Overview of elliptic curve isogenies based public-key cryptography assumptions

David Jao

Department of Combinatorics & Optimization University of Waterloo

KEE KARE KEE KE WAN

February 24, 2020

Elliptic curves

Definition

An elliptic curve over a field F is a nonsingular curve E of the form

$$
E: y^2 = x^3 + ax + b,
$$

for fixed constants $a, b \in F$.

The set of projective points on an elliptic curve forms a group, with identity $\infty = [0:1:0]$.

 4 ロ) 4 何) 4 ミ) 4 3 \rightarrow

 $2Q$

Isogenies

Definition

An isogeny is a morphism ϕ of algebraic varieties between two elliptic curves, such that ϕ is a group homomorphism.

Concretely:

$$
\phi: E \to E'
$$

\n
$$
\phi(x, y) = (\phi_x(x, y), \phi_y(x, y))
$$

\n
$$
\phi_x(x, y) = \frac{f_1(x, y)}{f_2(x, y)}
$$

\n
$$
\phi_y(x, y) = \frac{g_1(x, y)}{g_2(x, y)}
$$

KOD KARD KED KED E VOOR

where f_1, f_2, g_1 , and g_2 are all polynomials. The degree of an isogeny is its degree as an algebraic map.

Hash functions

CGL: Charles, Goren, Lauter (<https://ia.cr/2006/021>).

Public-key cryptosystems

- CRS: Couveignes (<http://ia.cr/2006/291>), Rostovstev and Stolbunov (<http://ia.cr/2006/145>).
- SIDH: Supersingular Isogeny Diffie-Hellman Jao and De Feo (<http://ia.cr/2011/506>).
- CSIDH: Commutative SIDH Castryck, Lange, Martindale, Panny, Renes (<http://ia.cr/2018/383>).

KORKAR KERKER DRAM

Diagram of isogeny-based public-key cryptosystems

Every isogeny is a group homomorphism and thus has a kernel

$$
\ker \phi = \{ P \in E : \phi(P) = \infty \}.
$$

Given an elliptic curve E and a finite subgroup K of E, one can show that there exists a unique (up to isomorphism) separable isogeny $\phi_K : E \to E/K$ such that ker $\phi_K = K$ and deg $\phi_K = |K|$.

KORKAR KERKER DRAM

Vélu's formulas (1971) give an explicit construction of ϕ_K .

Isogenies of degree 2

• Let
$$
E: y^2 = x^3 + ax + b
$$
.

- ► Suppose $K = \{ \infty, P \}$. Then $P + P = \infty$, so $P = (x_P, 0)$ with $x_P^3 + ax_P + b = 0.$
- \triangleright We have

$$
E/K: y^{2} = x^{3} + (a - 5(3x_{P}^{2} + a))x + (b - 7x_{P}(3x_{P}^{2} + a))
$$

$$
\phi_{K}(x, y) = \left(x + \frac{3x_{P}^{2} + a}{x - x_{P}}, y - \frac{y(3x_{P}^{2} + a)}{(x - x_{P})^{2}}\right)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Isogenies of degree 3

• Let
$$
E: y^2 = x^3 + ax + b
$$
.

► Suppose $K = \{\infty, P, -P\}$. Then $P = (x_P, y_P)$ with $3x_P^4 + 6ax_P^2 - a^2 + 12bx_P = 0$ and $y_P^2 = x_P^3 + ax_P + b$.

