
Overview of elliptic curve isogenies based
public-key cryptography assumptions

David Jao

Department of Combinatorics & Optimization
University of Waterloo

February 24, 2020

Elliptic curves

Definition
An elliptic curve over a field F is
a nonsingular curve E of the form

E : y2 = x3 + ax + b,

for fixed constants a, b ∈ F .

The set of projective points on
an elliptic curve forms a group,
with identity ∞ = [0 : 1 : 0].

x

y

P

Q

-HP+QL

P+Q

E

Isogenies

Definition
An isogeny is a morphism φ of algebraic varieties between two
elliptic curves, such that φ is a group homomorphism.

Concretely:

φ : E → E ′

φ(x , y) = (φx(x , y), φy (x , y))

φx(x , y) =
f1(x , y)

f2(x , y)

φy (x , y) =
g1(x , y)

g2(x , y)

where f1, f2, g1, and g2 are all polynomials. The degree of an
isogeny is its degree as an algebraic map.

Development of isogeny-based cryptography

Hash functions

CGL: Charles, Goren, Lauter (https://ia.cr/2006/021).

Public-key cryptosystems

CRS: Couveignes (http://ia.cr/2006/291), Rostovstev
and Stolbunov (http://ia.cr/2006/145).

SIDH: Supersingular Isogeny Diffie-Hellman — Jao and
De Feo (http://ia.cr/2011/506).

CSIDH: Commutative SIDH — Castryck, Lange, Martindale,
Panny, Renes (http://ia.cr/2018/383).

https://ia.cr/2006/021
http://ia.cr/2006/291
http://ia.cr/2006/145
http://ia.cr/2011/506
http://ia.cr/2018/383

Diagram of isogeny-based public-key cryptosystems

Constructing isogenies

Every isogeny is a group homomorphism and thus has a kernel

ker φ = {P ∈ E : φ(P) =∞}.

Given an elliptic curve E and a finite subgroup K of E , one can
show that there exists a unique (up to isomorphism) separable
isogeny φK : E → E/K such that ker φK = K and deg φK = |K |.

Vélu’s formulas (1971) give an explicit construction of φK .

Isogenies of degree 2

I Let E : y2 = x3 + ax + b.

I Suppose K = {∞,P}. Then P + P =∞, so P = (xP , 0) with
x3P + axP + b = 0.

I We have

E/K : y2 = x3 + (a− 5(3x2P + a))x + (b − 7xP(3x2P + a))

φK (x , y) =

(
x +

3x2P + a

x − xP
, y −

y(3x2P + a)

(x − xP)2

)

Isogenies of degree 3

I Let E : y2 = x3 + ax + b.

I Suppose K = {∞,P,−P}. Then P = (xP , yP) with
3x4P + 6ax2P − a2 + 12bxP = 0 and y2P = x3P + axP + b.

I We have

E/K : y2 = x3 + (a− 10(3x2P + a))x +

(b − 28y2P − 14xP(3x2P + a))

φK (x , y) =

(
x +

2(3x2P + a)

x − xP
+

4y2P
(x − xP)2

,

y −
8yy2P

(x − xP)3
− 2y(3xP + a)

(x − xP)2

)

Isogenies of degree 2e in SIDH

I Evaluating an isogeny of degree d using Vélu’s formulas
directly takes O(d) operations, too slow when d is large.

I Instead, we use isogenies of prime power degree, and evaluate
them step by step.

I Suppose K ∼= Z/2eZ. Then the subgroup tower

0 ⊂ Z/2Z ⊂ Z/4Z ⊂ · · · ⊂ Z/2eZ

allows us to factor φK : E → E/K into the composition of
isogenies

E → E/(Z/2Z)→ E/(Z/4Z)→ · · · → E/(Z/2eZ)

I Each individual isogeny has degree 2 and is easy to compute.

I The composition of all the isogenies is φK , of degree 2e .

I A similar trick works for any prime power `e where ` is small.

SIDH overview

1. Public parameters: Supersingular elliptic curve E over Fp2 .

2. Alice chooses a kernel A ⊂ E (Fp2) of size 2e and sends E/A.

3. Bob chooses a kernel B ⊂ E (Fp2) of size 3f and sends E/B.

4. The shared secret is

E/〈A,B〉 = (E/A)/φA(B) = (E/B)/φB(A).

Diffie-Hellman (DH)

g g x

g y g xy

SIDH

E E/A

E/B E/〈A,B〉

φB

φA

Attacks

Hard problem: Given E and E/A, find A.

Fastest known (passive) attack is a meet-in-the-middle collision
search or claw search on a search space of size deg(φ).

E

E3
E32

E31

E2
E22

E21

E1
E12

E11

E/A

. . .

· · ·

. .
.

More details: Jaques and Schanck (https://ia.cr/2019/103)

https://ia.cr/2019/103

Complex multiplication action

For an ordinary elliptic curve E/Fp, there is a free and transitive
group action

∗ : Cl(End(E))× ELL(Fp)→ ELL(Fp)

where

I End(E) is the ring of endomorphisms of E

I Cl(End(E)) denotes the ideal class group of End(E)

I ELL(Fp) is the set of isomorphism classes of elliptic curves
over Fp with endomorphism ring isomorphic to End(E)

defined by

[a] ∗ E = E/ ker a = E/{P ∈ E : ∀ φ ∈ a, φ(P) =∞}

= E/
⋂
φ∈a

ker φ.

