On Learning Powers of Poisson Binomial Distributions and Graph Binomial Distributions

Dimitris Fotakis

Yahoo Research NY and National Technical University of Athens

Joint work with **Vasilis Kontonis** (NTU Athens), **Piotr Krysta** (Liverpool) and **Paul Spirakis** (Liverpool and Patras)

Distribution Learning

- Draw samples from unknown distribution *P* (e.g., # copies of NYT sold on different days).
- Output distribution Q that ε-approximates the density function of P with probability ≥ 1 − δ.
- Goal is to optimize #samples(ε, δ) (computational efficiency also desirable).

Distribution Learning

- Draw samples from unknown distribution P (e.g., # copies of NYT sold on different days).
- Output distribution Q that ε-approximates the density function of P with probability ≥ 1 − δ.
- Goal is to optimize #samples(ε, δ) (computational efficiency also desirable).

Total Variation Distance

$$d_{\rm tv}(P,Q) = \frac{1}{2} \int_{\Omega} |p(x) - q(x)| \, \mathrm{d}x$$

Distribution Learning: (Small) Sample of Previous Work

- Learning any unimodal distirbution with $O(\log N/\epsilon^3)$ samples [Birgé, 1983]
- Sparse cover for Poisson Binomial Distributions (PBDs), developed for PTAS for Nash equilibria in anonymous games [Daskalakis, Papadimitriou, 2009]
- Learning PBDs [Daskalakis, Diakonikolas, Servedio, 2011] and sums of independent integer random variables [Dask., Diakon., O'Donnell, Serv. Tan, 2013]
- Poisson multinomial distributions [Daskalakis, Kamath, Tzamos, 2015], [Dask., De, Kamath, Tzamos, 2016], [Diakonikolas, Kane, Stewart, 2016]
- Estimating the support and the entropy with $O(N/\log N)$ samples [Valiant, Valiant, 2011]

Find \hat{p} s.t. $|pn - \hat{p}n| \leq \varepsilon \sqrt{p(1-p)n}$, or equivalently:

$$|p-\hat{p}| \leq \varepsilon \sqrt{\frac{p(1-p)}{n}} = \operatorname{err}(n, p, \varepsilon)$$

Then, $d_{\mathrm{tv}}(B(n,p),B(n,\hat{p})) \leqslant \varepsilon$

Find \hat{p} s.t. $|pn - \hat{p}n| \leq \varepsilon \sqrt{p(1-p)n}$, or equivalently:

$$|p - \hat{p}| \leq \varepsilon \sqrt{\frac{p(1-p)}{n}} = \operatorname{err}(n, p, \varepsilon)$$

Then, $d_{\mathrm{tv}}(B(n,p),B(n,\hat{p}))\leqslant \varepsilon$

Estimating Parameter p

- Estimator: $\hat{p} = \left(\sum_{i=1}^{N} s_i\right) / (Nn)$
- If $N = O(\ln(1/\delta)/\epsilon^2)$, Chernoff bound implies

 $\mathbb{P}[|p - \hat{p}| \leq \operatorname{err}(n, p, \varepsilon)] \geq 1 - \delta$

- Each X_i is an independent 0/1 Bernoulli trial with $\mathbb{E}[X_i] = p_i$.
- $X = \sum_{i=1}^{n} X_i$ is a PBD with probability vector $\boldsymbol{p} = (p_1, \dots p_n)$.
- X is close to (discretized) normal distribution (assuming known mean μ and variance σ²).
- If mean is small, X is close to Poisson distribution with $\lambda = \sum_{i=1}^{n} p_i$.

Learning Poisson Binomial Distributions

Birgé's algorithm for unimodal distributions: $O(\log n/\epsilon^3)$ samples.

Birgé's algorithm for unimodal distributions: $O(\log n/\epsilon^3)$ samples.

Distinguish "Heavy" and "Sparse" Cases [DaskDiakServ 11]

- Heavy case, $\sigma^2 \geqslant \Omega(1/\epsilon^2)$:
 - Estimate variance mean $\hat{\mu}$ and $\hat{\sigma}^2$ of X using $O(\ln(1/\delta)/\epsilon^2)$ samples.
 - (Discretized) $\operatorname{Normal}(\hat{\mu}, \hat{\sigma}^2)$ is ε -close to X.

Birgé's algorithm for unimodal distributions: $O(\log n/\epsilon^3)$ samples.

