Learning What Works Best When

Swati Gupta Simons Institute, UC Berkeley Georgia Institute of Technology

Joint work with Michel Goemans (MIT), Patrick Jaillet (MIT), Iain Dunning (Deepmind), John Silberholz (Ross School of Business)

05 + 02 + 2 = 01 + 8

Mathematical and Computational Challenges in Real-Time Decision Making

Learning What Works Best When | Swati Gupta | Research Fellow, Simons Institute

(a) How to compute projections?

(a) How to compute projections?

(b) How far can we move along a direction while staying feasible?

(a) How to compute projections?

(b) How far can we move along a direction while staying feasible?

(c) Can we learn which algorithm works best on an unseen instance?

(a) How to compute **projections?**

(b) How far can we move along a direction while staying feasible?

(c) Can we learn which algorithm works best on an unseen instance?

Why are projections important?

Key step in many algorithms across

• Online Learning

Game Theory Machine Learning Stochastic optimization

- Robust optimization
- Problem setup
- Examples
- Online Mirror Descent
 - Projection!

$\frac{1}{2}$

Decision Space

Permutations

- 1, 2, 3, 4, 2, 3, 1, 4, 3, 1, 4, 2,
- 4, 1, 3, 2, 2, 3, 4, 1...

allow convex combinations, sample at random

Online Learning Framework

- learner chooses a decision,

 $x_t \in \mathcal{P}$

- a linear loss revealed,

 $l_t \in \mathcal{L} : \mathcal{P} \to \mathbb{R}$

- the loss incurred for time **t**:

 $l_t(x_t)$

Decision Space

Permutations

- 1, 2, 3, 4, 2, 3, 1, 4, 3, 1, 4, 2, 4, 1, 3, 2,
- 2, 3, 4, 1...

allow convex combinations, sample at random

Example

Online Learning Framework

- learner chooses a decision,

 $x_t \in \mathcal{P}$

- a linear loss revealed,

 $l_t \in \mathcal{L} : \mathcal{P} \to \mathbb{R}$

- the loss incurred for time **t**:

 $l_t(x_t)$

Permutations

- 1, 2, 3, 4, **2, 3, 1, 4,** 3, 1, 4, 2, 4, 1, 3, 2,
- 2, 3, 4, 1...

Example

Online Learning Framework

- learner chooses a decision,

 $x_t \in \mathcal{P}$

- a linear loss revealed,

 $l_t \in \mathcal{L} : \mathcal{P} \to \mathbb{R}$

- the loss incurred for time **t**:

 $l_t(x_t)$

Example

Online Learning Framework

- learner chooses a decision,

 $x_t \in \mathcal{P}$

- a linear loss revealed,

 $l_t \in \mathcal{L} : \mathcal{P} \to \mathbb{R}$

- the loss incurred for time **t**:

 $l_t(x_t)$

Example Loss Function:

$$l_t(x) = p_t \cdot x$$

Penalizes if a highly desired page is put later in the ranking

Loss for x_t

Learning What Works Best When | Swati Gupta | Research Fellow, Simons Institute

Suppose x_t = (2, 3, 1, 4) ↓ Page 1 at rank 2 Page 2 at rank 3 Page 3 at rank 1 Page 4 at rank 4 ↓ Display: Observ

Permutations

1, 2, 3, 4, **2, 3, 1, 4,** 3, 1, 4, 2, 4, 1, 3, 2, 2, 3, 4, 1...

Online Mirror Descent

[Zinkevich 2003], [Nemirovski, Yudin 1983]

Optimal regret in many cases [for e.g. Srebro, Sridharan, Tewari 2010]

But Computationally Slow!

constrained decision set

Online Mirror Descent

[Zinkevich 2003], [Nemirovski, Yudin 1983]

Optimal regret in many cases [for e.g. Srebro, Sridharan, Tewari 2010]

But Computationally Slow!

unconstrained gradient step

Online Mirror Descent

[Zinkevich 2003], [Nemirovski, Yudin 1983]

Optimal regret in many cases [for e.g. Srebro, Sridharan, Tewari 2010]

But Computationally Slow!

constrained decision set

But Computationally Slow!

constrained decision set

unconstrained gradient step

Projections are obtained by **minimizing a convex function** (potentially in each time step)

Online Mirror Descent

[Zinkevich 2003], [Nemirovski, Yudin 1983]

Optimal regret in many cases [for e.g. Srebro, Sridharan, Tewari 2010]

But Computationally Slow!

Outline

1. Projections

- Motivation
- Problem setup
- Novel algorithm: Inc-Fix for separable convex minimization:
 - Main Result: O(n) SFM or O(n) Line searches
 - Exact computations, modulo solving a univariate equation

2. Line Searches

- Previous best known: Megiddo's parametric search
- Using Newton's Discrete Method: n² + n log²n SFM (n⁶ improvement)

3. What works best when

- Problems with Max-Cut and QUBO heuristics comparative studies
- Our framework: Expanded instance library, Implementation of 37 heuristics, Large-scale cloud computing on the cross product
- Hyper-heuristic: Map every instance to a feature space, learn "performance" of heuristics

(i) Which decision sets?

