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How to find a battleship 

- A "sea" of M squares which contains 
(at some unknown location) a “battleship” of K squares.
- Both the sea and the battleship are rectangular shape. 
- Find the battleship by probing at least one of its squares. 



• In control space we know start & destination 
configurations

• Can only ask Boolean queries regarding 
feasible positions

• As in Battleships (game), Piano Mover, 
• or Drones in a crowded supermarket
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Path Planning in the Dark



Big Data
• Volume: huge amount n of data points
• Variety: high dimensional d space 
• Velocity:  data arrive in real-time

Need to support:
• Streaming (one pass, logarithmic memory)
• Distributed data (on cloud)
• Simple computations (embarrassingly parallel)
• No assumption on order of points



Big Data Computation model
• = Streaming + Parallel computation
• Input: infinite stream of vectors
• ! = vectors seen so far
• ~log ! memory
• M processors
• ~log (n)/M insertion time per point
(Embarrassingly parallel) 
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Focus on optimization summarization

f(       ) f(       )

Less:
CPU Time 
Dev. Time
Memory
Energy
Comm.
$$$, …



Example Coresets
§ Deep Learning [F, Tukan, Kener, To appear]
§ Graph Summarization [F, Sedat, Rus, ICML’17]
§ Mixture of Gaussians [F, Krause, etc JMLR’17]
§ LSA/PCA/SVD [F, Rus, and Volkob, NIPS’16]
§ k-Means [F, Barger, SDM’16]
§ Non-Negative Matrix Factorization [F, Tassa, 

KDD15]
§ Robots Localization [F, Cindy, Rus, ICRA’15]
§ Robots Coverage [F, Gil, Rus, ICRA’13]
§ Segmentation [F, Rosman, Rus, Volkob, NIPS’14]
§ ….
§ k-Line Means [F, Fiat, Sharir, FOCS’06]



Naïve Uniform Sampling

8



9

Naïve Uniform Sampling

Small cluster 
is missed

Sample a set U of m points uniformly

ß High variance
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Let
• ! be a set, called point set
• " be a set, called query set
• cost(!, )):maps every query ) ∈ " into a non-negative number

For a given - > 0, the set 0 ⊆ ! is a 
core-set if  for every ) ∈ " we have

cost !, ) ~3456 0, )

up to (1 ± -) approximation factor

Simplest coreset definition



From Big Data to Small Data
Suppose that we can compute such a corset ! of size 
"
# for every set $ of n points
• in time %&,
• off-line, non-parallel, non-streaming algorithm  
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Read the first !" streaming points and reduce them 

into #" weighted points in time !
"
$

1 + ' corset for (#



Read the next !" streaming point and reduce them 

into #" weighted points in time !
"
$

1 + ' corset for (!1 + ' corset for (#



Merge the pair of !-coresets into an !-corset 
of "# weighted points

1 + !-corset for &' ∪ &"



Delete the pair of original coresets from memory

1 + #-corset for $% ∪ $'



Reduce the !
" weighted points into #" weighted 

points by constructing their coreset

1 + &-corset for '# ∪ '!
1 + &-corset for



Reduce the !
" weighted points into #" weighted 

points by constructing their coreset

1 + &-corset for '# ∪ '!
1 + &-corset for

= 1 + & !-corset for '# ∪ '!



1 + # $-corset for %& ∪ %$

1 + # -corset for %(



1 + # $-corset for %& ∪ %$

1 + # -corset for %( 1 + # -corset for %)



1 + # $-corset for %& ∪ %$ 1 + # -corset for %( ∪ %)



1 + # $-corset for %& ∪ %$ 1 + # $-corset for %( ∪ %)





1 + # $-coreset for

%& ∪ %$ ∪ %( ∪ %)



1 + # $-coreset for

%& ∪ %( ∪ %$ ∪ %)





Parallel Computation



Parallel Computation



Parallel Computation
Run off-line 
algorithm  
on corset 
using single 
computer
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Parallel+ Streaming Computation
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• A generic framework for learning kernel
• E.g: Logistic regression,

- PCA/SVD with outliers, 
- Numerous kernels in Machine learning

Main tool: 
generic-SVD via coreset for John Ellipsoid

• Relation to obstacle detection 
and path planning

Coresets for convex optimization



• Clarkson (SODA’2005)
– Approximation for !" regression using 

weak coreset (only for off-line optimization)

• A. Dasgupta, P.Drineas, B. Harb, R. Kumar, 
M. Mahoney (SODA’2008)

Weak coreset for !# regression

• LaValle & Kuffmer, RRT trees (1998)
Heuristics for path planning using sampling
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Related Work



Theorem [Feldman, Langberg, STOC’11]

sensitivity p = max
-∈/

0(2, 4)

∑78 0(2′, 4)

is a coreset if : ~ <=>?@A=B@ BC /

D
⋅ ∑7 sensitibity(2)

Suppose that 

cost I, 4 ≔ K
7∈L

M 2 0 2, 4

where 0: I×P → 0,∞ .

