On Learning Powers of Poisson Binomial Distributions and Graph Binomial Distributions

Dimitris Fotakis

Yahoo Research NY and National Technical University of Athens
Joint work with Vasilis Kontonis (NTU Athens),
Piotr Krysta (Liverpool) and Paul Spirakis (Liverpool and Patras)

Distribution Learning

- Draw samples from unknown distribution P (e.g., \# copies of NYT sold on different days).
- Output distribution Q that ε-approximates the density function of P with probability $\geqslant 1-\delta$.
- Goal is to optimize \# samples (ε, δ) (computational efficiency also desirable).

Distribution Learning

- Draw samples from unknown distribution P (e.g., \# copies of NYT sold on different days).
- Output distribution Q that ε-approximates the density function of P with probability $\geqslant 1-\delta$.
- Goal is to optimize \# samples (ε, δ) (computational efficiency also desirable).

Total Variation Distance

$$
d_{\mathrm{tv}}(P, Q)=\frac{1}{2} \int_{\Omega}|p(x)-q(x)| \mathrm{d} x
$$

Distribution Learning: (Small) Sample of Previous Work

- Learning any unimodal distirbution with $O\left(\log N / \varepsilon^{3}\right)$ samples [Birgé, 1983]
- Sparse cover for Poisson Binomial Distributions (PBDs), developed for PTAS for Nash equilibria in anonymous games [Daskalakis, Papadimitriou, 2009]
- Learning PBDs [Daskalakis, Diakonikolas, Servedio, 2011] and sums of independent integer random variables [Dask., Diakon., O'Donnell, Serv. Tan, 2013]
- Poisson multinomial distributions [Daskalakis, Kamath, Tzamos, 2015], [Dask., De, Kamath, Tzamos, 2016], [Diakonikolas, Kane, Stewart, 2016]
- Estimating the support and the entropy with $O(N / \log N)$ samples [Valiant, Valiant, 2011]

Warm-up: Learning a Binomial Distribution $\operatorname{Bin}(n, p)$

Find \hat{p} s.t. $|p n-\hat{p} n| \leqslant \varepsilon \sqrt{p(1-p) n}$, or equivalently:

$$
|p-\hat{p}| \leqslant \varepsilon \sqrt{\frac{p(1-p)}{n}}=\operatorname{err}(n, p, \varepsilon)
$$

Then, $d_{\mathrm{tv}}(B(n, p), B(n, \hat{p})) \leqslant \varepsilon$

Warm-up: Learning a Binomial Distribution $\operatorname{Bin}(n, p)$

Find \hat{p} s.t. $|p n-\hat{p} n| \leqslant \varepsilon \sqrt{p(1-p) n}$, or equivalently:

$$
|p-\hat{p}| \leqslant \varepsilon \sqrt{\frac{p(1-p)}{n}}=\operatorname{err}(n, p, \varepsilon)
$$

Then, $d_{\mathrm{tv}}(B(n, p), B(n, \hat{p})) \leqslant \varepsilon$

Estimating Parameter p

- Estimator: $\hat{p}=\left(\sum_{i=1}^{N} s_{i}\right) /(N n)$
- If $N=O\left(\ln (1 / \delta) / \varepsilon^{2}\right)$, Chernoff bound implies

$$
\mathbb{P}[|p-\hat{p}| \leqslant \operatorname{err}(n, p, \varepsilon)] \geqslant 1-\delta
$$

Poisson Binomial Distributions (PBDs)

- Each X_{i} is an independent $0 / 1$ Bernoulli trial with $\mathbb{E}\left[X_{i}\right]=p_{i}$.
- $X=\sum_{i=1}^{n} X_{i}$ is a PBD with probability vector $\boldsymbol{p}=\left(p_{1}, \ldots p_{n}\right)$.
- X is close to (discretized) normal distribution (assuming known mean μ and variance σ^{2}).
- If mean is small, X is close to Poisson distribution with $\lambda=\sum_{i=1}^{n} p_{i}$.

