(d)}$$

Measure the second register and discard the result to obtain

$$rac{1}{\sqrt{ert(z,0)Hert}}\sum_{d\in(z,0)H}ert d
angle=rac{1}{\sqrt{2}}(ert(z,0)
angle+ert(z+\gamma,1)
angle$$

in the first register, for some random coset (z, 0)H. By abuse of notation, denote this "coset state" by $|(z, 0)H\rangle$.

 We can generate lots of these coset states, for random cosets. (We have no control over which cosets we obtain.)

Quantum Fourier transform

Apply the quantum Fourier transform to the first coordinate:

$$\begin{split} |(z,0)H\rangle &= \frac{1}{\sqrt{2}}(|(z,0)\rangle + |(z+\gamma,1)\rangle) \\ \stackrel{\text{QFT}}{\mapsto} \frac{1}{\sqrt{2N}} \sum_{k \in \mathbb{Z}_N} (\zeta_N^{kz} | (k,0)\rangle + \zeta_N^{k(z+\gamma)} | (k,1)\rangle) \\ &= \frac{1}{\sqrt{N}} \sum_{k \in \mathbb{Z}_N} \zeta_N^{kz} | k \rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle + \zeta_N^{k\gamma} | 1\rangle) \end{split}$$

 Measure the first register to obtain |k> for some random k. The second register is

$$rac{1}{\sqrt{2}}(\ket{0}+\zeta_{N}^{k\gamma}\ket{1})$$

Denote this quantum state by $|\psi_k\rangle$. We can generate lots of these states for random k, with no control over k (but we do know the value of k for each such quantum state).

We now assume for (further!) simplicity that N is a power of 2. The strategy is as follows:

If we could construct

$$\ket{\psi_k} = rac{1}{\sqrt{2}} (\ket{0} + \zeta_N^{k\gamma} \ket{1})$$

for k of our choice, then (for example) we could find $|\psi_{N/2}\rangle = \frac{1}{\sqrt{2}}(|0\rangle + (-1)^{\gamma} |1\rangle).$

- Measure $|\psi_{N/2}\rangle$ w.r.t. $\left\{\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), \frac{1}{\sqrt{2}}(|0\rangle |1\rangle)\right\}$ to obtain the least significant bit of γ .
- Reduce to $D_{N/2}$ and use induction to find γ .

Combining states

We can exert limited control over $|\psi_k\rangle$ by *combining states*:

$$\begin{split} |\psi_{p},\psi_{q}\rangle &= \frac{1}{2}(|0,0\rangle + \zeta_{N}^{p\gamma}|1,0\rangle + \zeta_{N}^{q\gamma}|0,1\rangle + \zeta_{N}^{(p+q)\gamma}|1,1\rangle \\ \stackrel{\mathsf{C}\mathsf{NOT}}{\mapsto} \frac{1}{2}(|0,0\rangle + \zeta_{N}^{p\gamma}|1,1\rangle + \zeta_{N}^{q\gamma}|0,1\rangle + \zeta_{N}^{(p+q)\gamma}|1,0\rangle \\ &= \frac{1}{\sqrt{2}}(|\psi_{p+q},0\rangle + \zeta_{N}^{q\gamma}|\psi_{p-q},1\rangle) \end{split}$$

We now measure the second register.

- If we get $|0\rangle$, then the first register is $|\psi_{p+q}\rangle$.
- If we get $|1\rangle$, then the first register is $\zeta_N^{q\gamma} |\psi_{p-q}\rangle = |\psi_{p-q}\rangle$.

We can't control which of $|\psi_{p\pm q}\rangle$ we get, but we know which one we got.

Kuperberg sieve

- 1. Create $A \approx 4^{\sqrt{\log N}}$ quantum states ψ_k , for random $k \in \mathbb{Z}_N$.
- 2. Group the quantum states into buckets according to their last $\sqrt{\log N}$ bits (least significant bits). On average each bucket has $A/2^{\sqrt{\log N}}$ quantum states and there are $2^{\sqrt{\log N}}$ buckets.
- 3. Combine pairs of states in each bucket, with the goal of zeroing out the last $\sqrt{\log N}$ bits.
 - On average, combining states succeeds half the time.
 - If successful, we destroy two states and create one new state.
 - If unsuccessful, we lose two states and create nothing.
 - On average, we have 1/4 as many states as we had before.
- 4. We get A/4 quantum states, whose last $\sqrt{\log N}$ bits are zero.
- 5. Repeat this bucket sorting process on the next $\sqrt{\log N}$ bits, to obtain $A/4^2$ quantum states, whose last $2\sqrt{\log N}$ bits are zero.
- 6. ... Eventually we obtain $A/4^{\sqrt{\log N}} \approx 1$ quantum states, with all but the most significant bit zero.