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Agnostic learning

See pairs (x , y) sampled from unknown distribution.

Guaranteed y ≈ f (x) for some f ∈ F.

Want to find f̂ so y ≈ f̂ (x) on fresh samples.

This work: adversarial error measured in `2.

Guaranteed

E
x ,y

[(y − f (x))2] ≤ σ2

and want
E
x ,y

[(y − f̂ (x))2] ≤ Cσ2

or (equivalently, up to constants in C )

‖f − f̂ ‖2
D :=

E
x

[(f (x)− f̂ (x))2] ≤ Cσ2.

where D is the marginal distribution on x .
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Agnostic learning of linear spaces
Suppose F is a linear space of functions

I f (x) = αTφ(x) for some φ : X → Rd .
I Example: univariate degree d − 1 polynomials.

f

y f̂

〈f , g〉D := Ex [f (x)g(x)]

y

F

f ∗
f̂

Ideal: f ∗ = arg min‖y − f ∗‖2
D.

Settle for empirical risk minimizer (ERM)

f̂ = arg min‖y − f̂ ‖2
S :=

1

m

m∑
i=1

(yi − f̂ (xi ))2.

Idea: with enough samples, empirical norm ≈ true norm under D.

I Will get ‖f̂ − f ∗‖D ≤ ε‖f ∗ − y‖D.
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Agnostic learning of linear spaces: results

Degree 5 polynomial, σ = 1, x ∈ [−1, 1].

1/d2

(Matrix) Chernoff bound depends on

K := sup
x

sup
f ∈F
‖f ‖D=1

f (x)2.

O(K log d + K
ε ) samples suffice for agnostic learning

[Cohen-Davenport-Leviatan ’13, Hsu-Sabato ’14]

I Mean zero noise: ‖f̂ − f ∗‖2
D ≤ ε‖f ∗ − y‖2

D
I Generic noise: ‖f̂ − f ‖2

D ≤ (1 + ε)‖f − y‖2
D

Also necessary (coupon collector)

How can we avoid the dependence on K?
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Our result: avoid K with more powerful access patterns

With more powerful access models, can replace

K := sup
x

sup
f ∈F
‖f ‖D=1

f (x)2

with
κ := E

x
sup
f ∈F
‖f ‖D=1

f (x)2.

For linear spaces of functions, κ = d .

Query model:

I Can pick xi of our choice, see yi ∼ (Y |X = xi ).
I Know D (which just defines ‖f − f̂ ‖D).

Active learning model:

I Receive x1, . . . , xm ∼ D
I Pick S ⊂ [m] of size s
I See yi for i ∈ S .

Some results for non-linear spaces.
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Active learning model:

I Receive x1, . . . , xm ∼ D
I Pick S ⊂ [m] of size s
I See yi for i ∈ S .

Some results for non-linear spaces.
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Query model: basic approach

ERM needs empirical norm to ‖f ‖S to
approximate ‖f ‖D for all f ∈ F.

This takes O(K log d) samples from D.

Improved by biasing samples towards high-variance points.

D′(x) =

1

κ

D(x) sup
f ∈F
‖f ‖D=1

f (x)2

Estimate norm via

‖f ‖2
S ,D′ :=

1

m

m∑
i=1

D(xi )

D′(xi )
f (xi )

2

Still equals ‖f ‖2
D in expectation, but now max contribution is κ.

I This gives O(κ log d) sample complexity by Matrix Chernoff.
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Bounding κ for linear function spaces

κ = E
x

sup
f ∈F
‖f ‖D=1

f (x)2

Express f ∈ F via an orthonormal basis:

f (x) =
∑
j

αjφj(x).

Then

sup
‖f ‖D=1

f (x)2 = sup
‖α‖2=1

〈α, {φj(x)}dj=1〉2

=
d∑

j=1

φj(x)2.

Hence

κ =
d∑

j=1

E
x
φj(x)2 = d .
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Query model: so far

Upsampling x proportional to supf f (x)2 gets O(d log d) sample
complexity.

I Essentially the same as leverage score sampling.
I Also analogous to Spielman-Srivastava graph sparsification

Can we bring this down to O(d)?

I Not with independent sampling (coupon collector).
I Analogous to Batson-Spielman-Srivastava linear size sparsification.
I Yes – using Lee-Sun sparsification.

Mean zero noise: E[(f̂ (x)− f (x))2] ≤ εE[(y − f (x))2].

Generic noise: E[(f̂ (x)− f (x))2] ≤ (1 + ε)E[(y − f (x))2].
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Active learning

Query model supposes we know D and can query any point.

Active learning:

I Get x1, . . . , xm ∼ D.
I Pick S ⊆ [m] of size s.
I Learn yi for i ∈ S .

Minimize s:

I m→∞

=⇒ learn D and query any point =⇒ query model.
I Hence s = Θ(d) optimal.

Minimize m:

I Label every point =⇒ agnostic learning.
I Hence m = Θ(K log d + K

ε ) optimal.

Our result: both at the same time.