Submodular Base Polytopes

(i) Which decision sets?

Submodular Base Polytopes

Permutations

- 1, 2, 3,
- 2, 3, 1,

3, 1, 2...

(i) Which decision sets?

Submodular Base Polytopes

Permutations 1, 2, 3,

2, 3, 1,

3, 1, 2...

(ii) Minimize what?

Bregman Divergences

$$D_{\omega}(x,y) := \omega(x) - \omega(y) - \nabla \omega(y)^T (x-y)$$

Convex, non-negative, not symmetric

(ii) Minimize what?

Bregman Divergences

$$D_{\omega}(x,y) := \omega(x) - \omega(y) - \nabla \omega(y)^T (x-y)$$

Convex, non-negative, not symmetric

Bregman Divergences

$$D_{\omega}(x,y) := \omega(x) - \omega(y) - \nabla \omega(y)^{T}(x-y)$$

Convex, non-negative, not symmetric

Bregman Divergences

 ω

Bregman Divergences

Bregman Divergences

$$D_{\omega}(x,y) := \omega(x) - \omega(y) - \nabla \omega(y)^T (x-y)$$

Convex, non-negative, not symmetric

Bregman Divergences

$$D_{\omega}(x,y) := \omega(x) - \omega(y) - \nabla \omega(y)^T (x-y)$$

Convex, non-negative, not symmetric

Why do we need different divergences: convergence, regret bounds

Algorithm Inc-Fix

For Separable Strictly Convex Minimization Over Base Polytopes: $\min_{x \in B(f)} \sum_{e \in E} h_e(x(e))$

(a). Which decision sets?

Submodular Base Polytopes: B(f) (Permutations, k-subsets..)

(b). Minimizing separable convex fns (sq. Euclidean distance, KL-divergence, ...)

"greedy in gradient space" – proof from first-order optimality conditions

"greedy in gradient space" – proof from first-order optimality conditions

"greedy in gradient space" – proof from first-order optimality conditions

"greedy in gradient space" – proof from first-order optimality conditions

"greedy in gradient space" – proof from first-order optimality conditions

"greedy in gradient space" – proof from first-order optimality conditions

[Gupta, Goemans, Jaillet]

Learning What Works Best When | Swati Gupta | Research Fellow, Simons Institute

"greedy in gradient space" – proof from first-order optimality conditions

[Gupta, Goemans, Jaillet]

Learning What Works Best When | Swati Gupta | Research Fellow, Simons Institute

Squared Euclidean Distance, **KL-Divergence**:

Movement along lines

In general:

Piecewise smooth movement

Squared Euclidean Distance, **KL-Divergence**:

Movement along lines

In general:

Piecewise smooth movement

Squared Euclidean Distance, KL-Divergence: Movement along lines

In general: Piecewise smooth movement

Details: How to do this movement?

Squared Euclidean Distance, KL-Divergence: Movement along lines

In general: Piecewise smooth movement

Details: How to do this movement?

O(n) Line Searches + non-linear equations in a single variable

Squared Euclidean Distance, **KL-Divergence**: Movement along lines

In general: Piecewise smooth movement

Details: How to do this movement?

O(n) Line Searches + non-linear equations in a single variable

Running time?

Using structural properties, we show Inc-Fix can be implemented in, in general,

O(n) Submodular Function Minimizations*

LSW'15:
$$O(n^4 \log^{O(1)} n + \gamma n^3 \log^2 n)$$

 $O(n^3 \log^{O(1)}(nM) + \gamma n^2 \log(nM))$

CLSW'16:
$$O(\gamma n M^3 \log n)$$

*Require maximal minimizers, note that checking for feasibility itself requires a SFM.

Computations for cardinality-based f(.)

For cardinality-based functions, Inc-Fix takes $O(n^2)$ for exact, while vanilla FW takes $O(n \ln n * C_h/\epsilon)$ for ϵ -approx.

(O(n (log n + k)) for simplex, k-subsets, k-truncated-permutations)

Computations for cardinality-based f(.)

For cardinality-based functions, Inc-Fix takes $O(n^2)$ for exact, while vanilla FW takes $O(n \ln n * C_h/\epsilon)$ for ϵ -approx.

(O(n (log n + k)) for simplex, k-subsets, k-truncated-permutations)

Computations for cardinality-based f(.)

For cardinality-based functions, Inc-Fix takes $O(n^2)$ for exact, while vanilla FW takes $O(n \ln n * C_h/\epsilon)$ for ϵ -approx.

(O(n (log n + k)) for simplex, k-subsets, k-truncated-permutations)

Outline

1. Projections

- Motivation
- Problem setup
- **Novel algorithm**: Inc-Fix for separable convex minimization:
 - Main Result: O(n) SFM or O(n) Line searches
 - Exact computations, modulo solving a univariate equation

2. Line Searches

- Previous best known: Megiddo's parametric search
- Using Newton's Discrete Method: n² + n log²n SFM (n⁶ improvement)

3. What works best when

- Problems with Max-Cut and QUBO heuristics comparative studies
- Our framework: Expanded instance library, Implementation of 37 heuristics, Large-scale cloud computing on the cross product
- Hyper-heuristic: Map every instance to a feature space, learn "performance" of heuristics

How much to move in a direction while staying feasible?

