
Murad Tukan Dan Feldman

Provable Real-Time Learning
with applications to Robotics

Robotics & Big Data Lab

1

2

How to find a battleship

- A "sea" of M squares which contains
(at some unknown location) a “battleship” of K squares.
- Both the sea and the battleship are rectangular shape.
- Find the battleship by probing at least one of its squares.

• In control space we know start & destination
configurations

• Can only ask Boolean queries regarding
feasible positions

• As in Battleships (game), Piano Mover,
• or Drones in a crowded supermarket

3

Path Planning in the Dark

Big Data
• Volume: huge amount n of data points
• Variety: high dimensional d space
• Velocity: data arrive in real-time

Need to support:
• Streaming (one pass, logarithmic memory)
• Distributed data (on cloud)
• Simple computations (embarrassingly parallel)
• No assumption on order of points

Big Data Computation model
• = Streaming + Parallel computation
• Input: infinite stream of vectors
• ! = vectors seen so far
• ~log ! memory
• M processors
• ~log (n)/M insertion time per point
(Embarrassingly parallel)

5

Focus on optimization summarization

f() f()

Less:
CPU Time
Dev. Time
Memory
Energy
Comm.
$$$, …

Example Coresets
§ Deep Learning [F, Tukan, Kener, To appear]
§ Graph Summarization [F, Sedat, Rus, ICML’17]
§ Mixture of Gaussians [F, Krause, etc JMLR’17]
§ LSA/PCA/SVD [F, Rus, and Volkob, NIPS’16]
§ k-Means [F, Barger, SDM’16]
§ Non-Negative Matrix Factorization [F, Tassa,

KDD15]
§ Robots Localization [F, Cindy, Rus, ICRA’15]
§ Robots Coverage [F, Gil, Rus, ICRA’13]
§ Segmentation [F, Rosman, Rus, Volkob, NIPS’14]
§ ….
§ k-Line Means [F, Fiat, Sharir, FOCS’06]

Naïve Uniform Sampling

8

9

Naïve Uniform Sampling

Small cluster
is missed

Sample a set U of m points uniformly

ß High variance

10

Let
• ! be a set, called point set
• " be a set, called query set
• cost(!,)):maps every query) ∈ " into a non-negative number

For a given - > 0, the set 0 ⊆ ! is a
core-set if for every) ∈ " we have

cost !,) ~3456 0,)

up to (1 ± -) approximation factor

Simplest coreset definition

From Big Data to Small Data
Suppose that we can compute such a corset ! of size
"
for every set $ of n points
• in time %&,
• off-line, non-parallel, non-streaming algorithm

1 2 3 4 5 6 7 8 9 10 11 t

10

9

5

11
y

1 2 3 4 5 6 7 8 9 10 11 t

10 11p =

10 10|| (10) ||p f-

9

5

11
y

(10)f

~

1± *

Read the first !" streaming points and reduce them

into #" weighted points in time !
"
$

1 + ' corset for (#

Read the next !" streaming point and reduce them

into #" weighted points in time !
"
$

1 + ' corset for (!1 + ' corset for (#

Merge the pair of !-coresets into an !-corset
of "# weighted points

1 + !-corset for &' ∪ &"

Delete the pair of original coresets from memory

1 + #-corset for $% ∪ $'

Reduce the !
" weighted points into #" weighted

points by constructing their coreset

1 + &-corset for '# ∪ '!
1 + &-corset for

Reduce the !
" weighted points into #" weighted

points by constructing their coreset

1 + &-corset for '# ∪ '!
1 + &-corset for

= 1 + & !-corset for '# ∪ '!

1 + # $-corset for %& ∪ %$

1 + # -corset for %(

1 + # $-corset for %& ∪ %$

1 + # -corset for %(1 + # -corset for %)

1 + # $-corset for %& ∪ %$ 1 + # -corset for %(∪ %)

1 + # $-corset for %& ∪ %$ 1 + # $-corset for %(∪ %)

1 + # $-coreset for

%& ∪ %$ ∪ %(∪ %)

1 + # $-coreset for

%& ∪ %(∪ %$ ∪ %)

Parallel Computation

Parallel Computation

Parallel Computation
Run off-line
algorithm
on corset
using single
computer

29

Parallel+ Streaming Computation

30

• A generic framework for learning kernel
• E.g: Logistic regression,

- PCA/SVD with outliers,
- Numerous kernels in Machine learning

Main tool:
generic-SVD via coreset for John Ellipsoid

• Relation to obstacle detection
and path planning

Coresets for convex optimization

• Clarkson (SODA’2005)
– Approximation for !" regression using

weak coreset (only for off-line optimization)