I In this talk: mostly s = O(d log d) version.
I Prior work: s = O((d log d)5/4) [Sabato-Munos ’14],

s = O(d log d)
via “volume sampling” [Derezinski-Warmuth-Hsu ’18].
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Active learning

Warmup: suppose we know D.

Can simulate the query algorithm via rejection sampling:

Pr[Label xi ] =
1

K
sup
f ∈F
‖f ‖D=1

f (xi )
2.

Just needs s = O(d log d).

Chance each sample gets labeled is

E
x

[Pr[Label xi ]] =
κ

K

=
d

K
.

Gives m = O(K log d) unlabeled samples, s = O(d log d) labeled
samples.
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Active learning
without knowing D

Want to perform rejection sampling:

Pr[Label xi ] =
1

K
sup
f ∈F
‖f ‖D=1

f (xi )
2.

but don’t know D.

Just need to estimate ‖f ‖D for all f ∈ F.

Matrix Chernoff gets this with m = O(K log d) unlabeled samples.

Gives m = O(K log d) unlabeled samples, s = O(d log d) labeled
samples.

Can improve to m = O(K log d), s = O(d).
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Getting to s = O(d)
Based on Lee-Sun ’15

O(d log d) comes from coupon collector.

Change to non-independent sampling:

I xi ∼ Di where Di depends on x1, . . . , xi−1.
I D1 = D′, D2 avoids points near x1, etc.

Need two properties:

I Norms preserved for all functions in class:

E
x∼D

f (x)2 ≈
s∑

i=1

1

s

D(xi )

Di (xi )
f (xi )

2

I Noise variance bounded for every sample:

sup
f ,x

f (x)2

Ex′∼Di f (x ′)2
=:

1

s
KDi ≤ ε

Both properties achievable with Lee-Sun sparsification.
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Nonlinear spaces

Consider functions with sparse Fourier representations:

f (x) =
d∑

j=1

vje
2πifjx .

Can pick sample points x ∈ [0, 1], want to minimize

E
x∈[0,1]

(f̂ (x)− f (x))2.

For noise tolerance, need empirical norm ≈ actual norm.
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Estimating the norm in nonlinear spaces

Uniform sampling depends on

K = sup
x

sup
f ∈F
‖f ‖D=1

f (x)2.

I Unknown exactly what this is for Fourier-sparse signals.
I d2 ≤ K . d4 log3 d . [Chen-Kane-Price-Song ’16]

Biasing the samples lets us reduce this to

κ = E
x

sup
f ∈F
‖f ‖D=1

f (x)2.

I d ≤ κ . d log2 d .

Analogous to distinction between Markov Brothers’ inequality and
Bernstein’s inequality for polynomials.
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Proof sketch: κ for Fourier-sparse functions

For any ∆ > 0, consider the degree-d polynomial p(z) =
∑d

i=1 βiz
i

with roots at e2πifj∆ for all j .

For any x ,

d∑
i=1

βi f (x + ∆i)

=
d∑

j=1

vje
2πifjxp(e2πifj∆) = 0.

In particular, for i∗ = arg max|βi |,

|f (x + i∗∆)| ≤
∑

i∈[d ]\i∗
|f (x + i∆)|

Hence

(with a little more care)

|f (x)|

2

≤

3
2

d∑
i=−

2

d
i 6=0

|f (x + i∆)|

2
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Proof sketch: κ for Fourier-sparse functions

Lemma

If f is d-Fourier-sparse, then for all x and ∆ we have

|f (x)|2 ≤ 3
2d∑

i=−2d
i 6=0

|f (x + i∆)|2

Suppose D is uniform on [−1, 1]. Then for all x ∈ [−1, 1],

|f (x)|2 .
d log d

1− |x |
E
x ′
f (x ′)2.

by integrating ∆ from 0 to 1− |x |.
Hence

κ = E
x

sup
f ∈F
‖f ‖D=1

|f (x)|2 . d log2 d .
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Query/active learning in nonlinear spaces

Biased sampling means ‖f ‖S ≈ ‖f ‖D in O(κ) samples for any single
f ∈ F.

Linear spaces: O(κ log d) for every f ∈ F by matrix Chernoff.

Sparse Fourier: need to union bound over a net

I Known net size is 2Õ(d3).
I Gives Õ(d3κ) = Õ(d4) queries/labeled samples.
I Gives Õ(d3K ) = Õ(d7) unlabeled samples.
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Conclusions and open questions

Active learning can be optimal in both criteria simultaneously

I O(K log d + K
ε ) unlabeled examples.

I O(d/ε) labeled examples

Gets some improvement for Fourier-sparse signals.

I Tight results via chaining and/or better net?

Can we go beyond `2 and linear spaces?

I Logistic regression?

Better theory for active learning ?

I Choose sample points sequentially.
I Dynamically changing functions.

Thank You
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Gets some improvement for Fourier-sparse signals.
I Tight results via chaining and/or better net?

Can we go beyond `2 and linear spaces?
I Logistic regression?

Better theory for active learning ?
I Choose sample points sequentially.
I Dynamically changing functions.
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