 \triangleright We have

$$
E/K: y^{2} = x^{3} + (a - 10(3x_{P}^{2} + a))x + (b - 28y_{P}^{2} - 14xp(3x_{P}^{2} + a))
$$

$$
\phi_{K}(x, y) = \left(x + \frac{2(3x_{P}^{2} + a)}{x - xp} + \frac{4y_{P}^{2}}{(x - xp)^{2}}, \frac{8yy_{P}^{2}}{(x - xp)^{3}} - \frac{2y(3x_{P} + a)}{(x - xp)^{2}}\right)
$$

KEE KARE KEE KE WAN

Isogenies of degree 2^e in SIDH

- Evaluating an isogeny of degree d using Vélu's formulas directly takes $O(d)$ operations, too slow when d is large.
- Instead, we use isogenies of prime power degree, and evaluate them step by step.
- ► Suppose $K \cong \mathbb{Z}/2^e\mathbb{Z}$. Then the subgroup tower

$$
0\subset \mathbb{Z}/2\mathbb{Z}\subset \mathbb{Z}/4\mathbb{Z}\subset \cdots \subset \mathbb{Z}/2^e\mathbb{Z}
$$

allows us to factor $\phi_K : E \to E/K$ into the composition of isogenies

$$
E \to E/(\mathbb{Z}/2\mathbb{Z}) \to E/(\mathbb{Z}/4\mathbb{Z}) \to \cdots \to E/(\mathbb{Z}/2^e\mathbb{Z})
$$

- \triangleright Each individual isogeny has degree 2 and is easy to compute.
- The composition of all the isogenies is ϕ_K , of degree 2^e .
- A similar trick works for any prime power ℓ^e where ℓ is small.

SIDH overview

- 1. Public parameters: Supersingular elliptic curve E over $\mathbb{F}_{p^2}.$
- 2. Alice chooses a kernel $A\subset E(\mathbb{F}_{\rho^2})$ of size 2^e and sends $E/A.$
- 3. Bob chooses a kernel $B\subset E(\mathbb{F}_{p^2})$ of size 3^f and sends $E/B.$
- 4. The shared secret is

$$
E/\langle A, B\rangle = (E/A)/\phi_A(B) = (E/B)/\phi_B(A).
$$

Diffie-Hellman (DH)

x

 $g \longrightarrow g$

 $y \longrightarrow g$

g

KORK EXTERNE PROVIDE

SIDH

Attacks

Hard problem: Given E and E/A , find A .

Fastest known (passive) attack is a meet-in-the-middle collision search or claw search on a search space of size deg(ϕ).

More details: Jaques and Schanck (<https://ia.cr/2019/103>[\)](#page-0-0)

 299

Complex multiplication action

For an ordinary elliptic curve E/\mathbb{F}_p , there is a free and transitive group action

$$
*\colon\thinspace \mathsf{Cl}(\mathsf{End}(E))\times \mathcal{ELC}(\mathbb{F}_p)\to \mathcal{ELC}(\mathbb{F}_p)
$$

where

- \blacktriangleright End(E) is the ring of endomorphisms of E
- \triangleright Cl(End(E)) denotes the ideal class group of End(E)
- \triangleright $\mathcal{ELL}(\mathbb{F}_{p})$ is the set of isomorphism classes of elliptic curves over \mathbb{F}_p with endomorphism ring isomorphic to $\text{End}(E)$ defined by

$$
[\mathfrak{a}] * E = E / \ker \mathfrak{a} = E / \{P \in E : \forall \phi \in \mathfrak{a}, \phi(P) = \infty\}
$$

$$
= E / \bigcap_{\phi \in \mathfrak{a}} \ker \phi.
$$

K ロ X (日) X 제공 X 제공 X 기능 및 10 이익(예)

Couveignes-Rostovstev-Stolbunov (CRS)

Public parameters: Ordinary elliptic curve E/\mathbb{F}_p and complex multiplication action ∗: $\text{Cl}(\text{End}(E)) \times \mathcal{ELL}(\mathbb{F}_p) \to \mathcal{ELL}(\mathbb{F}_p)$.

