Provable Real-Time Learning
with applications to Robotics

Murad Tukan Dan Feldman

Robotics & Big Data Lab

G

19N NV NN NN NV NN
University of Haifa University of Haifa

How to find a battleship

- A "sea" of M squares which contains

(at some unknown location) a “battleship” of K squares.
- Both the sea and the battleship are rectangular shape.

- Find the battleship by probing at least one of its squares.

O 00 N OO o s W -

X X

-
o

Path Planning in the Dark

* |n control space we know start & destination

configurations

: .
+ Can only ask Boolean queries regarding =

feasible positions
* As in Battleships (game), Piano Mover,

* or Drones in a crowded supermarket

BlgData AT TIIYIIYY

* Volume: huge amount n of data points
* Variety: high dimensional d space
* Velocity: data arrive in real-time

Need to support:

e Streaming (one pass, logarithmic memory)

e Distributed data (on cloud)

* Simple computations (embarrassingly parallel)
* No assumption on order of points

Big Data Computation model
* = Streaming + Parallel computation

* Input: infinite stream of vectors

* n = vectors seen so far

* ~logn memory

* M processors

* ~log (n)/M insertion time per point
(Embarrassingly parallel)

Focus o Msummarization

Less:
CPU Time
Dev. Time
Memory
Energy
Comm.

$$9, ...

Example Coresets

= Deep Learning [F, Tukan, Kener, To appear]
" Graph Summarization [F, Sedat, Rus, ICML"17]

" Mixture of Gaussians JMLR’17
= |SA/PCA/SVD NIPS'16
= k-Means , SDM’16
= Non-Negative Matrix Factorization |
KDD15
= Robots Localization ICRA’15
= Robots Coverage ICRA’13
= Segmentation NIPS 14

= k-Line Means FOCS'06

Naive Uniform Sampling

Naive Uniform Sampling

> I Small cluster
) a @aQ is missed

Q
@ o Q
Sample a set U of m points uniformly

< High variance

Simplest coreset definition

Let

P be aset, called point set

X be aset, called query set

* cost(P, x): maps every query x € X into a non-negative number

Foragivene > 0,thesetC € Pisa
core-set if for every x € X we have
cost(P, x)~cost(C, x)

”

up to (1 + €) approximation factor

10

From Big Data to Small Data

Suppose that we can compute such a corset C of size

1 .

. for every set P of n points
* intimen?,
e off-line, non-parallel, non-streaming algorithm

: \\
: <
!

A
y
41
—t10
Lo
@
[J [J @ [J
@
@
L5 ® [J
@
)
'f ‘\
L d
L
L
il 1 2 3 4 s 6 7 8 9 10 11 4

.2 . .
Read the first - streaming points and reduce them

5
L] 1 L] L] L] L] 2
into — weighted points in time (—)

€ €

1 + € corset for P;

A

2 : :
Read the next . streaming point and reduce them

5
L] 1 L] L] L] L] 2
into — weighted points in time (—)

€ €

1 + € corset for P, 1 + € corset for P,

a1

il

Merge the pair of e-coresets into an e-corset
2 . .
of . weighted points

1 + e-corset for P; U P,

/b

a1

Delete the pair of original coresets from memory

1 + e-corset for P; U P,

2 . L1
Reduce the . weighted points into . weighted
points by constructing their coreset

1 + e-corset for
1 + e-corset for P; U P,

2 . L1
Reduce the . weighted points into . weighted
points by constructing their coreset

1 + e-corset for
1 + e-corset for P; U P,

=(1 + €)*-corset for P; U P,

(1 + €)?-corset for P, U P,

(1 + €)-corset for P,

(1 + €)?-corset for P, U P,

(1 + €)-corset for P; (1 + €)-corset for P,

(1 + €)*-corset for P, U P, (1 + €)-corset for P; U P,

(1 + €)*-corset for P, U P, (1 + €)*-corset for P; U P,

(1 + €)?-coreset for |,

P,UP,UP;UP,

(1 + ¢)3-coreset for |,

P,UP,UP;UP,

Size of Storage (# of doubles)

107

o

O

o

Coreset
Entire Input

o)}
T

(%3]
T

~
T

Size of Input

10° 2,688,000

Parallel Computation

/]

Parallel Computation

Parallel Computation

Run off-line
algorithm
on corset

using single = ///%g/?