• A. Dasgupta, P.Drineas, B. Harb, R. Kumar,
M. Mahoney (SODA’2008)

Weak coreset for !# regression

• LaValle & Kuffmer, RRT trees (1998)
Heuristics for path planning using sampling

31

Related Work

Theorem [Feldman, Langberg, STOC’11]

sensitivity p = max
-∈/

0(2, 4)

∑78 0(2′, 4)

is a coreset if : ~ <=>?@A=B@ BC /

D
⋅ ∑7 sensitibity(2)

Suppose that

cost I, 4 ≔ K
7∈L

M 2 0 2, 4

where 0: I×P → 0,∞ .

A sample : ⊆ I from the distribution

[F., Langberg]

Importance Weights

WeightsSampling distribution
33

!"#$%&%'%&()
1

!"#$%&%'%&()

34

Sensitivity for convex optimization

• We want to minimize/estimate

! " ~$%&' (, " = +
,∈.

/ 0, "

over " ∈ 1 = ℝ3,

where f is convex

• Example: ! ", $ = "$ &

' $ = ($ &,

35

Query space as a convex shape

Gif by Todd Will

Every unit vector $
is mapped to $ ⋅ '($)

• Example: ! ", $ = "$ &

' $ = ($ &,

36

Query space as a convex shape

Gif by Todd Will

Every unit vector $
is mapped to $ ⋅ '($)

The result is the Ellipsoid
,- = $ ∈ ℝ0 ' $ ≤ 1
= {$ ∈ ℝ0 ∣ 567$ ≤ 1}

where (= 9567 is the SVD of :,
and we have an exact “coreset”
($ = 9567$ = 567$

37

From Sensitivity Lens

!(#,%)
'(%) =

#%)

*%) = #%
*%

+
= ,-./%

0-./%

+

= ,-./%
-./%

+
= 1 ⋅ -./%

-./%

+
≤ 1 +

4
567

8
15

+ = 9 :
+ = ;

• Example: ! ", $ = "$
& $ = '$ (

38

The general case

• Every unit vector $ is mapped to $ ⋅ & $
• The result is a convex shape

*+ = $ ∈ ℝ. & $ ≤ 1
= {$ ∈ ℝ. ∣ 3$ (≤ 1}

Complexity > 5. > 5

39

Theorem (John’s Ellipsoid)

! " ~ $" = | '()" |

• Every convex body
contains an ellipsoid *+
such that $ contains it.

$
,

$

• For a $ ∈ ℝ+×0 and
every " ∈ ℝ+ ∶

• We define 2 = 3'() as the f-SVD of P
• Cons: (i) only d-approximation

(ii) not subset of input point set 2

40

From Sensitivity Lens
!(#,%)
'(%) =

|#%|
*% +

= |#%|
,-./%

+
≈ |0-./%|
-./%

1
≤ 3 4

5
674

8
3_: 4 =?

41

Sensitivity for convex optimization

• We want to minimize/answer

! " ~$
%∈'

(), "

• (), " ~+)"

• , ⋅ (), " ~(), , ⋅ "
• Otherwise, we use level sets for ./

42

Main Theorem [F., Tukan]

The sensitivity of a point ! ∈ # is at most

max'
(!, *
+ * ≤-

./0

1
((!, 3405.)

and the total sensitivity (~size of coreset):

-
7∈8

9 ! ∈ :;(0)

43

Proof Sketch - sensitivity

! ", $
% $ ~! ", $

'$ ~! ", $
'$ = !)', '*+,

~-), ≤ -) / ≤ -) +

= - 0
12+

3
)41 ~0

12+

3
-()41)

~0
12+

3
!)', '*+41 =0

12+

3
! ", '*+41

, = '$
'$

44

Proof Sketch – total sensitivity

!
"∈$

!
%&'

(
)(+, -.'/%) =!

%&'

(
!
"∈$

)(+, -.'/%)

=!
%&'

(
2 -.'/% ~!

%&'

(
- ⋅ -.'/% ~

!
%&'

(
/% = 5

45

How do we compute the ellipsoid E?

! " ~ $" = | '()" |

$

*+ = " ∈ ℝ. ! " ≤ 1

Only using oracle membership.