A sample : ⊆ I from the distribution

[F., Langberg]



Importance Weights

WeightsSampling distribution 
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Sensitivity for convex optimization

• We want to minimize/estimate

! " ~$%&' (, " = +
,∈.

/ 0, "

over " ∈ 1 = ℝ3,

where f is convex



• Example: ! ", $ = "$ &

' $ = ($ &,
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Query space as a convex shape

Gif by Todd Will

Every unit vector $
is mapped to $ ⋅ '($)



• Example: ! ", $ = "$ &

' $ = ($ &,
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Query space as a convex shape

Gif by Todd Will

Every unit vector $
is mapped to $ ⋅ '($)

The result is the Ellipsoid 
,- = $ ∈ ℝ0 ' $ ≤ 1
= {$ ∈ ℝ0 ∣ 567$ ≤ 1}

where ( = 9567 is the SVD of :, 
and we have an exact “coreset” 
($ = 9567$ = 567$
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From Sensitivity Lens

!(#,%)
'(%) =

#% )

*% ) = #%
*%

+
= ,-./%

0-./%

+

= ,-./%
-./%

+
= 1 ⋅ -./%

-./%

+
≤ 1 +

4
567

8
15

+ = 9 :
+ = ;



• Example: ! ", $ = "$
& $ = '$ (
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The general case

• Every unit vector $ is mapped to $ ⋅ & $
• The result is a convex shape

*+ = $ ∈ ℝ. & $ ≤ 1
= {$ ∈ ℝ. ∣ 3$ ( ≤ 1}

Complexity > 5. > 5
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Theorem (John’s Ellipsoid)

! " ~ $" = | '()" |

• Every convex body 
contains an ellipsoid *+
such that $ contains it.

$
,

$

• For a $ ∈ ℝ+×0 and 
every " ∈ ℝ+ ∶

• We define 2 = 3'() as the f-SVD of P
• Cons: (i) only d-approximation

(ii) not subset of input point set 2
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From Sensitivity Lens
!(#,%)
'(%) =

|#%|
*% +

= |#%|
,-./%

+
≈ |0-./%|
-./%

1
≤ 3 4

5
674

8
3_: 4 =?
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Sensitivity for convex optimization

• We want to minimize/answer

! " ~$
%∈'

( ), "

• ( ), " ~+ )"

• , ⋅ ( ), " ~( ), , ⋅ "
• Otherwise, we use level sets for ./
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Main Theorem [F., Tukan]

The sensitivity of a point ! ∈ # is at most

max'
( !, *
+ * ≤-

./0

1
((!, 3405.)

and the total sensitivity (~size of coreset):

-
7∈8

9 ! ∈ :;(0)
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Proof Sketch - sensitivity

! ", $
% $ ~! ", $

'$ ~! ", $
'$ = ! )', '*+,

~- ), ≤ - ) / ≤ - ) +

= - 0
12+

3
)41 ~0

12+

3
-( )41 )

~0
12+

3
! )', '*+41 =0

12+

3
! ", '*+41

, = '$
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Proof Sketch – total sensitivity

!
"∈$

!
%&'

(
)(+, -.'/%) =!

%&'

(
!
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)(+, -.'/%)
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How do we compute the ellipsoid E?

! " ~ $" = | '()" |

$

*+ = " ∈ ℝ. ! " ≤ 1

Only using oracle membership.



