Active Regression via Linear-Sample Sparsification

Xue Chen Eric Price

UT Austin

• See pairs (x, y) sampled from unknown distribution.

- See pairs (x, y) sampled from unknown distribution.
- Guaranteed $y \approx f(x)$ for some $f \in \mathbb{F}$.

- See pairs (x, y) sampled from unknown distribution.
- Guaranteed $y \approx f(x)$ for some $f \in \mathbb{F}$.
- Want to find \hat{f} so $y \approx \hat{f}(x)$ on fresh samples.

- See pairs (x, y) sampled from unknown distribution.
- Guaranteed $y \approx f(x)$ for some $f \in \mathbb{F}$.
- Want to find \hat{f} so $y \approx \hat{f}(x)$ on fresh samples.
- This work: adversarial error measured in ℓ_2 .

- See pairs (x, y) sampled from unknown distribution.
- Guaranteed $y \approx f(x)$ for some $f \in \mathbb{F}$.
- Want to find \hat{f} so $y \approx \hat{f}(x)$ on fresh samples.
- \bullet This work: adversarial error measured in $\ell_2.$ Guaranteed

$$\mathop{\mathbb{E}}_{x,y}[(y-f(x))^2] \le \sigma^2$$

and want

$$\mathop{\mathbb{E}}_{\mathsf{x},\mathsf{y}}[(\mathsf{y}-\widehat{f}(\mathsf{x}))^2] \leq C\sigma^2$$

- See pairs (x, y) sampled from unknown distribution.
- Guaranteed $y \approx f(x)$ for some $f \in \mathbb{F}$.
- Want to find \hat{f} so $y \approx \hat{f}(x)$ on fresh samples.
- \bullet This work: adversarial error measured in $\ell_2.$ Guaranteed

$$\mathop{\mathbb{E}}_{x,y}[(y-f(x))^2] \le \sigma^2$$

and want

$$\mathop{\mathbb{E}}_{x,y}[(y-\widehat{f}(x))^2] \le C\sigma^2$$

or (equivalently, up to constants in C)

$$\mathop{\mathbb{E}}_{x}[(f(x) - \widehat{f}(x))^{2}] \leq C\sigma^{2}.$$

- See pairs (x, y) sampled from unknown distribution.
- Guaranteed $y \approx f(x)$ for some $f \in \mathbb{F}$.
- Want to find \hat{f} so $y \approx \hat{f}(x)$ on fresh samples.
- This work: adversarial error measured in ℓ_2 . Guaranteed

$$\mathop{\mathbb{E}}_{x,y}[(y-f(x))^2] \le \sigma^2$$

and want

$$\mathop{\mathbb{E}}_{x,y}[(y-\widehat{f}(x))^2] \le C\sigma^2$$

or (equivalently, up to constants in C)

$$\|f-\widehat{f}\|_{\mathcal{D}}^2:=\mathop{\mathbb{E}}_{ imes}[(f(x)-\widehat{f}(x))^2]\leq C\sigma^2.$$

where \mathcal{D} is the marginal distribution on x.

Xue Chen, Eric Price (UT Austin)

 $\bullet\,$ Suppose $\mathbb F$ is a linear space of functions

- $\, \bullet \,$ Suppose $\mathbb F$ is a linear space of functions
 - $f(x) = \alpha^T \phi(x)$ for some $\phi : X \to \mathbb{R}^d$.

- $\, \bullet \,$ Suppose \mathbb{F} is a linear space of functions
 - $f(x) = \alpha^T \phi(x)$ for some $\phi : X \to \mathbb{R}^d$.
 - Example: univariate degree d 1 polynomials.

- $\, \bullet \,$ Suppose $\mathbb F$ is a linear space of functions
 - $f(x) = \alpha^T \phi(x)$ for some $\phi : X \to \mathbb{R}^d$.
 - Example: univariate degree d 1 polynomials.

- $\, \bullet \,$ Suppose \mathbb{F} is a linear space of functions
 - $f(x) = \alpha^T \phi(x)$ for some $\phi : X \to \mathbb{R}^d$.
 - Example: univariate degree d 1 polynomials.

- $\, \bullet \,$ Suppose $\mathbb F$ is a linear space of functions
 - $f(x) = \alpha^T \phi(x)$ for some $\phi : X \to \mathbb{R}^d$.
 - Example: univariate degree d 1 polynomials.