Couveignes-Rostovstev-Stolbunov (CRS)

Public parameters: Ordinary elliptic curve E/Fp and complex
multiplication action ∗ : Cl(End(E))× ELL(Fp)→ ELL(Fp).

1. Alice chooses a group element a ∈ G and sends a ∗ E .

2. Bob chooses a group element b ∈ G and sends b ∗ E .

3. The shared secret is (ab) ∗ E = a ∗ (b ∗ E) = b ∗ (a ∗ E).

E a ∗ E

b ∗ E (ab) ∗ E

φb

φa

CSIDH uses the same group action, but over a supersingular curve.

From isogenies to hidden subgroups

I The hard problem in CRS and CSIDH is to compute group
action inverses: Given G × X → X and x0, x1 ∈ X , find γ ∈ G
such that γx1 = x0.

I Let φ : Z/2→ Aut(G) be given by φ(b)(g) = g (−1)b .

I Consider the function f : G oφ Z/2→ X , f (g , b) = gxb.

I Since the group action is free, we have

f (g1, b1) = f (g2, b2) ⇐⇒ b1 = 0, b2 = 1, and g−11 g2 = γ

or b1 = 1, b2 = 0, and g−12 g1 = γ

or b1 = b2 and g1 = g2

Hence f hides the subgroup {(0, 0), (γ, 1)} ⊂ G oφ Z/2.

I If we solve the hidden subgroup problem for f , then we will
have found γ.

Dihedral hidden subgroup problem

Reference: Kuperberg, arXiv:quant-ph/0302112

I For simplicity, suppose G = Z/N and DN = Z/N o Z/2.

I Suppose f hides the subgroup H = {(0, 0), (γ, 1)} ⊂ DN .

I Form the state
1√
|DN |

∑
d∈DN

|d 〉 |f (d)〉

I Measure the second register and discard the result to obtain

1√
|(z , 0)H|

∑
d∈(z,0)H

|d 〉 =
1√
2

(|(z , 0)〉+ |(z + γ, 1)〉

in the first register, for some random coset (z , 0)H. By abuse
of notation, denote this “coset state” by |(z , 0)H〉.

I We can generate lots of these coset states, for random cosets.
(We have no control over which cosets we obtain.)

https://arxiv.org/abs/quant-ph/0302112

Quantum Fourier transform

I Apply the quantum Fourier transform to the first coordinate:

|(z , 0)H〉 =
1√
2

(|(z , 0)〉+ |(z + γ, 1)〉)

QFT7→ 1√
2N

∑
k∈ZN

(ζkzN |(k , 0)〉+ ζ
k(z+γ)
N |(k , 1)〉)

=
1√
N

∑
k∈ZN

ζkzN |k〉 ⊗
1√
2

(|0〉+ ζkγN |1〉)

I Measure the first register to obtain |k〉 for some random k .
The second register is

1√
2

(|0〉+ ζkγN |1〉)

Denote this quantum state by |ψk 〉. We can generate lots of
these states for random k , with no control over k (but we do
know the value of k for each such quantum state).

Overall strategy

We now assume for (further!) simplicity that N is a power of 2.
The strategy is as follows:

I If we could construct

|ψk 〉 =
1√
2

(|0〉+ ζkγN |1〉)

for k of our choice, then (for example) we could find∣∣ψN/2

〉
= 1√

2
(|0〉+ (−1)γ |1〉).

I Measure
∣∣ψN/2

〉
w.r.t.

{
1√
2

(|0〉+ |1〉), 1√
2

(|0〉 − |1〉)
}

to

obtain the least significant bit of γ.

I Reduce to DN/2 and use induction to find γ.

Combining states

We can exert limited control over |ψk 〉 by combining states:

|ψp, ψq〉 =
1

2
(|0, 0〉+ ζpγN |1, 0〉+ ζqγN |0, 1〉+ ζ

(p+q)γ
N |1, 1〉

CNOT7→ 1

2
(|0, 0〉+ ζpγN |1, 1〉+ ζqγN |0, 1〉+ ζ

(p+q)γ
N |1, 0〉

=
1√
2

(|ψp+q, 0〉+ ζqγN |ψp−q, 1〉)

We now measure the second register.

I If we get |0〉, then the first register is |ψp+q〉.
I If we get |1〉, then the first register is ζqγN |ψp−q〉 = |ψp−q〉.

We can’t control which of |ψp±q〉 we get, but we know which one
we got.

Kuperberg sieve

1. Create A ≈ 4
√
logN quantum states ψk , for random k ∈ ZN .

2. Group the quantum states into buckets according to their last√
logN bits (least significant bits). On average each bucket

has A/2
√
logN quantum states and there are 2

√
logN buckets.

3. Combine pairs of states in each bucket, with the goal of
zeroing out the last

√
logN bits.

I On average, combining states succeeds half the time.
I If successful, we destroy two states and create one new state.
I If unsuccessful, we lose two states and create nothing.
I On average, we have 1/4 as many states as we had before.

4. We get A/4 quantum states, whose last
√

logN bits are zero.

5. Repeat this bucket sorting process on the next
√

logN bits, to
obtain A/42 quantum states, whose last 2

√
logN bits are zero.

6. . . . Eventually we obtain A/4
√
logN ≈ 1 quantum states, with

all but the most significant bit zero.