How much to move in a direction while staying feasible?

How much to move in a direction while staying feasible?

How much to move in a direction while staying feasible?

Sub-problem in many methods:

- Inc-Fix, of course
- Frank-Wolfe [Frank, Wolfe, Jaggi, Lacoste-Julien, Freund, Grigas, ...]
- Caratheodory's Theorem

How much to move in a direction while staying feasible?

Sub-problem in many methods:

- Inc-Fix, of course
- Frank-Wolfe
 [Frank, Wolfe, Jaggi, Lacoste-Julien, Freund, Grigas, ...]
- Caratheodory's Theorem

Others:

- Densest sub-graphs
 [Nagano et al. 2011]
- Minimum Ratio Problems
 [Cunningham 1985]

Inc-Fix uses only positive directions (well-understood) General: Megiddo's parametric search: **Õ(n⁸) SFM** [Nagano 2011]

$$\sum_{e \in S} x(e) = x(S) \leq f(S)$$
 Recall

Inc-Fix uses only positive directions (well-understood)

General: Megiddo's parametric search: Õ(n⁸) SFM [Nagano 2011]

$$\sum_{e \in S} x(e) = x(S) \leq f(S)$$
 Recall

Inc-Fix uses only positive directions (well-understood) General: Megiddo's parametric search: **Õ(n⁸) SFM** [Nagano 2011]

$$\max \lambda : \lambda d \in P(f) \implies \max_{\lambda} : \min_{S \subseteq V} f(S) - \lambda d(S) \ge 0$$

$$\sum_{e \in S} x(e) = x(S) \leq f(S)$$
 Recall

Inc-Fix uses only positive directions (well-understood) General: Megiddo's parametric search: **Õ(n⁸) SFM** [Nagano 2011]

$$\sum_{e \in S} x(e) = x(S) \leq f(S)$$
 Recall

Inc-Fix uses only positive directions (well-understood) General: Megiddo's parametric search: **Õ(n⁸) SFM** [Nagano 2011]

$$\sum_{e \in S} x(e) = x(S) \leq f(S)$$
 Recall

Inc-Fix uses only positive directions (well-understood) General: Megiddo's parametric search: **Õ(n⁸) SFM** [Nagano 2011]

$$\sum_{e \in S} x(e) = x(S) \leq f(S)$$
 Recall

Inc-Fix uses only positive directions (well-understood) General: Megiddo's parametric search: **Õ(n⁸) SFM** [Nagano 2011]

$$\sum_{e \in S} x(e) = x(S) \leq f(S)$$
 Recall

Inc-Fix uses only positive directions (well-understood) General: Megiddo's parametric search: **Õ(n⁸) SFM** [Nagano 2011]

$$\sum_{e \in S} x(e) = x(S) \leq f(S)$$
 Recall

Inc-Fix uses only positive directions (well-understood) General: Megiddo's parametric search: **Õ(n⁸) SFM** [Nagano 2011]

$$\sum_{e \in S} x(e) = x(S) \leq f(S)$$
 Recall

Inc-Fix uses only positive directions (well-understood) General: Megiddo's parametric search: **Õ(n⁸) SFM** [Nagano 2011]

$$\sum_{e \in S} x(e) = x(S) \leq f(S)$$
 Recall

Inc-Fix uses only positive directions (well-understood) General: Megiddo's parametric search: **Õ(n⁸) SFM** [Nagano 2011]

$$\sum_{e \in S} x(e) = x(S) \leq f(S)$$
 Recall

Inc-Fix uses only positive directions (well-understood) General: Megiddo's parametric search: **Õ(n⁸) SFM** [Nagano 2011]

$$\sum_{e \in S} x(e) = x(S) \leq f(S)$$
 Recall

Inc-Fix uses only positive directions (well-understood) General: Megiddo's parametric search: **Õ(n⁸) SFM** [Nagano 2011]

$$\sum_{e \in S} x(e) = x(S) \leq f(S)$$
 Recall

Inc-Fix uses only positive directions (well-understood) General: Megiddo's parametric search: **Õ(n⁸) SFM** [Nagano 2011]

$$\sum_{e \in S} x(e) = x(S) \leq f(S)$$
 Recall

Inc-Fix uses only positive directions (well-understood) General: Megiddo's parametric search: **Õ(n⁸) SFM** [Nagano 2011]

$$\sum_{e \in S} x(e) = x(S) \leq f(S)$$
 Recall

Inc-Fix uses only positive directions (well-understood) General: Megiddo's parametric search: **Õ(n⁸) SFM** [Nagano 2011]

$$\sum_{e \in S} x(e) = x(S) \leq f(S)$$
 Recall

Inc-Fix uses only positive directions (well-understood) General: Megiddo's parametric search: **Õ(n⁸) SFM** [Nagano 2011]

$$\sum_{e \in S} x(e) = x(S) \leq f(S)$$
 Recall

Inc-Fix uses only positive directions (well-understood) General: Megiddo's parametric search: **Õ(n⁸) SFM** [Nagano 2011]

Consider any submodular function $f(\cdot)$ a sequence of sets S_1, S_2, \cdots, S_q

$$f_{\min} = -1, f(S_1) \ge 2,$$

 $f(S_k) \ge 4f(S_{k-1}) \text{ for } k > 1.$

We show a quadratic bound on the number of Newton's iterations: <= n² + o(n log²n) SFM (n⁶ improvement) [Goemans, Gupta, Jaillet, IPCO 2017]

Learning What Works Best When | Swati Gupta | Research Fellow, Simons Institute

Consider any submodular function $f(\cdot)$ a sequence of sets S_1, S_2, \cdots, S_q How large $f_{\min} = -1, f(S_1) \ge 2,$ $f(S_k) \ge 4f(S_{k-1})$ for k > 1.