Distinguish "Heavy" and "Sparse" Cases [DaskDiakServ 11]

- Heavy case, $\sigma^2 \geqslant \Omega(1/\epsilon^2)$:
 - Estimate variance mean $\hat{\mu}$ and $\hat{\sigma}^2$ of X using $O(\ln(1/\delta)/\epsilon^2)$ samples.
 - (Discretized) Normal(μ̂, σ²) is ε-close to X.
- Sparse case, variance is small:
 - Estimate support: using $O(\ln(1/\delta)/\epsilon^2)$ samples, find *a*, *b* s.t. $b-a = O(1/\epsilon)$ and $\mathbb{P}[X \in [a, b]] \ge 1 - \delta/4$.
 - Apply Birge's algorithm to $X_{[a,b]}$ (# samples = $O(\ln(1/\epsilon)/\epsilon^3)$)

Birgé's algorithm for unimodal distributions: $O(\log n/\epsilon^3)$ samples.

Distinguish "Heavy" and "Sparse" Cases [DaskDiakServ 11]

- Heavy case, $\sigma^2 \geqslant \Omega(1/\epsilon^2)$:
 - Estimate variance mean $\hat{\mu}$ and $\hat{\sigma}^2$ of X using $O(\ln(1/\delta)/\epsilon^2)$ samples.
 - (Discretized) Normal(μ̂, σ²) is ε-close to X.
- Sparse case, variance is small:
 - Estimate support: using $O(\ln(1/\delta)/\epsilon^2)$ samples, find *a*, *b* s.t. $b-a = O(1/\epsilon)$ and $\mathbb{P}[X \in [a, b]] \ge 1 - \delta/4$.
 - Apply Birge's algorithm to $X_{[a,b]}$ (# samples = $O(\ln(1/\epsilon)/\epsilon^3)$)
- Using hypothesis testing, select the best approximation.

samples improved to $\tilde{O}(\ln(1/\delta)/\epsilon^2)$ (best possible even for binomials) Estimating $\boldsymbol{p} = (p_1, \dots p_n)$: $\Omega(2^{1/\epsilon})$ samples [Diak., Kane, Stew., 16]

Learning Sequences of Poisson Binomial Distributions

- $\mathcal{F} = (f_1, f_2, \dots, f_k, \dots)$ sequence of functions with $f_k : [0, 1] \rightarrow [0, 1]$ and $f_1(x) = x$.
- PBD $X = \sum_{i=1}^{n} X_i$ defined by $\boldsymbol{p} = (p_1, \dots, p_n)$.

Learning Sequences of Poisson Binomial Distributions

- $\mathcal{F} = (f_1, f_2, \dots, f_k, \dots)$ sequence of functions with $f_k : [0, 1] \rightarrow [0, 1]$ and $f_1(x) = x$.
- PBD $X = \sum_{i=1}^{n} X_i$ defined by $\boldsymbol{p} = (p_1, \dots, p_n)$.
- PBD sequence $X^{(k)} = \sum_{i=1}^{n} X_i^{(k)}$, where each $X_i^{(k)}$ is a 0/1 Bernoulli with $\mathbb{E}[X_i^{(k)}] = f_k(p_i)$.
- Learning algorithm selects k (possibly adaptively) and draws random sample from X^(k).

- $\mathcal{F} = (f_1, f_2, \dots, f_k, \dots)$ sequence of functions with $f_k : [0, 1] \rightarrow [0, 1]$ and $f_1(x) = x$.
- PBD $X = \sum_{i=1}^{n} X_i$ defined by $\boldsymbol{p} = (p_1, \dots, p_n)$.
- PBD sequence $X^{(k)} = \sum_{i=1}^{n} X_i^{(k)}$, where each $X_i^{(k)}$ is a 0/1 Bernoulli with $\mathbb{E}[X_i^{(k)}] = f_k(p_i)$.
- Learning algorithm selects k (possibly adaptively) and draws random sample from X^(k).
- Given F and sample access to (X⁽¹⁾, X⁽²⁾,..., X^(k),...), can we learn them all with less samples than learning each X^(k) separately?
- Simple and structured sequences, e.g., **powers** $f_k(x) = x^k$ (related to random coverage valuations and Newton identities).