Learning Poisson Binomial Distributions

Birgé's algorithm for unimodal distributions: $O\left(\log n / \varepsilon^{3}\right)$ samples.

Learning Poisson Binomial Distributions

Birgé's algorithm for unimodal distributions: $O\left(\log n / \varepsilon^{3}\right)$ samples.
Distinguish "Heavy" and "Sparse" Cases [DaskDiakServ 11]

- Heavy case, $\sigma^{2} \geqslant \Omega\left(1 / \varepsilon^{2}\right)$:
- Estimate variance mean $\hat{\mu}$ and $\hat{\sigma}^{2}$ of X using $O\left(\ln (1 / \delta) / \varepsilon^{2}\right)$ samples.
- (Discretized) $\operatorname{Normal}\left(\hat{\mu}, \hat{\sigma}^{2}\right)$ is ε-close to X.

Learning Poisson Binomial Distributions

Birgé's algorithm for unimodal distributions: $O\left(\log n / \varepsilon^{3}\right)$ samples.
Distinguish "Heavy" and "Sparse" Cases [DaskDiakServ 11]

- Heavy case, $\sigma^{2} \geqslant \Omega\left(1 / \varepsilon^{2}\right)$:
- Estimate variance mean $\hat{\mu}$ and $\hat{\sigma}^{2}$ of X using $O\left(\ln (1 / \delta) / \varepsilon^{2}\right)$ samples.
- (Discretized) $\operatorname{Normal}\left(\hat{\mu}, \hat{\sigma}^{2}\right)$ is ε-close to X.
- Sparse case, variance is small:
- Estimate support: using $O\left(\ln (1 / \delta) / \varepsilon^{2}\right)$ samples, find a, b s.t. $b-a=O(1 / \varepsilon)$ and $\mathbb{P}[X \in[a, b]] \geqslant 1-\delta / 4$.
- Apply Birge's algorithm to $X_{[a, b]}\left(\#\right.$ samples $\left.=O\left(\ln (1 / \varepsilon) / \varepsilon^{3}\right)\right)$

Learning Poisson Binomial Distributions

Birgé's algorithm for unimodal distributions: $O\left(\log n / \varepsilon^{3}\right)$ samples.
Distinguish "Heavy" and "Sparse" Cases [DaskDiakServ 11]

- Heavy case, $\sigma^{2} \geqslant \Omega\left(1 / \varepsilon^{2}\right)$:
- Estimate variance mean $\hat{\mu}$ and $\hat{\sigma}^{2}$ of X using $O\left(\ln (1 / \delta) / \varepsilon^{2}\right)$ samples.
- (Discretized) $\operatorname{Normal}\left(\hat{\mu}, \hat{\sigma}^{2}\right)$ is ε-close to X.
- Sparse case, variance is small:
- Estimate support: using $O\left(\ln (1 / \delta) / \varepsilon^{2}\right)$ samples, find a, b s.t.

$$
b-a=O(1 / \varepsilon) \text { and } \mathbb{P}[X \in[a, b]] \geqslant 1-\delta / 4
$$

- Apply Birge's algorithm to $X_{[a, b]}\left(\#\right.$ samples $\left.=O\left(\ln (1 / \varepsilon) / \varepsilon^{3}\right)\right)$
- Using hypothesis testing, select the best approximation.
\# samples improved to $\tilde{O}\left(\ln (1 / \delta) / \varepsilon^{2}\right)$ (best possible even for binomials)
Estimating $\boldsymbol{p}=\left(p_{1}, \ldots p_{n}\right): \Omega\left(2^{1 / \varepsilon}\right)$ samples [Diak., Kane, Stew., 16]

Learning Sequences of Poisson Binomial Distributions

- $\mathcal{F}=\left(f_{1}, f_{2}, \ldots, f_{k}, \ldots\right)$ sequence of functions with $f_{k}:[0,1] \rightarrow[0,1]$ and $f_{1}(x)=x$.
- PBD $X=\sum_{i=1}^{n} X_{i}$ defined by $\boldsymbol{p}=\left(p_{1}, \ldots, p_{n}\right)$.