We show a quadratic bound on the number of Newton's iterations: <= n² + o(n log²n) SFM (n⁶ improvement) [Goemans, Gupta, Jaillet, IPCO 2017]

Learning What Works Best When | Swati Gupta | Research Fellow, Simons Institute

Consider any submodular function $f(\cdot)$ a sequence of sets S_1, S_2, \cdots, S_q $f_{\min} = -1, f(S_1) \ge 2,$ $f(S_k) \ge 4f(S_{k-1})$ for k > 1. $S_k \notin \mathcal{R}(S_1, \cdots, S_{k-1})$ using submodularity of $f(\cdot)$ $f(S \cap T) + f(S \cup T) \le f(S) + f(T)$

We show a quadratic bound on the number of Newton's iterations: <= n² + o(n log²n) SFM (n⁶ improvement) [Goemans, Gupta, Jaillet, IPCO 2017]

Consider any submodular function $f(\cdot)$ How large a sequence of sets S_1, S_2, \cdots, S_a can **q** be? $f_{\min} = -1, f(S_1) \ge 2,$ $f(S_k) \ge 4f(S_{k-1})$ for k > 1. $S_k \notin \mathcal{R}(S_1, \cdots, S_{k-1})$ using submodularity of $f(\cdot)$ $q \leq \binom{n+1}{2} + 1 \text{ using Birkhoff's representation} \\ \text{theorem}$

We show a quadratic bound on the number of Newton's iterations: <= n² + o(n log²n) SFM (n⁶ improvement) [Goemans, Gupta, Jaillet, IPCO 2017]

Consider any submodular function $f(\cdot)$ How large a sequence of sets S_1, S_2, \cdots, S_q can **q** be? $f_{\min} = -1, f(S_1) \ge 2,$ $f(S_k) \ge 4f(S_{k-1})$ for k > 1. $S_k \notin \mathcal{R}(S_1, \cdots, S_{k-1})$ using submodularity of $f(\cdot)$ $q \leq \binom{n+1}{2} + 1 \text{ using Birkhoff's representation} \\ \text{theorem}$ We show a quadratic bound on the number of Newton's iterations: <= n² + o(n log²n) SFM (n⁶ improvement) [Goemans, Gupta, Jaillet, IPCO 2017]

Outline

1. Projections

- Motivation
- Problem setup
- **Novel algorithm**: Inc-Fix for separable convex minimization:
 - Main Result: O(n) SFM or O(n) Line searches
 - Exact computations, modulo solving a univariate equation

2. Line Searches

- Previous best known: Megiddo's parametric search
- Using Newton's Discrete Method: n² + n log²n SFM (n⁶ improvement)

3. What works best when

- Problems with Max-Cut and QUBO heuristics comparative studies
- Our framework: Expanded instance library, Implementation of 37 heuristics, Large-scale cloud computing on the cross product
- Hyper-heuristic: Map every instance to a feature space, learn "performance" of heuristics.

What works best when

Image from: https://www.dreamstime.com/stock-illustration-octopus-tools-illustration-image47507762

What works best when

Encounter problem in practice Find out what is known Run the "best" known algorithm/heuristic for the data

What works best when

Encounter problem in practice Find out what is known Run the "best" known algorithm/heuristic for the data

From learning decisions, to learning **performance of algorithms**

Image from: https://www.dreamstime.com/stock-illustration-octopus-tools-illustration-image47507762

Given an edge-weighted graph, partition nodes into two sets to maximize the weight of the edges between the sets

Equivalence with Quadratic Unconstrained Binary Optimization Problem (QUBO)

 $\max x^T Q x \quad x \in \{0,1\}^n$

∧ >32 published papers since 2010.

Given an edge-weighted graph, partition nodes into two sets to maximize the weight of the edges between the sets

Equivalence with **Q**uadratic **U**nconstrained **B**inary **O**ptimization Problem (QUBO)

 $\max x^T Q x \quad x \in \{0,1\}^n$

∧ >32 published papers since 2010.

Given an edge-weighted graph, partition nodes into two sets to maximize the weight of the edges between the sets

Equivalence with **Q**uadratic **U**nconstrained **B**inary **O**ptimization Problem (QUBO)

 $\max x^T Q x \quad x \in \{0,1\}^n$

A lot of applications, and a lot of research!
>32 published papers since 2010.