- Suppose $\mathbb F$ is a linear space of functions
 - $f(x) = \alpha^T \phi(x)$ for some $\phi : X \to \mathbb{R}^d$.
 - Example: univariate degree d 1 polynomials.

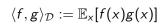
 $\langle f,g\rangle_{\mathcal{D}} := \mathbb{E}_{x}[f(x)g(x)]$

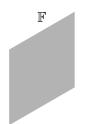
- Suppose $\mathbb F$ is a linear space of functions
 - $f(x) = \alpha^T \phi(x)$ for some $\phi : X \to \mathbb{R}^d$.
 - Example: univariate degree d 1 polynomials.

 $\langle f,g\rangle_{\mathcal{D}} := \mathbb{E}_{x}[f(x)g(x)]$

• Y

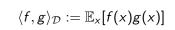
- $\, \bullet \,$ Suppose $\mathbb F$ is a linear space of functions
 - $f(x) = \alpha^T \phi(x)$ for some $\phi : X \to \mathbb{R}^d$.
 - Example: univariate degree d 1 polynomials.

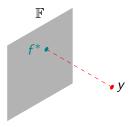




• Y

- $\, \bullet \,$ Suppose $\mathbb F$ is a linear space of functions
 - $f(x) = \alpha^T \phi(x)$ for some $\phi : X \to \mathbb{R}^d$.
 - Example: univariate degree d 1 polynomials.

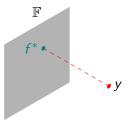




- $\, \bullet \,$ Suppose $\mathbb F$ is a linear space of functions
 - $f(x) = \alpha^T \phi(x)$ for some $\phi : X \to \mathbb{R}^d$.
 - Example: univariate degree d 1 polynomials.

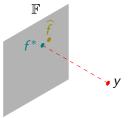
$$\langle f,g
angle_{\mathcal{D}}:=\mathbb{E}_{x}[f(x)g(x)]$$

• Ideal: $f^* = \arg \min \|y - f^*\|_{\mathcal{D}}^2$.



- $\, \bullet \,$ Suppose $\mathbb F$ is a linear space of functions
 - $f(x) = \alpha^T \phi(x)$ for some $\phi : X \to \mathbb{R}^d$.
 - Example: univariate degree d 1 polynomials.

$$\langle f,g\rangle_{\mathcal{D}} := \mathbb{E}_{x}[f(x)g(x)]$$

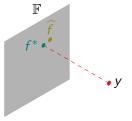


- Ideal: $f^* = \arg \min \|y f^*\|_{\mathcal{D}}^2$.
- Settle for empirical risk minimizer (ERM)

$$\widehat{f} = rgmin \|y - \widehat{f}\|_{\mathcal{S}}^2 := rac{1}{m} \sum_{i=1}^m (y_i - \widehat{f}(x_i))^2.$$

- $\, \bullet \,$ Suppose $\mathbb F$ is a linear space of functions
 - $f(x) = \alpha^T \phi(x)$ for some $\phi : X \to \mathbb{R}^d$.
 - Example: univariate degree d 1 polynomials.

$$\langle f,g
angle_{\mathcal{D}} := \mathbb{E}_x[f(x)g(x)]$$



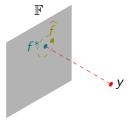
- Ideal: $f^* = \arg \min \|y f^*\|_{\mathcal{D}}^2$.
- Settle for empirical risk minimizer (ERM)

$$\widehat{f} = \arg\min \|y - \widehat{f}\|_{\mathcal{S}}^2 := \frac{1}{m}\sum_{i=1}^m (y_i - \widehat{f}(x_i))^2.$$

• Idea: with enough samples, empirical norm pprox true norm under $\mathcal{D}.$

- $\, \bullet \,$ Suppose $\mathbb F$ is a linear space of functions
 - $f(x) = \alpha^T \phi(x)$ for some $\phi : X \to \mathbb{R}^d$.
 - Example: univariate degree d 1 polynomials.

$$\langle f,g
angle_{\mathcal{D}} := \mathbb{E}_{x}[f(x)g(x)]$$

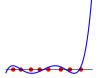


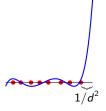
- Ideal: $f^* = \arg \min \|y f^*\|_{\mathcal{D}}^2$.
- Settle for empirical risk minimizer (ERM)

$$\widehat{f} = rgmin \|y - \widehat{f}\|_{\mathcal{S}}^2 := rac{1}{m} \sum_{i=1}^m (y_i - \widehat{f}(x_i))^2.$$

Idea: with enough samples, empirical norm ≈ true norm under D.
 Will get || f̂ − f^{*} ||_D ≤ ε || f^{*} − y ||_D.