Learning Sequences of Poisson Binomial Distributions

- $\mathcal{F}=\left(f_{1}, f_{2}, \ldots, f_{k}, \ldots\right)$ sequence of functions with $f_{k}:[0,1] \rightarrow[0,1]$ and $f_{1}(x)=x$.
- PBD $X=\sum_{i=1}^{n} X_{i}$ defined by $\boldsymbol{p}=\left(p_{1}, \ldots, p_{n}\right)$.
- PBD sequence $X^{(k)}=\sum_{i=1}^{n} X_{i}^{(k)}$, where each $X_{i}^{(k)}$ is a $0 / 1$ Bernoulli with $\mathbb{E}\left[X_{i}^{(k)}\right]=f_{k}\left(p_{i}\right)$.
- Learning algorithm selects k (possibly adaptively) and draws random sample from $X^{(k)}$.

Learning Sequences of Poisson Binomial Distributions

- $\mathcal{F}=\left(f_{1}, f_{2}, \ldots, f_{k}, \ldots\right)$ sequence of functions with $f_{k}:[0,1] \rightarrow[0,1]$ and $f_{1}(x)=x$.
- $\operatorname{PBD} X=\sum_{i=1}^{n} X_{i}$ defined by $\boldsymbol{p}=\left(p_{1}, \ldots, p_{n}\right)$.
- PBD sequence $X^{(k)}=\sum_{i=1}^{n} X_{i}^{(k)}$, where each $X_{i}^{(k)}$ is a $0 / 1$ Bernoulli with $\mathbb{E}\left[X_{i}^{(k)}\right]=f_{k}\left(p_{i}\right)$.
- Learning algorithm selects k (possibly adaptively) and draws random sample from $X^{(k)}$.
- Given \mathcal{F} and sample access to $\left(X^{(1)}, X^{(2)}, \ldots, X^{(k)}, \ldots\right)$, can we learn them all with less samples than learning each $X^{(k)}$ separately?
- Simple and structured sequences, e.g., powers $f_{k}(x)=x^{k}$ (related to random coverage valuations and Newton identities).

Motivation: Random Coverage Valuations

- Set U of n items.
- Family $\mathcal{A}=\left\{A_{1}, \ldots, A_{m}\right\}$ random subsets of U.
- Item i is included in A_{j} independently with probability p_{i}.
- Distribution of \# items included in union of k subsets, i.e., distribution of $\left|\cup_{j \in[k]} A_{j}\right|$
- Item i is included in the union with probability $1-\left(1-p_{i}\right)^{k}$
- \#items in union of k sets is distributed as $n-X^{(k)}$

Powers of Poisson Binomial Distribution

PBD Powers Learning Problem

- Let $X=\sum_{i=1}^{n} X_{i}$ be a PBD defined by $\boldsymbol{p}=\left(p_{1}, \ldots, p_{n}\right)$.
- $X^{(k)}=\sum_{i=1}^{n} X_{i}^{(k)}$ is the k-th PBD power of X defined by $\boldsymbol{p}^{k}=\left(p_{1}^{k}, \ldots, p_{n}^{k}\right)$.
- Learning algorithm that draws samples from selected powers and ε-approximates all powers of X with probability $\geqslant 1-\delta$.

Learning the Powers of $\operatorname{Bin}(n, p)$

- Estimator $\hat{p}=\left(\sum_{i=1}^{N} s_{i}\right) /(N n)$. If p small, e.g., $p \leqslant 1 / \mathrm{e}$,

$$
|p-\hat{p}| \leqslant \operatorname{err}(n, p, \varepsilon) \Rightarrow\left|p^{k}-\hat{p}^{k}\right| \leqslant \operatorname{err}\left(n, p^{k}, \varepsilon\right)
$$

Intuition: error $\approx 1 / \sqrt{n}$ leaves important bits of p unaffected.