- Set U of n items.
- Family $\mathcal{A} = \{A_1, \ldots, A_m\}$ random subsets of U.
- Item *i* is included in A_j independently with probability p_i.
- Distribution of # items included in union of k subsets,
 i.e., distribution of | ∪_{j∈[k]} A_j|
- Item *i* is included in the union with probability $1 (1 p_i)^k$
- # items in union of k sets is distributed as $n X^{(k)}$

PBD Powers Learning Problem

- Let $X = \sum_{i=1}^{n} X_i$ be a PBD defined by $\boldsymbol{p} = (p_1, \dots, p_n)$.
- $X^{(k)} = \sum_{i=1}^{n} X_i^{(k)}$ is the *k*-th PBD power of X defined by $p^k = (p_1^k, \dots, p_n^k)$.
- Learning algorithm that draws samples from selected powers and ε -approximates all powers of X with probability $\ge 1 \delta$.

• Estimator $\hat{p} = \left(\sum_{i=1}^{N} s_i\right) / (Nn)$. If p small, e.g., $p \leq 1/e$,

$$|p - \hat{p}| \leq \operatorname{err}(n, p, \varepsilon) \Rightarrow |p^k - \hat{p}^k| \leq \operatorname{err}(n, p^k, \varepsilon)$$

• Estimator $\hat{p} = \left(\sum_{i=1}^{N} s_i\right) / (Nn)$. If p small, e.g., $p \leq 1/e$,

$$|p - \hat{p}| \leq \operatorname{err}(n, p, \varepsilon) \Rightarrow |p^k - \hat{p}^k| \leq \operatorname{err}(n, p^k, \varepsilon)$$

• But if
$$p \approx 1 - \frac{1}{n}$$
,
 $p = 0.\underbrace{99\ldots9}_{\log n} \underbrace{458382}_{"value"}$

• Estimator $\hat{p} = \left(\sum_{i=1}^{N} s_i\right) / (Nn)$. If p small, e.g., $p \leq 1/e$,

$$|p - \hat{p}| \leq \operatorname{err}(n, p, \varepsilon) \Rightarrow |p^k - \hat{p}^k| \leq \operatorname{err}(n, p^k, \varepsilon)$$

• But if
$$p \approx 1 - \frac{1}{n}$$
,
 $p = 0.\underbrace{99\ldots9}_{\log n} \underbrace{458382}_{"value"}$

- Sampling from the first power does not reveal "right" part p, since error $\approx \sqrt{p(1-p)/n} \approx 1/n$.
- Not good enough to approximate all binomial powers (e.g., $n = 1000, p = 0.9995, 0.9995^{1000} \approx 0.6064, 0.9997^{1000} \approx 0.7407$)

• Estimator $\hat{p} = \left(\sum_{i=1}^{N} s_i\right) / (Nn)$. If p small, e.g., $p \leq 1/e$,

$$|p - \hat{p}| \leq \operatorname{err}(n, p, \varepsilon) \Rightarrow |p^k - \hat{p}^k| \leq \operatorname{err}(n, p^k, \varepsilon)$$

• But if
$$p \approx 1 - \frac{1}{n}$$
,
 $p = 0. \underbrace{99...9}_{\log n} \underbrace{458382}_{"value"}$

- Sampling from the first power does not reveal "right" part p, since error $\approx \sqrt{p(1-p)/n} \approx 1/n$.
- Not good enough to approximate all binomial powers (e.g., $n = 1000, p = 0.9995, 0.9995^{1000} \approx 0.6064, 0.9997^{1000} \approx 0.7407$)
- For $l = \frac{1}{\ln(1/p)}$, $p^l = 1/e$: sampling from l-power reveals "right" part.

Algorithm 1 Binomial Powers

- 1: Draw $O(\ln(1/\delta)/\varepsilon^2)$ samples from Bin(n,p) to obtain \hat{p}_1 .
- 2: Let $\hat{\ell} \leftarrow \lceil 1/\ln(1/\hat{p}_1) \rceil$.
- 3: Draw $O(\ln(1/\delta)/\epsilon^2)$ samples from $B(n, p^{\hat{\ell}})$ to get estimation \hat{q} of $p^{\hat{\ell}}$.
- 4: Use estimation $\hat{p} = \hat{q}^{1/\hat{\ell}}$ to approximate all powers of $\operatorname{Bin}(n, p)$.

• We assume that $p \leq 1 - \varepsilon^2/n$. If $p \geq 1 - \varepsilon^2/n^d$, we need $O(\ln(d) \ln(1/\delta)/\varepsilon^2)$ samples to learn the right power ℓ .

Question: Learning PBD Powers \Leftrightarrow Estimating $\boldsymbol{p} = (p_1, \dots, p_n)$?

- Lower bound of $\Omega(2^{1/\epsilon})$ for parameter estimation holds if we draw samples from selected powers.
- If *p_i*'s are well-separated, we can learn them exactly by sampling from powers.