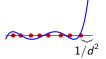
Xue Chen, Eric Price (UT Austin)





- Degree 5 polynomial, $\sigma = 1$, $x \in [-1, 1]$.
- (Matrix) Chernoff bound depends on

$$K := \sup_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^{2}.$$



- Degree 5 polynomial, $\sigma = 1$, $x \in [-1, 1]$.
- (Matrix) Chernoff bound depends on

$$K := \sup_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^2.$$

• $O(K \log d + \frac{K}{\epsilon})$ samples suffice for agnostic learning [Cohen-Davenport-Leviatan '13, Hsu-Sabato '14]

- Degree 5 polynomial, $\sigma = 1$, $x \in [-1, 1]$.
- (Matrix) Chernoff bound depends on

$$K := \sup_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^2.$$

- $O(K \log d + \frac{K}{\epsilon})$ samples suffice for agnostic learning [Cohen-Davenport-Leviatan '13, Hsu-Sabato '14]
 - Mean zero noise: $\|\widehat{f} f^*\|_{\mathcal{D}}^2 \leq \epsilon \|f^* y\|_{\mathcal{D}}^2$

- Degree 5 polynomial, $\sigma = 1$, $x \in [-1, 1]$.
- (Matrix) Chernoff bound depends on

$$K := \sup_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^2.$$

- $O(K \log d + \frac{K}{\epsilon})$ samples suffice for agnostic learning [Cohen-Davenport-Leviatan '13, Hsu-Sabato '14]
 - Mean zero noise: $\|\widehat{f} f^*\|_{\mathcal{D}}^2 \le \epsilon \|f^* y\|_{\mathcal{D}}^2$
 - Generic noise: $\|\widehat{f} f\|_{\mathcal{D}}^2 \le (1 + \epsilon) \|f y\|_{\mathcal{D}}^2$

- Degree 5 polynomial, $\sigma = 1, x \in [-1, 1]$.
- (Matrix) Chernoff bound depends on

$$K := \sup_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^2.$$

- $O(K \log d + \frac{K}{\epsilon})$ samples suffice for agnostic learning [Cohen-Davenport-Leviatan '13, Hsu-Sabato '14]
 - Mean zero noise: $\|\widehat{f} f^*\|_{\mathcal{D}}^2 \le \epsilon \|f^* y\|_{\mathcal{D}}^2$
 - Generic noise: $\|\widehat{f} f\|_{\mathcal{D}}^2 \leq (1 + \epsilon) \|f y\|_{\mathcal{D}}^2$
- Also necessary (coupon collector)

- Degree 5 polynomial, $\sigma = 1, x \in [-1, 1]$.
- (Matrix) Chernoff bound depends on

$$\mathcal{K} := \sup_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^2.$$

- $O(K \log d + \frac{K}{\epsilon})$ samples suffice for agnostic learning [Cohen-Davenport-Leviatan '13, Hsu-Sabato '14]
 - Mean zero noise: $\|\widehat{f} f^*\|_{\mathcal{D}}^2 \le \epsilon \|f^* y\|_{\mathcal{D}}^2$
 - Generic noise: $\|\widehat{f} f\|_{\mathcal{D}}^2 \le (1+\epsilon)\|f y\|_{\mathcal{D}}^2$
- Also necessary (coupon collector)
- How can we avoid the dependence on K?

Our result: avoid K with more powerful access patterns

• With more powerful access models, can replace

$$K := \sup_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^2$$

with

$$\kappa := \mathop{\mathbb{E}}_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^{2}.$$

Our result: avoid K with more powerful access patterns

• With more powerful access models, can replace

$$K := \sup_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^2$$

with

$$\kappa := \mathop{\mathbb{E}}_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^{2}.$$

For linear spaces of functions, $\kappa = d$.

Our result: avoid K with more powerful access patterns

• With more powerful access models, can replace

$$K := \sup_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^2$$

with

$$\kappa := \mathop{\mathbb{E}}_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^{2}.$$

For linear spaces of functions, $\kappa = d$.