Given an edge-weighted graph, partition nodes into two sets to maximize the weight of the edges between the sets

Equivalence with **Q**uadratic **U**nconstrained **B**inary **O**ptimization Problem (QUBO)

 $\max x^T Q x \quad x \in \{0,1\}^n$

A lot of applications, and a lot of research!
>32 published papers since 2010.

Problems with standard testbed

Homogeneous Test Bed: Max-Cut (105 graphs), QUBO (126 matrices)

Learning What Works Best When | Swati Gupta | Research Fellow, Simons Institute

Problems with standard testbed

Homogeneous Test Bed: Max-Cut (105 graphs), QUBO (126 matrices)

Which Max-Cut heuristic works best for high density graphs? Which QUBO heuristic works best for sparse matrices?

Problems with status-quo

- few published source code
- reimplementation uncommon
- ♦ different testing criteria
- comparison with small no. of heuristics...

Our Approach

Our Approach

Expanded Instance Library

- Heterogeneous instances, capture instances in real instances
 - ◇ Real World Instances (tsplib, steinlib, dimacs, road networks, ...)
 - ◇ Network science generators (ER, NWS, BA, ...)
 - ◇ Sampled weights from 65 prob. distributions (uniform, weibull, ...)

Heterogeneity: 58 Metrics

10 global metrics:

- nodes, edges, 1st and 2nd eigenvalues of Laplacian, chromatic number, ...
- ♦ 48 local metrics from summary statistics of edge/node attributes:
 - ♦ degree, avg. neighbor degree, clustering coefficient, core...
- \diamond Fast to compute at most $O(n^2 \log n)$
- Coverage (for normalized metrics in [0,1]): union over all instances of a small interval around the metric value for each instance
 - average metric coverage for new test bed: 0.88 (interval +-0.05)
 - ◊ 0.31 for 95 std Max-Cut v/s 0.71 (0.69-0.77) for ~ 95 random new
 - ◊ 0.38 for 56 std QUBO v/s 0.64 (0.59-0.68) for ~56 random new

Our Approach

Our Approach

Implementation + Evaluation

♦ We did what one would expect

- thorough lit review (810 papers)
- selected 95 papers (new heuristics)
- implemented 37 heuristics from 19 highly cited papers

Implementation + Evaluation

We did what one would expect

- thorough lit review (810 papers)
- selected 95 papers (new heuristics)
- implemented 37 heuristics from 19 highly cited papers

Minor modifications to standardize:

- added random restarts
- shared common code data structures and subroutines
- no parameter tuning

Implementation + Evaluation

We did what one would expect

- thorough lit review (810 papers)
- selected 95 papers (new heuristics)
- implemented 37 heuristics from 19 highly cited papers

Minor modifications to standardize:

- added random restarts
- shared common code data structures and subroutines
- no parameter tuning

Cloud Computing – Amazon EC2

- Instance specific runtime limit computation
 - ♦ too low: miss performance
 - too high: waste computational budget
- any new heuristic can be tested for \$32.5 (20.6 CPU days/ heuristic)

Open Source Code available at

https://github.com/MQLib/MQLib

Results

No heuristic dominated all the others

- 30/37 heuristics strictly best on at least one instance
- No heuristic matched the best performance on more than 22.9% of the testbed

Standard test beds do not capture performance

- Example: GLS heuristic (Merz, Freisleben 1999)
- Strictly best on no instances in the std test bed
- Sole best-performing on 6.9% expanded test bed instances!