- 1. Alice chooses a group element $a \in G$ and sends $a * E$.
- 2. Bob chooses a group element $\mathfrak{b} \in G$ and sends $\mathfrak{b} * E$.
- 3. The shared secret is $(a\mathfrak{b}) * E = \mathfrak{a} * (\mathfrak{b} * E) = \mathfrak{b} * (\mathfrak{a} * E)$.

$$
\begin{array}{ccc}\nE & \xrightarrow{\phi_{\mathfrak{a}}} & \mathfrak{a} * E \\
\downarrow & & \downarrow \\
\mathfrak{b} * E & \xrightarrow{\mathfrak{a} * \mathfrak{b}} (\mathfrak{a} \mathfrak{b}) * E\n\end{array}
$$

CSIDH uses the same group action, but over a supersingular curve.

KORK EXTERNE PROVIDE

From isogenies to hidden subgroups

- \triangleright The hard problem in CRS and CSIDH is to compute group action inverses: Given $G \times X \rightarrow X$ and $x_0, x_1 \in X$, find $\gamma \in G$ such that $\gamma x_1 = x_0$.
- ► Let $\phi\colon \mathbb{Z}/2\to \operatorname{\mathsf{Aut}}(G)$ be given by $\phi(b)(g)=g^{(-1)^b}.$
- **Consider the function f:** G $\rtimes_{\phi} \mathbb{Z}/2 \to X$, $f(g, b) = gx_b$.
- \triangleright Since the group action is free, we have

$$
f(g_1, b_1) = f(g_2, b_2) \iff b_1 = 0, b_2 = 1, \text{ and } g_1^{-1}g_2 = \gamma
$$

or $b_1 = 1, b_2 = 0$, and $g_2^{-1}g_1 = \gamma$
or $b_1 = b_2$ and $g_1 = g_2$

Hence f hides the subgroup $\{(0,0),(\gamma,1)\}\subset G\rtimes_{\phi}\mathbb{Z}/2$.

If we solve the hidden subgroup problem for f , then we will have found γ .

KORKAR KERKER EL POLO

Dihedral hidden subgroup problem

Reference: Kuperberg, [arXiv:quant-ph/0302112](https://arxiv.org/abs/quant-ph/0302112)

- For simplicity, suppose $G = \mathbb{Z}/N$ and $D_N = \mathbb{Z}/N \rtimes \mathbb{Z}/2$.
- ► Suppose f hides the subgroup $H = \{(0,0), (\gamma,1)\} \subset D_N$.
- \blacktriangleright Form the state

$$
\frac{1}{\sqrt{|D_{\sf N}|}}\sum_{d\in D_{\sf N}}\ket{d}\ket{f(d)}
$$

 \triangleright Measure the second register and discard the result to obtain

$$
\frac{1}{\sqrt{|(z,0)H|}}\sum_{d\in(z,0)H}|d\rangle=\frac{1}{\sqrt{2}}(|(z,0)\rangle+|(z+\gamma,1)\rangle
$$

in the first register, for some random coset $(z, 0)H$. By abuse of notation, denote this "coset state" by $|(z, 0)H\rangle$.

 \triangleright We can generate lots of these coset states, for random cosets. (We have no control over which cosets we obtain.)

Quantum Fourier transform

 \triangleright Apply the quantum Fourier transform to the first coordinate:

$$
\begin{aligned} |(z,0)H\rangle &= \frac{1}{\sqrt{2}}(|(z,0)\rangle + |(z+\gamma,1)\rangle) \\ &\xrightarrow{\text{QFT}} \frac{1}{\sqrt{2N}} \sum_{k \in \mathbb{Z}_N} (\zeta_N^{kz} |(k,0)\rangle + \zeta_N^{k(z+\gamma)} |(k,1)\rangle) \\ &= \frac{1}{\sqrt{N}} \sum_{k \in \mathbb{Z}_N} \zeta_N^{kz} |k\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle + \zeta_N^{k\gamma} |1\rangle) \end{aligned}
$$

 \blacktriangleright Measure the first register to obtain $|k\rangle$ for some random k. The second register is

$$
\frac{1}{\sqrt{2}}(\ket{0} + \zeta_{\textbf{N}}^{k\gamma}\ket{1})
$$

Denote this quantum state by $|\psi_k\rangle$. We can generate lots of these states for random k , with no control over k (but we do know the value of k for each such quan[tu](#page-14-0)[m](#page-16-0) [s](#page-14-0)[tat](#page-15-0)[e](#page-16-0)[\).](#page-0-0)