Learning the Powers of $\operatorname{Bin}(n, p)$

- Estimator $\hat{p}=\left(\sum_{i=1}^{N} s_{i}\right) /(N n)$. If p small, e.g., $p \leqslant 1 / \mathrm{e}$,

$$
|p-\hat{p}| \leqslant \operatorname{err}(n, p, \varepsilon) \Rightarrow\left|p^{k}-\hat{p}^{k}\right| \leqslant \operatorname{err}\left(n, p^{k}, \varepsilon\right)
$$

Intuition: error $\approx 1 / \sqrt{n}$ leaves important bits of p unaffected.

- But if $p \approx 1-\frac{1}{n}$,

$$
p=0 . \underbrace{99 \ldots 9}_{\log n} \underbrace{458382}_{\text {"value" }}
$$

Learning the Powers of $\operatorname{Bin}(n, p)$

- Estimator $\hat{p}=\left(\sum_{i=1}^{N} s_{i}\right) /(N n)$. If p small, e.g., $p \leqslant 1 / \mathrm{e}$,

$$
|p-\hat{p}| \leqslant \operatorname{err}(n, p, \varepsilon) \Rightarrow\left|p^{k}-\hat{p}^{k}\right| \leqslant \operatorname{err}\left(n, p^{k}, \varepsilon\right)
$$

Intuition: error $\approx 1 / \sqrt{n}$ leaves important bits of p unaffected.

- But if $p \approx 1-\frac{1}{n}$,

$$
p=0 . \underbrace{99 \ldots 9}_{\log n} \underbrace{458382}_{\text {"value" }}
$$

- Sampling from the first power does not reveal "right" part p, since error $\approx \sqrt{p(1-p) / n} \approx 1 / n$.
- Not good enough to approximate all binomial powers (e.g., $n=1000, p=0.9995,0.9995^{1000} \approx 0.6064,0.9997^{1000} \approx 0.7407$)

Learning the Powers of $\operatorname{Bin}(n, p)$

- Estimator $\hat{p}=\left(\sum_{i=1}^{N} s_{i}\right) /(N n)$. If p small, e.g., $p \leqslant 1 / \mathrm{e}$,

$$
|p-\hat{p}| \leqslant \operatorname{err}(n, p, \varepsilon) \Rightarrow\left|p^{k}-\hat{p}^{k}\right| \leqslant \operatorname{err}\left(n, p^{k}, \varepsilon\right)
$$

Intuition: error $\approx 1 / \sqrt{n}$ leaves important bits of p unaffected.

- But if $p \approx 1-\frac{1}{n}$,

$$
p=0 . \underbrace{99 \ldots 9}_{\log n} \underbrace{458382}_{\text {"value" }}
$$

- Sampling from the first power does not reveal "right" part p, since error $\approx \sqrt{p(1-p) / n} \approx 1 / n$.
- Not good enough to approximate all binomial powers (e.g.,

$$
\left.n=1000, p=0.9995,0.9995^{1000} \approx 0.6064,0.9997^{1000} \approx 0.7407\right)
$$

- For $\ell=\frac{1}{\ln (1 / P)}, p^{\ell}=1 / \mathrm{e}$: sampling from ℓ-power reveals "right" part.

Sampling from the Right Power

```
Algorithm 1 Binomial Powers
    1: Draw \(O\left(\ln (1 / \delta) / \varepsilon^{2}\right)\) samples from \(\operatorname{Bin}(n, p)\) to obtain \(\hat{p}_{1}\).
    2: Let \(\hat{\ell} \leftarrow\left\lceil 1 / \ln \left(1 / \hat{p}_{1}\right)\right\rceil\).
    3: Draw \(O\left(\ln (1 / \delta) / \varepsilon^{2}\right)\) samples from \(B\left(n, p^{\hat{\ell}}\right)\) to get estimation \(\hat{q}\) of \(p^{\hat{\ell}}\).
    4: Use estimation \(\hat{p}=\hat{q}^{1 / \hat{\ell}}\) to approximate all powers of \(\operatorname{Bin}(n, p)\).
```

- We assume that $p \leqslant 1-\varepsilon^{2} / n$. If $p \geqslant 1-\varepsilon^{2} / n^{d}$, we need $O\left(\ln (d) \ln (1 / \delta) / \varepsilon^{2}\right)$ samples to learn the right power ℓ.