computer

Parallel+ Streaming Computation

y‘

3 ¥

29

Coresets for convex optimization

A generic framework for learning kernel
* E.g: Logistic regression,
- PCA/SVD with outliers,
- Numerous kernels in Machine learning
Main tool:
generic-SVD via coreset for John Ellipsoid
* Relation to obstacle detection
and path planning

Related Work

* Clarkson (SODA’2005)

— Approximation for L, regression using
weak coreset (only for off-line optimization)

* A. Dasgupta, P.Drineas, B. Harb, R. Kumar,
M. Mahoney (SODA’2008)

Weak coreset for L,, regression
* LaValle & Kuffmer, RRT trees (1998)

Heuristics for path planning using sampling

Theorem

Suppose that o tangberg
cost(P,x) =) w(p)k(p,x)
pEP

where k:PxX — |0, o).

A sample C € P from the distribution

k(p,x)
Y k(p', x)

dimension of X

sensitivity(p) = max

is a coreset if |C|~ - X.p sensitibity (p)

€

Importance Weights

q Sensitivity(p) *

. M Sensitivity(p)
Sampling distribution Weights

33

Sensitivity for convex optimization

We want to minimize/estimate

f(x)~cost(P,x) = z k(p,x)

peEP
over x € X = R%

where fis convex

34

Query space as a convex shape
e Example: k(p,x) = |px|?
2
fx) = |lPx||",

Every unit vector x
is mapped to x - f(x)

¥

3t

2t
”TH"
N w At X
-25

-35

Gif by Todd Will -

Query space as a convex shape
e Example: k(p,x) = |px|?
2
fx) = |lPx||",

Every unit vector x
is mapped to x - f(x)

The result is the Ellipsoid

Gif by Todd Will

= Xe={xeRY|f(x) <1}

={x e R? | ||DVTx]|| < 1}

where P = UDV T is the SVD of 4,
and we have an exact “coreset”

||Px|| = [lUDVTx|| = ||IDVTx]|

From Sensitivity Lens

k(x) _ IpxI* _ | _px
o |iexl|® x|
2
_ ubvTx i
“DVTx”

2

n
D Il = |1} = a
=1

The general case
* Example: k(p,x) = |px|
fx) = |IPx]|,

* Every unit vector x is mapped to x - f(x)
 The result is a convex shape

Xr={xeR*|f(x) <1}
e = {xeR? | ||Ax||, < 1

' 5 Complexity > n¢ > n

‘a_\n---u ._---"',-“' 3 8

Theorem (John’s Ellipsoid)

* Every convex body
. . ., E
contains an ellipsoid -

such that E contains it. fold

e ForaE € R4 gnd
every x € R% :

f)~||Ex|| = [IDVTx|]

« We define P = UDV?' as the f-SVD of P
e Cons: (i) only d-approximation
(ii) not subset of input point set P

39

From Sensitivity Lens

k) _ _Ipxl __Ipxl __ ubVZa] < |lull|,
feo)y |IPxl], “UDVTx“l “DVTxH -

n
> il =
1=1

Sensitivity for convex optimization

 We want to minimize/answer

FGO~) k()

pEP
* k(p,x)~g(lpx|)

* a-k(p,x)~k(p,a-x)
e Otherwise, we use level sets for Xr

41

Main Theorem [F., Tukan]

The sensitivity of a point p € P is at most

d
k(p,x) _
max 00 S;k(p,E le))

and the total sensitivity (~size of coreset):

> s(p) € d°0

peEP

Proof Sketch - sensitivity

k(p,x) k(p,x) X\ _ 1
fG |IEx]| k(p’\\ExH)_k(”E’E)

~g(\;in < g(\uc\lz) < g(lul;) I
=9 (z\uei\) "'2 g(lue;|) -
Ni=1 =1
~ Y k(uE,E~te;)) =) k(p,E le))
2 2

Proof Sketch — total sensitivity

ZZ"@' Fle;)= ZZk(zo,

pEP 1= =1 peP

. Ef(E-lei%ZUE E7e |~
di=1 =1

Z“eiH =d

=1

How do we compute the ellipsoid E?

Xr={xeR*|f(x) <1}

/

feO~||Ex|| = |IDVTx]|

Only using oracle membership.