• In control space we know start & destination 
configurations

• Can only ask boolean queries regarding 
feasible positions

• As in Battleships (game)
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Path Planning in the Dark



• We want minimum number of queries for 
maximum approximation error

• Existing algorithms have no guarantee for 
optimality 

• Approximation by convex polygons
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Path Planning in the Dark
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Path Planning
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Our AlgorithmRRT



Open Problems
• More Coresets 

- Deep learning, Decision trees, Sparse data
- Robotics: Optimal 3D Navigation and Mapping

• Private Coresets, [STOC’11, with Fiat et al.]
• Homomorphic Encryption Coresets

[with A. Akavia, H. Shaul]
• Generic software library for robotics & big data

- Coresets on Demand on the cloud
• Sensor Fusion (GPS+Video+Audio+Text+..) 
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! − Segment Queries
Input: d-dimensional signal P over time

1 2 3 4 5 6 7 8 9 10 11 t
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Coreset for k-means
[Feldman, Sohler, Monemizadeh, SoCG’07]

Coreset for !-means can be computed by 
choosing points from the distribution:

sensitivity(*) = ,-./(0,2∗)
∑56 ,-./(07,2∗)

+ 9
:5

;0 = number of points in the cluster of p

<∗ = k-means of P

|C|= =⋅,
?@
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Or approximation [SoCg07, Feldma, Sharir, Fiat]
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The chicken-and-egg problem

1. We need approximation to compute the
coreset

2. We compute coreset to get a fast 
approximation to a problem

Lee-ways: 
I. Bi-criteria approximation
II. Heuristics
III. polynomial time reduced to linear time 
by the merge-reduce tree



Input: d-dimensional signal P over time
Query: k segments over time

1 2 3 4 5 6 7 8 9 10 11 t
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! − Segment Queries

k-Piecewise linear function f over t



Input: d-dimensional signal P over time
Query: k segments over time
Output: Sum of squared distances from P

! − Segment Queries

1 2 3 4 5 6 7 8 9 10 11 t

10 11p =

10 10|| (10) ||p f-
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cost 0, 2 : = 5
6
‖2(9) − ;6‖<



Observation:
No small coreset ! ⊂ # exists 
for k-segment queries



Input P: n points on the x-axis

1 2 3 4 6 7 8 9 10 11 t5



1 2 3 4 6 7 8 9 10 11 t5

Coreset C: all points except one 

Input P: n points on the x-axis



Input P: n points on the x-axis

Coreset C: all points except one 

Query f:     covers all except this one

1 2 3 4 6 7 8 9 10 11 t5



1 2 3 4 6 7 8 9 10 11 t
5|| (5) ||p f-

5

Input P: n points on the x-axis

Coreset C: all points except one 

Query f:     covers all except this one

Cost(&, () > 0

Cost(*, () = 0



Input P: n points on the x-axis

Coreset C: all points except one 

Query f:     covers all except this one

Cost(&, () > 0 Unbounded factor 
approximation

1 2 3 4 6 7 8 9 10 11 t
5|| (5) ||p f-

5

Cost(*, () = 0



For every point p: 
Sensitivity(p) =max$∈&

'()*(,,$)
∑01 '()*(,2,$)

= 1

Total sensitivities: n



Observation: 
Points on a segment can be stored  by 
the two indexes of their end-points

1 2 3 4 6 7 8 9 10 11 t5



1 2 3 4 5 6 7 8 9 10 11 t

Observation: 
Points on a segment can be stored  by 
the two indexes of their end-points
and the slope of the segment



1 2 3 4 5 6 7 8 9 10 11 t

Observation: 
Points on a segment can be stored  by 
the two indexes of their end-points
and the slope of the segment



Definition: Coreset
A weighted set ' ⊂ ) such that 
for every k-segment f :

cost ), , ~ costw ', ,

1 2 3 4 5 6 7 8 9 10 11 t
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Surprising Applications

1.(1-epsilon) approximations:
Heuristics work better on coresets

2.Running constant factor on epsilon-
coresets helps

3.Coreset for one problem is good for 
a lot of unrelated problems

4.Coreset for O(1) points
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Implementation 

• The worst case and sloppy (constant) analysis is not 
so relevant

• In Thoery:
a random sample of size 1/# yields (1 + #)
approximation with probability at least 1 − (.
In Practice: 
Sample s points, output the 
approximation # and its distribution

• Never implement the algorithm as explained in the 
paper.
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q



          

far( P ; q)

q



          

The fathes t point from every query q 2 R

is a red point



          

The fa thes t point from every query q 2 Rd

is a red point



          

C := f c1 ; c2g is a coreset for P

c1 c2

The fa thes t point from every query q 2 Rd

is a red point



Compressed Sensing
Sketches
Property Testing

Coreset Techniques



87ICRA’14 (With Rus, Paul and Newman)