Learning the Powers vs Parameter Learning

Question: Learning PBD Powers \Leftrightarrow Estimating $\boldsymbol{p}=\left(p_{1}, \ldots, p_{n}\right)$?

- Lower bound of $\Omega\left(2^{1 / \varepsilon}\right)$ for parameter estimation holds if we draw samples from selected powers.
- If p_{i} 's are well-separated, we can learn them exactly by sampling from powers.

Lower Bound on PBD Power Learning

- PBD defined by \boldsymbol{p} with $n /(\ln n)^{4}$ groups of size $(\ln n)^{4}$ each. Group i has $p_{i}=1-\frac{a_{i}}{(\ln n)^{4}}, a_{i} \in\{1, \ldots, \ln n\}$.
- Given $\left(Y^{(1)}, \ldots, Y^{(k)}, \ldots\right)$ that is ε-close to $\left(X^{(1)}, \ldots, X^{(k)}, \ldots\right)$, we can find (e.g., by exhaustive search) $\left(Z^{(1)}, \ldots, Z^{(k)}, \ldots\right)$ where $q_{i}=1-\frac{b_{i}}{(\ln n)^{4 i}}$ and ε-close to $\left(X^{(1)}, \ldots, X^{(k)}, \ldots\right)$.

Lower Bound on PBD Power Learning

- PBD defined by \boldsymbol{p} with $n /(\ln n)^{4}$ groups of size $(\ln n)^{4}$ each. Group i has $p_{i}=1-\frac{a_{i}}{(\ln n)^{4}}, a_{i} \in\{1, \ldots, \ln n\}$.
- Given $\left(Y^{(1)}, \ldots, Y^{(k)}, \ldots\right)$ that is ε-close to ($X^{(1)}, \ldots, X^{(k)}, \ldots$), we can find (e.g., by exhaustive search) $\left(Z^{(1)}, \ldots, Z^{(k)}, \ldots\right)$ where $q_{i}=1-\frac{b_{i}}{(\ln n)^{4 i}}$ and ε-close to $\left(X^{(1)}, \ldots, X^{(k)}, \ldots\right)$.
- For each power $k=(\ln n)^{4 i-2}$,

$$
\begin{aligned}
& \left|\mathbb{E}\left[X^{(k)}\right]-\mathbb{E}\left[Z^{(k)}\right]\right|=\Theta\left(\left|a_{i}-b_{i}\right|(\ln n)^{2}\right) \text { and } \\
& \left|\mathbb{V}\left[X^{(k)}\right]+\mathbb{V}\left[Z^{(k)}\right]\right|=O\left((\ln n)^{3}\right) .
\end{aligned}
$$

Lower Bound on PBD Power Learning

- PBD defined by \boldsymbol{p} with $n /(\ln n)^{4}$ groups of size $(\ln n)^{4}$ each. Group i has $p_{i}=1-\frac{a_{i}}{(\ln n)^{4}}, a_{i} \in\{1, \ldots, \ln n\}$.
- Given $\left(Y^{(1)}, \ldots, Y^{(k)}, \ldots\right)$ that is ε-close to $\left(X^{(1)}, \ldots, X^{(k)}, \ldots\right)$, we can find (e.g., by exhaustive search) $\left(Z^{(1)}, \ldots, Z^{(k)}, \ldots\right)$ where $q_{i}=1-\frac{b_{i}}{(\ln n)^{4 i}}$ and ε-close to $\left(X^{(1)}, \ldots, X^{(k)}, \ldots\right)$.
- For each power $k=(\ln n)^{4 i-2}$,

$$
\begin{aligned}
& \left|\mathbb{E}\left[X^{(k)}\right]-\mathbb{E}\left[Z^{(k)}\right]\right|=\Theta\left(\left|a_{i}-b_{i}\right|(\ln n)^{2}\right) \text { and } \\
& \left|\mathbb{V}\left[X^{(k)}\right]+\mathbb{V}\left[Z^{(k)}\right]\right|=O\left((\ln n)^{3}\right) .
\end{aligned}
$$