Query model:

• With more powerful access models, can replace

$$K := \sup_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^2$$

with

$$\kappa := \mathop{\mathbb{E}}_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^{2}.$$

For linear spaces of functions, $\kappa = d$.

• Query model:

• Can pick x_i of our choice, see $y_i \sim (Y|X = x_i)$.

• With more powerful access models, can replace

$$K := \sup_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^2$$

with

$$\kappa := \mathop{\mathbb{E}}_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^{2}.$$

For linear spaces of functions, $\kappa = d$.

• Query model:

- Can pick x_i of our choice, see $y_i \sim (Y|X = x_i)$.
- Know \mathcal{D} (which just defines $||f \hat{f}||_{\mathcal{D}}$).

• With more powerful access models, can replace

$$K := \sup_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^2$$

with

$$\kappa := \mathop{\mathbb{E}}_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^{2}.$$

- Query model:
 - Can pick x_i of our choice, see $y_i \sim (Y|X = x_i)$.
 - Know \mathcal{D} (which just defines $||f \hat{f}||_{\mathcal{D}}$).
- Active learning model:

• With more powerful access models, can replace

$$K := \sup_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^2$$

with

$$\kappa := \mathop{\mathbb{E}}_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^{2}.$$

- Query model:
 - Can pick x_i of our choice, see $y_i \sim (Y|X = x_i)$.
 - Know \mathcal{D} (which just defines $||f \hat{f}||_{\mathcal{D}}$).
- Active learning model:
 - Receive $x_1, \ldots, x_m \sim \mathcal{D}$

• With more powerful access models, can replace

$$K := \sup_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^2$$

with

$$\kappa := \mathop{\mathbb{E}}_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^{2}.$$

- Query model:
 - Can pick x_i of our choice, see $y_i \sim (Y|X = x_i)$.
 - Know \mathcal{D} (which just defines $||f \hat{f}||_{\mathcal{D}}$).
- Active learning model:
 - Receive $x_1, \ldots, x_m \sim \mathcal{D}$
 - Pick $S \subset [m]$ of size s

• With more powerful access models, can replace

$$K := \sup_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^2$$

with

$$\kappa := \mathop{\mathbb{E}}_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^{2}.$$

- Query model:
 - Can pick x_i of our choice, see $y_i \sim (Y|X = x_i)$.
 - Know \mathcal{D} (which just defines $||f \hat{f}||_{\mathcal{D}}$).
- Active learning model:
 - Receive $x_1, \ldots, x_m \sim \mathcal{D}$
 - Pick $S \subset [m]$ of size s
 - See y_i for $i \in S$.

• With more powerful access models, can replace

$$K := \sup_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^2$$

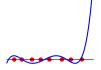
with

$$\kappa := \mathop{\mathbb{E}}_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^{2}.$$

- Query model:
 - Can pick x_i of our choice, see $y_i \sim (Y|X = x_i)$.
 - Know \mathcal{D} (which just defines $||f \hat{f}||_{\mathcal{D}}$).
- Active learning model:
 - Receive $x_1, \ldots, x_m \sim \mathcal{D}$
 - Pick $S \subset [m]$ of size s
 - See y_i for $i \in S$.
- Some results for non-linear spaces.

ERM needs empirical norm to ||f||_S to approximate ||f||_D for all f ∈ F.

- ERM needs empirical norm to ||f||_S to approximate ||f||_D for all f ∈ F.
- This takes $O(K \log d)$ samples from \mathcal{D} .



 ERM needs empirical norm to ||f||_S to approximate ||f||_D for all f ∈ F.

- This takes $O(K \log d)$ samples from \mathcal{D} .
- Improved by biasing samples towards high-variance points.

$$\mathcal{D}'(x) = \mathcal{D}(x) \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^2$$

 ERM needs empirical norm to ||f||_S to approximate ||f||_D for all f ∈ F.

- This takes $O(K \log d)$ samples from \mathcal{D} .
- Improved by biasing samples towards high-variance points.

$$\mathcal{D}'(x) = \frac{1}{\kappa} \mathcal{D}(x) \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^2$$

 ERM needs empirical norm to ||f||_S to approximate ||f||_D for all f ∈ F.