• In control space we know start & destination
configurations

• Can only ask boolean queries regarding
feasible positions

• As in Battleships (game)

46

Path Planning in the Dark

• We want minimum number of queries for
maximum approximation error

• Existing algorithms have no guarantee for
optimality

• Approximation by convex polygons

47

Path Planning in the Dark

48

Path Planning

49

50

Our AlgorithmRRT

Open Problems
• More Coresets

- Deep learning, Decision trees, Sparse data
- Robotics: Optimal 3D Navigation and Mapping

• Private Coresets, [STOC’11, with Fiat et al.]
• Homomorphic Encryption Coresets

[with A. Akavia, H. Shaul]
• Generic software library for robotics & big data

- Coresets on Demand on the cloud
• Sensor Fusion (GPS+Video+Audio+Text+..)

51

! − Segment Queries
Input: d-dimensional signal P over time

1 2 3 4 5 6 7 8 9 10 11 t

10

9

5

11
y

Coreset for k-means
[Feldman, Sohler, Monemizadeh, SoCG’07]

Coreset for !-means can be computed by
choosing points from the distribution:

sensitivity(*) = ,-./(0,2∗)
∑56 ,-./(07,2∗)

+ 9
:5

;0 = number of points in the cluster of p

<∗ = k-means of P

|C|= =⋅,
?@

Coreset for k-means
[Feldman, Sohler, Monemizadeh, SoCG’07]

Coreset for !-means can be computed by
choosing points from the distribution:

sensitivity(*) = ,-./(0,2∗)
∑56 ,-./(07,2∗)

+ 9
:5

;0 = number of points in the cluster of p

<∗ = k-means of P

|C|= =⋅,
?@

Or approximation [SoCg07, Feldma, Sharir, Fiat]

Coreset for k-means
[Feldman, Sohler, Monemizadeh, SoCG’07]

Coreset for !-means can be computed by
choosing points from the distribution:

sensitivity(*) = ,-./(0,2∗)
∑56 ,-./(07,2∗)

+ 9
:5

;0 = number of points in the cluster of p

<∗ = k-means of P

|C|= =⋅,
?@

=⋅ AB
?@

Or approximation [SoCg07, Feldma, Sharir, Fiat]

[SODA’13, Feldman, Schmidt, ..]

Coreset for k-means
[Feldman, Sohler, Monemizadeh, SoCG’07]

Coreset for !-means can be computed by
choosing points from the distribution:

sensitivity(*) = ,-./(0,2∗)
∑56 ,-./(07,2∗)

+ 9
:5

;0 = number of points in the cluster of p

<∗ = k-means of P

|C|= =⋅,
?@

Coreset for k-means
[Feldman, Sohler, Monemizadeh, SoCG’07]

Coreset for !-means can be computed by
choosing points from the distribution:

sensitivity(*) = ,-./(0,2∗)
∑56 ,-./(07,2∗)

+ 9
:5

;0 = number of points in the cluster of p

<∗ = k-means of P

|C|= =⋅,
?@

Or approximation [SoCg07, Feldma, Sharir, Fiat]

Coreset for k-means
[Feldman, Sohler, Monemizadeh, SoCG’07]

Coreset for !-means can be computed by
choosing points from the distribution:

sensitivity(*) = ,-./(0,2∗)
∑56 ,-./(07,2∗)

+ 9
:5

;0 = number of points in the cluster of p

<∗ = k-means of P

|C|= =⋅,
?@

Or approximation [SoCg07, Feldma, Sharir, Fiat]

Coreset for k-means
[Feldman, Sohler, Monemizadeh, SoCG’07]

Coreset for !-means can be computed by
choosing points from the distribution:

sensitivity(*) = ,-./(0,2∗)
∑56 ,-./(07,2∗)

+ 9
:5

;0 = number of points in the cluster of p

<∗ = k-means of P

|C|= =⋅,
?@

=⋅ AB
?@

Or approximation [SoCg07, Feldma, Sharir, Fiat]

[SODA’13, Feldman, Schmidt, ..]

60

The chicken-and-egg problem

1. We need approximation to compute the
coreset

2. We compute coreset to get a fast
approximation to a problem

Lee-ways:
I. Bi-criteria approximation
II. Heuristics
III. polynomial time reduced to linear time
by the merge-reduce tree

Input: d-dimensional signal P over time
Query: k segments over time

1 2 3 4 5 6 7 8 9 10 11 t

10

9

5

11
y

! − Segment Queries

k-Piecewise linear function f over t

Input: d-dimensional signal P over time
Query: k segments over time
Output: Sum of squared distances from P