45

Path Planning in the Dark

* |n control space we know start & destination
configurations

* Can only ask boolean queries regarding
feasible positions

* As in Battleships (game) ale]clole|r|aln

X X

o o N o L5 I I) N | -

-
o

Path Planning in the Dark

 We want minimum number of queries for
maximum approximation error

* Existing algorithms have no guarantee for
optimality

e Approximation by convex polygons

47

Path Planning

¥
A

(a) Epsilon grid
sampling; First
1teration

Om

(d) Applying "Epsilon
Star" on the transform
space

’
v -

(b) Epsilon grid
sampling; Sec-
ond iteration

""""

=

(c) d** approxi-
mation to John
Ellipsoid

(e) 14 € approx-
imation to the
real convex bod-

1€5

49

s

RRT Our Algorithm

IR .

,_E,.
ﬁ

Open Problems

<
More Coresets

- Deep learning, Decision trees, Sparse data
- Robotics: Optimal 3D Navigation and Mapping

Private Coresets,
Homomorphic Encryption Coresets
[with A. Akavia, H. Shaul]

Generic software library for robotics & big data

- Coresets on Demand on the cloud

Sensor Fusion (GPS+Video+Audio+Text+..)

51

k — Segment Queries

Input: d-dimensional sighal P over time

Coreset for k-means

Coreset for k-means can be computed by
choosing points from the distribution:

dist(p,q™) 1
2pr dist(pr,q*) Ny
q" = k-means of P

sensitivity(p) =

n, = number of points in the cluster of p

k-d
|Cl=—

€2

Coreset for k-means

Coreset for k-means can be computed by
choosing points from the distribution:

dist(p,q”) 1
Zp, dist(p’,q™) Ny
q* — k'means Of P Or approximation [SoCg07, Feldma, Sharir, Fiat]

sensitivity(p) =

n, = number of points in the cluster of p

k-d
|Cl=—

€2

Coreset for k-means

Coreset for k-means can be computed by
choosing points from the distribution:

dist(p,q”) 1
Zp, dist(p’,q™) Ny
q* — k'means Of P Or approximation [SoCg07, Feldma, Sharir, Fiat]

sensitivity(p) =

n, = number of points in the cluster of p

k
_ &‘ k'(E) [SODA’13, Feldman, Schmidt, ..]
|Cl=%;

€2

Coreset for k-means

Coreset for k-means can be computed by
choosing points from the distribution:

dist(p,q™) 1
2pr dist(pr,q*) Ny
q" = k-means of P

sensitivity(p) =

n, = number of points in the cluster of p

k-d
|Cl=—

€2

Coreset for k-means

Coreset for k-means can be computed by
choosing points from the distribution:

dist(p,q”) 1
Zp, dist(p’,q™) Ny
q* — k'means Of P Or approximation [SoCg07, Feldma, Sharir, Fiat]

sensitivity(p) =

n, = number of points in the cluster of p

k-d
|Cl=—

€2

Coreset for k-means

Coreset for k-means can be computed by
choosing points from the distribution:

dist(p,q”) 1
Zp, dist(p’,q™) Ny
q* — k'means Of P Or approximation [SoCg07, Feldma, Sharir, Fiat]

sensitivity(p) =

n, = number of points in the cluster of p

k-d
|Cl=—

€2

Coreset for k-means

Coreset for k-means can be computed by
choosing points from the distribution:

dist(p,q”) 1
Zp, dist(p’,q™) Ny
q* — k'means Of P Or approximation [SoCg07, Feldma, Sharir, Fiat]

sensitivity(p) =

n, = number of points in the cluster of p

k
_ &‘ k'(E) [SODA’13, Feldman, Schmidt, ..]
|Cl=%;

€2

The chicken-and-egg problem

1. We need approximation to compute the
coreset

2. We compute coreset to get a fast
approximation to a problem

Lee-ways:
|. Bi-criteria approximation
Il. Heuristics
Ill. polynomial time reduced to linear time
by the merge-reduce tree

60

k — Segment Queries

Input: d-dimensional sighal P over time
Query: k segments over time

/\/ \

9 10 11

A

>

k-Piecewise linear function f over t

k — Segment Queries

Input: d-dimensional signal P over time
Query: k segments over time
Output: Sum of squared distances from P

A =11
: | ||p — £Q0)

/ \/ \m»

cost(P,): = Z 1@ = eIl

Observation:
No small coreset C C P exists
for k-segment queries

Input P:

n points on the x-axis

Input P:

Coreset C:

n points on the x-axis

all points except one

Input P: n points on the x-axis

Coreset C: all points except one

Query f: covers all except this one

Input P: n points on the x-axis

Coreset C: all points except one

Query f: covers all except this one
Cost(P,f) >0
Cost(C,f)=0

I s = f ()]