	Instances w	ith Top Perf	ormance (%)	Deviation	from Best So	lution (%)	Avg. Rank
Heuristic	(Mean-of-5)	(Mean-of-5)	Achieved	Deviation	Deviation	Deviation	
Heuristic BUR02 FES02GVP PAL04T3 FES02GP FES02GV PAL04T2 BEA98TS LU10 FES02G MER04 PAL04T1 MER99LS MER02GRK MER02GRK MER02CRK MER02LSK PAL04T5 PAL04T5 PAL04T5 PAL06 ALK98 PAL04T4 GLO10 FES02V KAT00 FES02VP PAL04MT	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} \textbf{ith Top Perfer} \\ \textbf{First-Strict} \\ \textbf{(Mean-of-5)} \\ \textbf{16.2} \\ \textbf{4.1} \\ \textbf{2.3} \\ \textbf{5.5} \\ \textbf{1.5} \\ \textbf{8.1} \\ \textbf{5.0} \\ \textbf{2.7} \\ \textbf{2.6} \\ \textbf{3.2} \\ \textbf{2.7} \\ \textbf{2.6} \\ \textbf{3.2} \\ \textbf{2.7} \\ \textbf{6.9} \\ \textbf{0.6} \\ \textbf{0.4} \\ \textbf{2.4} \\ \textbf{0.9} \\ \textbf{2.9} \\ \textbf{0.2} \\ \textbf{0.3} \\ \textbf{0.3} \\ \textbf{0.1} \\ \textbf{0.1} \\ \textbf{0.2} \end{array}$	ormance (%) Best Achieved 32.7 29.9 30.5 27.1 26.0 33.3 22.4 23.9 19.6 24.4 21.7 30.9 19.2 19.3 21.1 21.9 15.6 18.4 21.7 15.1 16.2 16.1 16.2 16.1 16.8	$\begin{array}{c} \textbf{Deviation}\\ \text{Worst-of-5}\\ \text{Deviation}\\ \textbf{0.5}\\ 0.6\\ 0.8\\ 0.9\\ 0.8\\ 0.9\\ 2.6\\ 1.7\\ 1.4\\ 0.7\\ 2.4\\ 0.7\\ 2.4\\ 0.7\\ 0.8\\ 1.0\\ 3.0\\ 2.4\\ 0.8\\ 3.8\\ 2.2\\ 1.3\\ 1.5\\ 1.1\\ 4.0\\ \end{array}$	from Best So Mean-of-5 Deviation 0.3 0.5 0.6 0.7 0.7 0.7 0.6 2.4 1.5 1.3 0.6 2.2 0.5 0.6 2.2 0.5 0.6 0.8 2.5 1.9 0.6 3.2 1.7 1.1 1.2 0.9 3.4	$\begin{array}{c} \textbf{lution (\%)}\\ \text{Best-of-5}\\ \text{Deviation} \\ \hline \textbf{0.2}\\ 0.4\\ 0.5\\ 0.6\\ 0.3\\ 2.1\\ 1.2\\ 1.1\\ 1.2\\ 1.1\\ 0.5\\ 1.9\\ 0.3\\ 0.5\\ 1.9\\ 0.3\\ 0.5\\ 1.9\\ 0.3\\ 0.5\\ 1.9\\ 0.3\\ 0.5\\ 1.9\\ 0.3\\ 0.5\\ 1.9\\ 0.3\\ 0.5\\ 0.7\\ 2.0\\ 1.4\\ 0.5\\ 2.6\\ 1.3\\ 0.9\\ 0.9\\ 0.7\\ 2.8\\ \end{array}$	Avg. Rank 10.7 10.1 7.5 14.2 11.2 8.5 16.6 13.1 18.2 8.6 15.2 10.0 11.9 13.3 18.6 17.3 12.5 21.7 16.6 13.8 16.9 12.4 24.1
MER02GR GLO98 HAS00TS HAS00GA MER02LS1 PAR08 KAT01 DUA05 LOD99 LAG09HCE BEA98SA MER99CR MER99MU LAG09CE	3.5 2.5 2.2 2.1 1.8 1.7 1.6 0.8 0.7 0.4 0.4 0.4 0.0 0.0 0.0 0.0	$\begin{array}{c} 0.0\\ 0.1\\ 0.4\\ 0.2\\ 0.0\\ 0.1\\ 0.6\\ 0.2\\ 0.0\\ 0.3\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$	$5.7 \\ 8.1 \\ 7.2 \\ 10.6 \\ 6.3 \\ 11.2 \\ 4.0 \\ 6.1 \\ 3.4 \\ 4.1 \\ 1.3 \\ 0.0 \\ 0.$	$\begin{array}{c} 3.2 \\ 2.1 \\ 1.6 \\ 2.2 \\ 3.0 \\ 3.0 \\ 2.7 \\ 2.1 \\ 5.7 \\ 2.3 \\ 4.8 \\ 15.9 \\ 24.8 \\ 30.8 \end{array}$	3.0 1.8 1.3 1.9 2.8 2.5 2.4 1.7 5.3 1.9 4.0 14.4 23.3 30.1	$2.8 \\ 1.5 \\ 1.1 \\ 1.6 \\ 2.6 \\ 2.1 \\ 2.1 \\ 1.4 \\ 4.9 \\ 1.6 \\ 3.2 \\ 12.9 \\ 21.7 \\ 29.2$	$\begin{array}{c} 24.3 \\ 23.4 \\ 20.3 \\ 20.9 \\ 25.1 \\ 17.9 \\ 26.3 \\ 17.4 \\ 30.2 \\ 20.4 \\ 30.8 \\ 34.6 \\ 35.7 \\ 36.9 \end{array}$

Table 1 Summary of results for each heuristic across the 2,635 interesting instances. The best heuristic under 35

Can we predict which heuristic would work best on an unseen data instance?

"the algorithm selection problem is to learn the mapping from instance features to the best algorithm to run on an instance"

— Rice (1976)

Learning What Works Best When | Swati Gupta | Research Fellow, Simons Institute

... Phase transitions (Cheeseman et al. 1991, Hartman and Weigt, 2006)

... Landscape analysis (Stadler and Schnabl 1992, Krzkakala et al. 2004, Hartman and Weigt 2003, Gent and Walsh 1996, Smith-miles et al. 2010, Wang et al. 2013...)

Interpreting Heuristic Performance

[... "algorithmic footprints" Smith-Miles et al. 2014]

Figure 9: A CART model identifying instances on which FES02GP performs particularly well or poorly. Blue indicates the heuristic performed well (rank near 1) and red indicates the heuristic performed poorly (rank near 37).

Interpreting Heuristic Performance

[... "algorithmic footprints" Smith-Miles et al. 2014]

Figure 9: A CART model identifying instances on which FES02GP performs particularly well or poorly. Blue indicates the heuristic performed well (rank near 1) and red indicates the heuristic performed poorly (rank near 37).