! − Segment Queries

1 2 3 4 5 6 7 8 9 10 11 t

10 11p =

10 10|| (10) ||p f-
9

5

11
y

(10)f

cost 0, 2 : = 5
6
‖2(9) − ;6‖<

Observation:
No small coreset ! ⊂ # exists
for k-segment queries

Input P: n points on the x-axis

1 2 3 4 6 7 8 9 10 11 t5

1 2 3 4 6 7 8 9 10 11 t5

Coreset C: all points except one

Input P: n points on the x-axis

Input P: n points on the x-axis

Coreset C: all points except one

Query f: covers all except this one

1 2 3 4 6 7 8 9 10 11 t5

1 2 3 4 6 7 8 9 10 11 t
5|| (5) ||p f-

5

Input P: n points on the x-axis

Coreset C: all points except one

Query f: covers all except this one

Cost(&, () > 0

Cost(*, () = 0

Input P: n points on the x-axis

Coreset C: all points except one

Query f: covers all except this one

Cost(&, () > 0 Unbounded factor
approximation

1 2 3 4 6 7 8 9 10 11 t
5|| (5) ||p f-

5

Cost(*, () = 0

For every point p:
Sensitivity(p) =max$∈&

'()*(,,$)
∑01 '()*(,2,$)

= 1

Total sensitivities: n

Observation:
Points on a segment can be stored by
the two indexes of their end-points

1 2 3 4 6 7 8 9 10 11 t5

1 2 3 4 5 6 7 8 9 10 11 t

Observation:
Points on a segment can be stored by
the two indexes of their end-points
and the slope of the segment

1 2 3 4 5 6 7 8 9 10 11 t

Observation:
Points on a segment can be stored by
the two indexes of their end-points
and the slope of the segment

Definition: Coreset
A weighted set ' ⊂) such that
for every k-segment f :

cost), , ~ costw ', ,

1 2 3 4 5 6 7 8 9 10 11 t

10

9

5

11
y

1 2 3 4 5 6 7 8 9 10 11 t

10 11p =

10 10|| (10) ||p f-

9

5

11
y

(10)f

~

/
0

, 1 − 31 /
45∈7

8 30 ⋅ , 1 − 31

74

Surprising Applications

1.(1-epsilon) approximations:
Heuristics work better on coresets

2.Running constant factor on epsilon-
coresets helps

3.Coreset for one problem is good for
a lot of unrelated problems

4.Coreset for O(1) points

75

Implementation

• The worst case and sloppy (constant) analysis is not
so relevant

• In Thoery:
a random sample of size 1/# yields (1 + #)
approximation with probability at least 1 − (.
In Practice:
Sample s points, output the
approximation # and its distribution

• Never implement the algorithm as explained in the
paper.

Coreset for k-means
[Feldman, Sohler, Monemizadeh, SoCG’07]

Coreset for !-means can be computed by
choosing points from the distribution:

sensitivity(*) = ,-./(0,2∗)
∑56 ,-./(07,2∗)

+ 9
:5

;0 = number of points in the cluster of p

<∗ = k-means of P

|C|= =⋅,
?@

Coreset for k-means
[Feldman, Sohler, Monemizadeh, SoCG’07]

Coreset for !-means can be computed by
choosing points from the distribution:

sensitivity(*) = ,-./(0,2∗)
∑56 ,-./(07,2∗)

+ 9
:5

;0 = number of points in the cluster of p

<∗ = k-means of P

|C|= =⋅,
?@

Or approximation [SoCg07, Feldma, Sharir, Fiat]

Coreset for k-means
[Feldman, Sohler, Monemizadeh, SoCG’07]

Coreset for !-means can be computed by
choosing points from the distribution:

sensitivity(*) = ,-./(0,2∗)
∑56 ,-./(07,2∗)

+ 9
:5

;0 = number of points in the cluster of p

<∗ = k-means of P

|C|= =⋅,
?@

Or approximation [SoCg07, Feldma, Sharir, Fiat]

Coreset for k-means
[Feldman, Sohler, Monemizadeh, SoCG’07]

Coreset for !-means can be computed by
choosing points from the distribution:

sensitivity(*) = ,-./(0,2∗)
∑56 ,-./(07,2∗)

+ 9
:5

;0 = number of points in the cluster of p

<∗ = k-means of P

|C|= =⋅,
?@

=⋅ AB
?@

Or approximation [SoCg07, Feldma, Sharir, Fiat]

[SODA’13, Feldman, Schmidt, ..]

q

far(P ; q)

q

The fathes t point from every query q 2 R

is a red point

The fa thes t point from every query q 2 Rd

is a red point

C := f c1 ; c2g is a coreset for P

c1 c2

The fa thes t point from every query q 2 Rd

is a red point

Compressed Sensing
Sketches
Property Testing

Coreset Techniques

87ICRA’14 (With Rus, Paul and Newman)