- PBD defined by p with $n/(\ln n)^4$ groups of size $(\ln n)^4$ each. Group i has $p_i = 1 - \frac{a_i}{(\ln n)^{4i}}$, $a_i \in \{1, \dots, \ln n\}$.
- Given $(Y^{(1)}, \ldots, Y^{(k)}, \ldots)$ that is ε -close to $(X^{(1)}, \ldots, X^{(k)}, \ldots)$, we can find (e.g., by exhaustive search) $(Z^{(1)}, \ldots, Z^{(k)}, \ldots)$ where $q_i = 1 - \frac{b_i}{(\ln n)^{4i}}$ and ε -close to $(X^{(1)}, \ldots, X^{(k)}, \ldots)$.

- PBD defined by p with $n/(\ln n)^4$ groups of size $(\ln n)^4$ each. Group i has $p_i = 1 - \frac{a_i}{(\ln n)^{4i}}$, $a_i \in \{1, \dots, \ln n\}$.
- Given $(Y^{(1)}, \ldots, Y^{(k)}, \ldots)$ that is ε -close to $(X^{(1)}, \ldots, X^{(k)}, \ldots)$, we can find (e.g., by exhaustive search) $(Z^{(1)}, \ldots, Z^{(k)}, \ldots)$ where $q_i = 1 - \frac{b_i}{(\ln n)^{4i}}$ and ε -close to $(X^{(1)}, \ldots, X^{(k)}, \ldots)$.

• For each power
$$k = (\ln n)^{4i-2}$$
,
 $\left|\mathbb{E}[X^{(k)}] - \mathbb{E}[Z^{(k)}]\right| = \Theta(|a_i - b_i|(\ln n)^2)$ and
 $\left|\mathbb{V}[X^{(k)}] + \mathbb{V}[Z^{(k)}]\right| = O((\ln n)^3).$

- PBD defined by p with $n/(\ln n)^4$ groups of size $(\ln n)^4$ each. Group i has $p_i = 1 - \frac{a_i}{(\ln n)^{4i}}$, $a_i \in \{1, \dots, \ln n\}$.
- Given $(Y^{(1)}, \ldots, Y^{(k)}, \ldots)$ that is ε -close to $(X^{(1)}, \ldots, X^{(k)}, \ldots)$, we can find (e.g., by exhaustive search) $(Z^{(1)}, \ldots, Z^{(k)}, \ldots)$ where $q_i = 1 - \frac{b_i}{(\ln n)^{4i}}$ and ε -close to $(X^{(1)}, \ldots, X^{(k)}, \ldots)$.

• For each power
$$k = (\ln n)^{4i-2}$$
,
 $|\mathbb{E}[X^{(k)}] - \mathbb{E}[Z^{(k)}]| = \Theta(|a_i - b_i|(\ln n)^2)$ and $|\mathbb{V}[X^{(k)}] + \mathbb{V}[Z^{(k)}]| = O((\ln n)^3).$

• By sampling appropriate powers, we learn a_i exactly: $\Omega(n \ln \ln n/(lnn)^4)$ samples.

Parameter Learning through Newton Identities

$$\begin{pmatrix} 1 & & & \\ \mu_1 & 2 & & \\ \mu_2 & \mu_1 & 3 & \\ \vdots & \vdots & \ddots & \ddots & \\ \mu_{n-1} & \mu_{n-2} & \dots & \mu_1 & n \end{pmatrix} \begin{pmatrix} c_{n-1} \\ c_{n-2} \\ c_{n-3} \\ \vdots \\ c_0 \end{pmatrix} = \begin{pmatrix} -\mu_1 \\ -\mu_2 \\ -\mu_3 \\ \vdots \\ -\mu_n \end{pmatrix} \Leftrightarrow \mathbf{Mc} = -\mu,$$

where $\mu_k = \sum_{i=1}^n p_i^k$ and c_k are the coefficients of $p(x) = \prod_{i=1}^n (x - p_i) = x^n + c_{n-1}x^{n-1} + \ldots + c_0$.