Overall strategy

We now assume for (further!) simplicity that N is a power of 2. The strategy is as follows:

 \blacktriangleright If we could construct

$$
|\psi_k\rangle = \frac{1}{\sqrt{2}}(|0\rangle + \zeta_N^{k\gamma} |1\rangle)
$$

KORKAR KERKER EL POLO

for k of our choice, then (for example) we could find $|\psi_{N/2}\rangle = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(|0\rangle+(-1)^{\gamma}\,|1\rangle).$

- \blacktriangleright Measure $\Ket{\psi_{\textsf{N}/2}}$ w.r.t. $\left\{\frac{1}{\sqrt{2}}\right\}$ $\frac{1}{2}(|0\rangle+|1\rangle), \frac{1}{\sqrt{2}}$ $\frac{1}{2}(|0\rangle-|1\rangle)\Big\}$ to obtain the least significant bit of γ .
- Reduce to $D_{N/2}$ and use induction to find γ .

Combining states

We can exert limited control over $|\psi_k\rangle$ by combining states:

$$
|\psi_p, \psi_q\rangle = \frac{1}{2}(|0,0\rangle + \zeta_N^{p\gamma} |1,0\rangle + \zeta_N^{q\gamma} |0,1\rangle + \zeta_N^{(p+q)\gamma} |1,1\rangle
$$

\n
$$
\xrightarrow{\text{CNOT}} \frac{1}{2}(|0,0\rangle + \zeta_N^{p\gamma} |1,1\rangle + \zeta_N^{q\gamma} |0,1\rangle + \zeta_N^{(p+q)\gamma} |1,0\rangle
$$

\n
$$
= \frac{1}{\sqrt{2}}(|\psi_{p+q},0\rangle + \zeta_N^{q\gamma} |\psi_{p-q},1\rangle)
$$

We now measure the second register.

- If we get $|0\rangle$, then the first register is $|\psi_{\mathbf{p}+\mathbf{q}}\rangle$.
- If we get $|1\rangle$, then the first register is $\zeta_N^{q\gamma}$ $\begin{aligned} \mathcal{A}^{q\gamma} \ket{\psi_{p-q}} = \ket{\psi_{p-q}}. \end{aligned}$

We can't control which of $|\psi_{p\pm q}\rangle$ we get, but we know which one we got.

KORKAR KERKER EL POLO

Kuperberg sieve

- 1. Create $A \approx 4^{\sqrt{\log N}}$ quantum states ψ_k , for random $k \in \mathbb{Z}_N$.
- 2. Group the quantum states into buckets according to their last اف
⁄ log N bits (least significant bits). On average each bucket has $A/2^{\sqrt{\log N}}$ quantum states and there are $2^{\sqrt{\log N}}$ buckets.
- 3. Combine pairs of states in each bucket, with the goal of Combine pairs or states in each i
zeroing out the last $\sqrt{\log N}$ bits.
	- \triangleright On average, combining states succeeds half the time.
	- \blacktriangleright If successful, we destroy two states and create one new state.
	- \triangleright If unsuccessful, we lose two states and create nothing.
	- \triangleright On average, we have $1/4$ as many states as we had before.
- 4. We get $A/4$ quantum states, whose last $\sqrt{\log N}$ bits are zero.
- 5. Repeat this bucket sorting process on the next $\sqrt{\log N}$ bits, to repeat this bucket sorting process on the next $\sqrt{\log n}$ bits, to obtain $A/4^2$ quantum states, whose last $2\sqrt{\log N}$ bits are zero.
- 6. ... Eventually we obtain $A/4^{\sqrt{\log N}} \approx 1$ quantum states, with all but the most significant bit zero.