Input P: n points on the x-axis

Coreset C: all points except one

Query f: covers all except this one

Cost(P,f) >0 Unbounded factor

Cost(C,f) =0 = approximation

For every point p:

. dist(p,q)
Sensitivit = ma =
Vi) ?EQX Ypr dist(p’,q)

Total sensitivities: n

Observation:
Points on a segment can be stored by
the two indexes of their end-points

Observation:

Points on a segment can be stored by
the two indexes of their end-points
and the slope of the segment

Observation:

Points on a segment can be stored by
the two indexes of their end-points
and the slope of the segment

A

—o
ﬁﬂﬂ_@ t

12 3 4 5 6 7T 8 9 10

Definition: Coreset

A weighted set C &@ such that
for every k-segment f :

cost(P,f) ~ cost, (C,f)

A Yy P =11 A y
10 L 4 H
-+10 I 1= fQ0)] 1
9 ! ~ -9 [¢
o | “
o 7/ \° { “Na 00 ¢ \
‘/ ¥ / .
: o .
t d 1 2 3 4 5 6 7 11
> _— —
Dl ® = pell > w) - If@ - pel

t pPt€C

Surprising Applications

1.(1-epsilon) approximations:
Heuristics work better on coresets

2.Running constant factor on epsilon-
coresets helps

3.Coreset for one problem is good for
a lot of unrelated problems

4.Coreset for O(1) points

Implementation

The worst case and sloppy (constant) analysis is not
so relevant

In Thoery:
a random sample of size 1 /¢ yields (1 + €)

approximation with probability at least 1 — 6.
In Practice:

Sample s points, output the
approximation € and its distribution

Never implement the algorithm as explained in the
paper.

75

Coreset for k-means

Coreset for k-means can be computed by
choosing points from the distribution:

dist(p,q™) 1
2pr dist(pr,q*) Ny
q" = k-means of P

sensitivity(p) =

n, = number of points in the cluster of p

k-d
|Cl=—

€2

Coreset for k-means

Coreset for k-means can be computed by
choosing points from the distribution:

dist(p,q”) 1
Zp, dist(p’,q™) Ny
q* — k'means Of P Or approximation [SoCg07, Feldma, Sharir, Fiat]

sensitivity(p) =

n, = number of points in the cluster of p

k-d
|Cl=—

€2

Coreset for k-means

Coreset for k-means can be computed by
choosing points from the distribution:

dist(p,q”) 1
Zp, dist(p’,q™) Ny
q* — k'means Of P Or approximation [SoCg07, Feldma, Sharir, Fiat]

sensitivity(p) =

n, = number of points in the cluster of p

k-d
|Cl=—

€2

Coreset for k-means

Coreset for k-means can be computed by
choosing points from the distribution:

dist(p,q”) 1
Zp, dist(p’,q™) Ny
q* — k'means Of P Or approximation [SoCg07, Feldma, Sharir, Fiat]

sensitivity(p) =

n, = number of points in the cluster of p

k
_ &‘ k'(E) [SODA’13, Feldman, Schmidt, ..]
|Cl=%;

€2

Coreset for Enclosing Balls P C R

Coreset for Enclosing Balls P C R

Coreset for Enclosing Balls P C R

Coreset for Enclosing Balls P C R
The fathest pomt from every query q 2 R

1s a red point

Coreset for Enclosing Balls P C R
The fathest point from every query q 2 Rd

1s a red point

Coreset for Enclosing Balls P C R
The fathest pomt from every query q 2 Rd

1s a red point

C := fcy;cogis a coreset for P

Coreset Techniques

Computational Geometry
Coresets
Har-Peled, Agarwal, Sohler, Chen

Graph Theory
Sparsifiers
Batson, Speilman, Srivastava, ...

Matrix Approximation
Volume Sampling
Clarkson, Mahoney, Drineas ...

Combinatorial Geometry
e-nets, s-approximations
Haussler, Welzl, Alon, Matousek, Sharir,...

Statistics
Importance Sampling

Srinivasan, Ripley, . _\/\

PAC-Learning
e-sample Compressed Sensing

Vapnik, Chervonenkis, Valiant, Sketches
Property Testing

t
i
W T ‘
o .
v
4 g iia

APl &
‘Bﬁ!ﬁﬁ*ﬂlﬁ
L AN

T T
nvs goNDP de (TP L B
7 4 ﬁﬁﬂ. A [(FRE o LPIEID QLD

ICRA’14 (With Rus, Paul and Newman) 37

TG