Parameter Learning through Newton Identities

$$\begin{pmatrix} 1 & & & \\ \mu_1 & 2 & & \\ \mu_2 & \mu_1 & 3 & \\ \vdots & \vdots & \ddots & \ddots & \\ \mu_{n-1} & \mu_{n-2} & \dots & \mu_1 & n \end{pmatrix} \begin{pmatrix} c_{n-1} \\ c_{n-2} \\ c_{n-3} \\ \vdots \\ c_0 \end{pmatrix} = \begin{pmatrix} -\mu_1 \\ -\mu_2 \\ -\mu_3 \\ \vdots \\ -\mu_n \end{pmatrix} \Leftrightarrow \mathbf{Mc} = -\mu,$$

where $\mu_k = \sum_{i=1}^n p_i^k$ and c_k are the coefficients of $p(x) = \prod_{i=1}^n (x - p_i) = x^n + c_{n-1}x^{n-1} + \ldots + c_0$.

- Learn (approximately) μ_k 's by sampling from the first *n* powers.
- Solve system $Mc = -\mu$ to obtain \hat{c} : amplifies error by $O(n^{3/2}2^n)$
- Use Pan's root finding algorithm to compute |p̂_i − p_i| ≤ ε: requires accuracy 2^{O(-nmax{ln(1/ε),ln n})} in ĉ.

Parameter Learning through Newton Identities

$$\begin{pmatrix} 1 & & & \\ \mu_1 & 2 & & \\ \mu_2 & \mu_1 & 3 & \\ \vdots & \vdots & \ddots & \ddots & \\ \mu_{n-1} & \mu_{n-2} & \dots & \mu_1 & n \end{pmatrix} \begin{pmatrix} c_{n-1} \\ c_{n-2} \\ c_{n-3} \\ \vdots \\ c_0 \end{pmatrix} = \begin{pmatrix} -\mu_1 \\ -\mu_2 \\ -\mu_3 \\ \vdots \\ -\mu_n \end{pmatrix} \Leftrightarrow \mathbf{Mc} = -\mu,$$

where $\mu_k = \sum_{i=1}^n p_i^k$ and c_k are the coefficients of $p(x) = \prod_{i=1}^n (x - p_i) = x^n + c_{n-1}x^{n-1} + \ldots + c_0$.

- Learn (approximately) μ_k 's by sampling from the first *n* powers.
- Solve system $Mc = -\mu$ to obtain \hat{c} : amplifies error by $O(n^{3/2}2^n)$
- Use Pan's root finding algorithm to compute |p̂_i − p_i| ≤ ε: requires accuracy 2^{O(-nmax{ln(1/ε),ln n})} in ĉ.
- # samples = $2^{O(n \max\{\ln(1/\varepsilon), \ln n\})}$

- Class of PBDs where learning **powers** is easy but **parameter** learning is hard?
- If all $p_i \leq 1 \frac{\varepsilon^2}{n}$, can we learn all powers with $o(n/\varepsilon^2)$ samples?
- If O(1) different values in \boldsymbol{p} , can we learn all powers with $O(1/\epsilon^2)$ samples?

- Each X_i is an independent 0/1 Bernoulli trials with $\mathbb{E}[X_i] = p_i$.
- Graph G(V, E) where vertex v_i is active iff $X_i = 1$.
- Given G, learn distribution of # edges in subgraph induced by active vertices, i.e., X_G = ∑_{{vi,vj}}∈_E X_iX_j

- Each X_i is an independent 0/1 Bernoulli trials with $\mathbb{E}[X_i] = p_i$.
- Graph G(V, E) where vertex v_i is active iff $X_i = 1$.
- Given G, learn distribution of # edges in subgraph induced by active vertices, i.e., X_G = ∑_{{vi,vj}}∈_E X_iX_j
- G clique: learn # active vertices k (# edges is $\frac{k(k-1)}{2}$).
- G collection of disjoint stars K_{1,j}, j = 2,...,Θ(√n) with p_i = 1 if v_i is leaf: Ω(√n) samples are required.

Some Observations for Single *p*

- If p small and G is almost regular with small degree, X is close to Poisson distribution with λ = mp².
- Estimating p as $\hat{p} = \sqrt{\left(\sum_{i=1}^{N} s_i\right)/(Nm)}$ gives ε -close approximation if G is almost regular, i.e., if $\sum_{v} \deg_{v}^{2} = O(m^{2}/n)$.

Some Observations for Single *p*

- If p small and G is almost regular with small degree, X is close to Poisson distribution with $\lambda = mp^2$.
- Estimating p as $\hat{p} = \sqrt{\left(\sum_{i=1}^{N} s_i\right)/(Nm)}$ gives ε -close approximation if G is almost regular, i.e., if $\sum_{v} \deg_{v}^{2} = O(m^{2}/n)$.
- Nevertheless, characterizing structure of X_G is wide open:

Thank you!