Comparing Heuristic Performance

Interpretable models identifying the instances on which GLO98 (top) and PAR08 (bottom) perform

Heuristic Class Performance

Algorithm Portfolio or Hyper-heuristic

[... SAT solvers (Xu et al 2008), constrained prog (O' Mahoney et al. 2008)]

Andom Forest Model for each heuristic

- Predicts if it will obtain the best solution using 58 features
- Final heuristic selected has maximum predicted probability
- Small fraction of runtime budget to select heuristic and then run the selected heuristic on remaining time

Represents state-of-the-art Max-Cut and QUBO heuristic!

- Improves significantly over best single heuristic (BUR02):
 - Probability of obtaining best solution: increased from 15% to 37%
 - ♦ Avg. deviation from best solution reduced from 0.34% to 0.09%
 - Running 8 heuristics in parallel: 48% best solution, 0.05% avg. dev.

(joint work with Iain Dunning, John Silberholz. INFORMS Journal on Computing, 2017)

Outline

1. Projections

- Motivation
- Problem setup
- Novel algorithm: Inc-Fix for separable convex minimization:
 - Main Result: O(n) SFM or O(n) Line searches
 - Exact computations, modulo solving a univariate equation

2. Line Searches

- Previous best known: Megiddo's parametric search
- Using Newton's Discrete Method: n² + n log²n SFM (n⁶ improvement)

3. What works best when

- Problems with Max-Cut and QUBO heuristics comparative studies
- Our framework: Expanded instance library, Implementation of 37 heuristics, Large-scale cloud computing on the cross product
- Hyper-heuristic: Map every instance to a feature space, learn "performance" of heuristics

<u>swatig@alum.mit.edu</u> swatigupta.tech

Paper	Type	Short name	Description
Alkhamis et al. (1998)	Q	ALK98	Simulated annealing
Booglow (1008)	0	BEA98SA	Simulated annealing
Deasley (1996)	Q	BEA98TS	Tabu search
Burer et al. (2002)	Μ	BUR02	Non-linear optimization with local
			search
Duarte et al. (2005)	М	DUA05	Genetic algorithm with VNS as local
()			search
		FES02G	GRASP with local search
		FES02GP	GRASP with path-relinking
Festa et al. (2002)	м	FES02V	VNS
1 CSta Ct al. (2002)	IVI	FES02VP	VNS with path-relinking
		FES02GV	GRASP with VNS local search
		FES02GVP	GRASP & VNS with path-relinking
Glover et al. (1998)	Q	GLO98	Tabu search
Glover et al. (2010)	Q	GLO10	Tabu search with long-term memory
Hagan at al. (2000)	0	HAS00GA	Genetic algorithm
Hasan et al. (2000)	Q	HAS00TS	Tabu search
Katayama et al. (2000)	Q	KAT00	Genetic algorithm with k -opt local
- , ,	-		search
Katayama and Narihisa (2001)	Q	KAT01	Simulated annealing
Learning et al. (0000)	М	LAG09CE	Cross-entropy method
Laguna et al. (2009)		LAG09HCE	Cross-entropy method with local search
Lodi et al. (1999)	Q	LOD99	Genetic algorithm
Lü et al. (2010)	Q	LU10	Genetic algorithm with tabu search
	Q	MER99LS	Genetic algorithm, with crossover and
Merz and Freisleben (1999)			local search
		MER99MU	Genetic algorithm, with mutation only
		MER99CR	Genetic algorithm, with crossover only
		MER02GR	GRASP without local search
Merz and Freisleben (2002)	Q	MER02LS1	1-opt local search with random restarts
Merz and Freisleben (2002)		MER02LSK	k-opt local search with random restarts
		MER02GRK	k-opt local search with GRASP
Merz and Katayama (2004)	Q	MER04	Genetic algorithm, with k-opt local
			search
		PAL04T1	Tabu search
		PAL04T2	Iterated tabu search
Palubeckis (2004)	Q	PAL04T3	Tabu search with GRASP
r diabeenib (2001)		PAL04T4	Tabu search with long-term memory
		PAL04T5	Iterated tabu search
		PAL04MT	Tabu search
Palubeckis (2006)	Q	PAL06	Iterated tabu search
Pardalos et al. (2008)	Q	PAR08	Global equilibrium search