- By sampling appropriate powers, we learn a_{i} exactly: $\Omega\left(n \ln \ln n /(\ln n)^{4}\right)$ samples.

Parameter Learning through Newton Identities

$$
\left(\begin{array}{ccccc}
1 & & & & \\
\mu_{1} & 2 & & & \\
\mu_{2} & \mu_{1} & 3 & & \\
\vdots & \vdots & \ddots & \ddots & \\
\mu_{n-1} & \mu_{n-2} & \ldots & \mu_{1} & n
\end{array}\right)\left(\begin{array}{c}
c_{n-1} \\
c_{n-2} \\
c_{n-3} \\
\vdots \\
c_{0}
\end{array}\right)=\left(\begin{array}{c}
-\mu_{1} \\
-\mu_{2} \\
-\mu_{3} \\
\vdots \\
-\mu_{n}
\end{array}\right) \Leftrightarrow \boldsymbol{M} \boldsymbol{c}=-\boldsymbol{\mu},
$$

where $\mu_{k}=\sum_{i=1}^{n} p_{i}^{k}$ and c_{k} are the coefficients of $p(x)=\prod_{i=1}^{n}\left(x-p_{i}\right)=x^{n}+c_{n-1} x^{n-1}+\ldots+c_{0}$.

Parameter Learning through Newton Identities

$$
\left(\begin{array}{ccccc}
1 & & & & \\
\mu_{1} & 2 & & & \\
\mu_{2} & \mu_{1} & 3 & & \\
\vdots & \vdots & \ddots & \ddots & \\
\mu_{n-1} & \mu_{n-2} & \cdots & \mu_{1} & n
\end{array}\right)\left(\begin{array}{c}
c_{n-1} \\
c_{n-2} \\
c_{n-3} \\
\vdots \\
c_{0}
\end{array}\right)=\left(\begin{array}{c}
-\mu_{1} \\
-\mu_{2} \\
-\mu_{3} \\
\vdots \\
-\mu_{n}
\end{array}\right) \Leftrightarrow \boldsymbol{M} \boldsymbol{c}=-\boldsymbol{\mu}
$$

where $\mu_{k}=\sum_{i=1}^{n} p_{i}^{k}$ and c_{k} are the coefficients of $p(x)=\prod_{i=1}^{n}\left(x-p_{i}\right)=x^{n}+c_{n-1} x^{n-1}+\ldots+c_{0}$.

- Learn (approximately) μ_{k} 's by sampling from the first n powers.
- Solve system $\boldsymbol{M c}=-\mu$ to obtain $\hat{\boldsymbol{c}}$: amplifies error by $O\left(n^{3 / 2} 2^{n}\right)$
- Use Pan's root finding algorithm to compute $\left|\hat{p}_{i}-p_{i}\right| \leqslant \varepsilon$: requires $\operatorname{accuracy} 2^{O(-n \max \{\ln (1 / \varepsilon), \ln n\})}$ in \hat{c}.