variable	MDGr	MDG	pct	variable	MDGr	MDG	pct
log_n	7.90	23.00	74.00	log_m	8.10	13.00	74.00
log_norm_ev2	8.50	12.40	68.00	log_ev_ratio	10.00	10.10	71.00
log_norm_ev1	10.90	9.00	65.00	weight_log_kurtosis	11.40	11.30	53.00
weight_min	13.00	10.80	53.00	weight_mean	13.40	9.90	47.00
weight_stdev	13.40	8.40	47.00	deg_stdev	14.40	7.60	47.00
weight_log_abs_skew	16.60	6.80	32.00	mis	18.60	8.90	29.00
assortativity	18.70	7.60	26.00	avg_deg_conn_min	19.90	6.30	21.00
avg_deg_conn_stdev	20.20	5.30	26.00	deg_log_abs_skew	20.40	5.60	21.00
deg_max	21.50	6.80	15.00	avg_deg_conn_log_kurtosis	21.80	6.20	26.00
avg_neighbor_deg_min	22.30	5.80	15.00	chromatic	23.10	5.50	6.00
deg_log_kurtosis	23.60	5.10	12.00	avg_neighbor_deg_stdev	24.70	5.30	24.00
avg_deg_conn_max	25.40	3.50	12.00	avg_deg_conn_mean	25.40	3.80	6.00
avg_neighbor_deg_mean	25.40	3.90	12.00	core_mean	25.50	4.80	18.00
avg_neighbor_deg_max	26.10	3.80	15.00	deg_mean	26.40	4.20	12.00
core_stdev	26.60	4.50	6.00	deg_min	26.80	3.60	9.00
avg_neighbor_deg_log_abs_skew	27.30	4.20	0.00	avg_neighbor_deg_log_kurtosis	27.40	4.10	6.00
core_log_kurtosis	27.90	4.40	9.00	clust_stdev	28.00	4.60	6.00
core_min	28.40	3.50	6.00	clust_mean	28.60	5.10	3.00
avg_deg_conn_log_abs_skew	29.10	3.90	9.00	core_log_abs_skew	30.50	3.90	3.00
clust_max	31.10	6.00	6.00	core_max	33.10	2.90	0.00
clust_log_abs_skew	33.40	3.60	0.00	percent_pos	34.80	3.60	3.00
clust_log_kurtosis	35.30	3.50	0.00	clust_min	35.40	3.60	6.00
avg_neighbor_deg_skew_positive	44.40	1.90	3.00	deg_skew_positive	44.90	1.50	3.00
weight_skew_positive	47.50	0.50	0.00	avg_deg_conn_skew_positive	48.00	0.60	0.00
clust_skew_positive	49.70	0.40	0.00	weight_const	50.80	0.30	0.00
weight_max	51.10	0.40	0.00	core_skew_positive	51.40	0.30	0.00
clust_const	51.60	0.40	0.00	core_const	51.70	0.20	0.00
deg_const	54.50	0.10	0.00	avg_deg_conn_const	54.80	0.10	0.00
$avg_neighbor_deg_const$	55.10	0.10	0.00	disconnected	55.40	0.10	0.00

Table 4 The variable importance of each feature averaged over all the heuristic-specific random forest models, showing overall importance in predicting heuristic performance for any given instance, as described in Section 6.1. Here, MDGr is the mean decrease in Gini rank, MDG is the mean decrease in Gini, and pct is the percentage of random forest models for which this feature was in the top 10 most important variables. Variables are sorted in

increasing order by the mean decrease in Gini rank, with ties broken by the mean decrease in Gini.

Heuristic	\mathbb{R}^2	Figures	Heuristic	\mathbb{R}^2	Figures	Heuristic	\mathbb{R}^2	Figures
ALK98 BUR02 FES02GP FES02V GLO98 KAT00 LAG09HCE MER02GR MER02LSK MER99LS DAL04T1	$\begin{array}{c} 0.49\\ 0.61\\ 0.76\\ 0.37\\ 0.58\\ 0.48\\ 0.49\\ 0.75\\ 0.58\\ 0.46\\ 0.75\\ 0.58\\ 0.46\\ 0.75\end{array}$	Figure 1 Figure 4 Figure 7 Figure 10 Figure 13 Figure 16 Figure 19 Figure 22 Figure 25 Figure 28	BEA98SA DUA05 FES02GV FES02VP HAS00GA KAT01 LOD99 MER02GRK MER04 MER04 MER99MU	$\begin{array}{c} 0.41\\ 0.55\\ 0.60\\ 0.28\\ 0.54\\ 0.39\\ 0.50\\ 0.50\\ 0.50\\ 0.30\\ 0.24\\ 0.20\end{array}$	Figure 2 Figure 5 Figure 8 Figure 11 Figure 14 Figure 17 Figure 20 Figure 23 Figure 26 Figure 29	BEA98TS FES02G FES02GVP GLO10 HAS00TS LAG09CE LU10 MER02LS1 MER99CR PAL04MT DAL04T2	$\begin{array}{c} 0.75\\ 0.78\\ 0.68\\ 0.60\\ 0.43\\ 0.20\\ 0.71\\ 0.54\\ 0.50\\ 0.67\\ 0.20\\ 0.67\\ 0.20\\ 0.67\\ 0.20\\ 0.67\\ 0.20\\ 0.67\\ 0.20\\ 0.20\\ 0.20\\ 0.00\\$	Figure 3 Figure 6 Figure 9 Figure 12 Figure 15 Figure 18 Figure 21 Figure 24 Figure 27 Figure 30
PAL04T1 PAL04T4 PAR08	$\begin{array}{c} 0.75 \\ 0.75 \\ 0.65 \end{array}$	Figure 31 Figure 34 Figure 37	PAL0412 PAL04T5	$0.29 \\ 0.68$	Figure 32 Figure 35	PAL0413 PAL06	$0.32 \\ 0.61$	Figure 33 Figure 36

Table 1: The R^2 and figure number for each heuristic's CART model predicting instance-specific performance, as described in Section 5.1.