Parameter Learning through Newton Identities

$$
\left(\begin{array}{ccccc}
1 & & & & \\
\mu_{1} & 2 & & & \\
\mu_{2} & \mu_{1} & 3 & & \\
\vdots & \vdots & \ddots & \ddots & \\
\mu_{n-1} & \mu_{n-2} & \cdots & \mu_{1} & n
\end{array}\right)\left(\begin{array}{c}
c_{n-1} \\
c_{n-2} \\
c_{n-3} \\
\vdots \\
c_{0}
\end{array}\right)=\left(\begin{array}{c}
-\mu_{1} \\
-\mu_{2} \\
-\mu_{3} \\
\vdots \\
-\mu_{n}
\end{array}\right) \Leftrightarrow \boldsymbol{M} \boldsymbol{c}=-\boldsymbol{\mu},
$$

where $\mu_{k}=\sum_{i=1}^{n} p_{i}^{k}$ and c_{k} are the coefficients of $p(x)=\prod_{i=1}^{n}\left(x-p_{i}\right)=x^{n}+c_{n-1} x^{n-1}+\ldots+c_{0}$.

- Learn (approximately) μ_{k} 's by sampling from the first n powers.
- Solve system $\boldsymbol{M c}=-\mu$ to obtain $\hat{\boldsymbol{c}}$: amplifies error by $O\left(n^{3 / 2} 2^{n}\right)$
- Use Pan's root finding algorithm to compute $\left|\hat{p}_{i}-p_{i}\right| \leqslant \varepsilon$: requires accuracy $2^{O(-n \max \{\ln (1 / \varepsilon), \ln n\})}$ in \hat{c}.
- $\#$ samples $=2^{O(n \max \{\ln (1 / \varepsilon), \ln n\})}$

Some Open Questions

- Class of PBDs where learning powers is easy but parameter learning is hard?
- If all $p_{i} \leqslant 1-\frac{\varepsilon^{2}}{n}$, can we learn all powers with $o\left(n / \varepsilon^{2}\right)$ samples?
- If $O(1)$ different values in \boldsymbol{p}, can we learn all powers with $O\left(1 / \varepsilon^{2}\right)$ samples?

Graph Binomial Distributions

- Each X_{i} is an independent $0 / 1$ Bernoulli trials with $\mathbb{E}\left[X_{i}\right]=p_{i}$.
- Graph $G(V, E)$ where vertex v_{i} is active iff $X_{i}=1$.
- Given G, learn distribution of \# edges in subgraph induced by active vertices, i.e., $X_{G}=\sum_{\left\{v_{i}, v_{j}\right\} \in E} X_{i} X_{j}$

Graph Binomial Distributions

- Each X_{i} is an independent $0 / 1$ Bernoulli trials with $\mathbb{E}\left[X_{i}\right]=p_{i}$.
- Graph $G(V, E)$ where vertex v_{i} is active iff $X_{i}=1$.
- Given G, learn distribution of \# edges in subgraph induced by active vertices, i.e., $X_{G}=\sum_{\left\{v_{i}, v_{j}\right\} \in E} X_{i} X_{j}$
- G clique: learn \# active vertices k (\# edges is $\frac{k(k-1)}{2}$).
- G collection of disjoint stars $K_{1, j}, j=2, \ldots, \Theta(\sqrt{n})$ with $p_{i}=1$ if v_{i} is leaf: $\Omega(\sqrt{n})$ samples are required.

Some Observations for Single p

- If p small and G is almost regular with small degree, X is close to Poisson distribution with $\lambda=m p^{2}$.
- Estimating p as $\hat{p}=\sqrt{\left(\sum_{i=1}^{N} s_{i}\right) /(N m)}$ gives ε-close approximation if G is almost regular, i.e., if $\sum_{v} \operatorname{deg}_{v}^{2}=O\left(\mathrm{~m}^{2} / n\right)$.

Some Observations for Single p

- If p small and G is almost regular with small degree, X is close to Poisson distribution with $\lambda=m p^{2}$.
- Estimating p as $\hat{p}=\sqrt{\left(\sum_{i=1}^{N} s_{i}\right) /(N m)}$ gives ε-close approximation if G is almost regular, i.e., if $\sum_{v} \operatorname{deg}_{v}^{2}=O\left(\mathrm{~m}^{2} / \mathrm{n}\right)$.
- Nevertheless, characterizing structure of X_{G} is wide open:

Thank you!