- This takes $O(K \log d)$ samples from \mathcal{D} .
- Improved by biasing samples towards high-variance points.

$$\mathcal{D}'(x) = \frac{1}{\kappa} \mathcal{D}(x) \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^2$$

Estimate norm via

$$\|f\|_{\mathcal{S},\mathcal{D}'}^2 := \frac{1}{m} \sum_{i=1}^m \frac{\mathcal{D}(x_i)}{\mathcal{D}'(x_i)} f(x_i)^2$$

- ERM needs empirical norm to ||f||_S to approximate ||f||_D for all f ∈ F.
- This takes $O(K \log d)$ samples from \mathcal{D} .
- Improved by biasing samples towards high-variance points.

$$\mathcal{D}'(x) = \frac{1}{\kappa} \mathcal{D}(x) \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^2$$

Estimate norm via

$$\|f\|_{\mathcal{S},\mathcal{D}'}^2 := \frac{1}{m} \sum_{i=1}^m \frac{\mathcal{D}(x_i)}{\mathcal{D}'(x_i)} f(x_i)^2$$

• Still equals $||f||_{\mathcal{D}}^2$ in expectation, but now max contribution is κ .

Xue Chen, Eric Price (UT Austin)

Active Regression via Linear-Sample Sparsification

 ERM needs empirical norm to ||f||_S to approximate ||f||_D for all f ∈ F.

- This takes $O(K \log d)$ samples from \mathcal{D} .
- Improved by biasing samples towards high-variance points.

$$\mathcal{D}'(x) = \frac{1}{\kappa} \mathcal{D}(x) \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^2$$

Estimate norm via

$$\|f\|_{\mathcal{S},\mathcal{D}'}^2 := \frac{1}{m} \sum_{i=1}^m \frac{\mathcal{D}(x_i)}{\mathcal{D}'(x_i)} f(x_i)^2$$

Still equals ||f||²_D in expectation, but now max contribution is κ.
 This gives O(κ log d) sample complexity by Matrix Chernoff.

Xue Chen, Eric Price (UT Austin)

Active Regression via Linear-Sample Sparsification

$$\kappa = \mathop{\mathbb{E}}_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^2$$

• Express $f \in \mathbb{F}$ via an orthonormal basis:

$$f(x) = \sum_{j} \alpha_{j} \phi_{j}(x).$$

$$\kappa = \mathop{\mathbb{E}}_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^2$$

• Express $f \in \mathbb{F}$ via an orthonormal basis:

$$f(\mathbf{x}) = \sum_{j} \alpha_{j} \phi_{j}(\mathbf{x}).$$

Then

$$\sup_{\|f\|_{\mathcal{D}}=1} f(x)^2 = \sup_{\|\alpha\|_2=1} \langle \alpha, \{\phi_j(x)\}_{j=1}^d \rangle^2$$

$$\kappa = \mathop{\mathbb{E}}_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^2$$

• Express $f \in \mathbb{F}$ via an orthonormal basis:

$$f(x) = \sum_j \alpha_j \phi_j(x).$$

Then

$$\sup_{\|f\|_{\mathcal{D}}=1} f(x)^2 = \sup_{\|\alpha\|_2=1} \langle \alpha, \{\phi_j(x)\}_{j=1}^d \rangle^2 = \sum_{j=1}^d \phi_j(x)^2.$$

Xue Chen, Eric Price (UT Austin)

Active Regression via Linear-Sample Sparsification

$$\kappa = \mathop{\mathbb{E}}_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^{2}$$

• Express $f \in \mathbb{F}$ via an orthonormal basis:

$$f(\mathbf{x}) = \sum_{j} \alpha_{j} \phi_{j}(\mathbf{x}).$$

• Then

$$\sup_{\|f\|_{\mathcal{D}}=1} f(x)^{2} = \sup_{\|\alpha\|_{2}=1} \langle \alpha, \{\phi_{j}(x)\}_{j=1}^{d} \rangle^{2} = \sum_{j=1}^{d} \phi_{j}(x)^{2}.$$

Hence

$$\kappa = \sum_{j=1}^{a} \mathop{\mathbb{E}}_{x} \phi_j(x)^2 = d.$$

-1

Xue Chen, Eric Price (UT Austin)

Active Regression via Linear-Sample Sparsification

Upsampling x proportional to sup_f f(x)² gets O(d log d) sample complexity.

- Upsampling x proportional to sup_f f(x)² gets O(d log d) sample complexity.
 - Essentially the same as leverage score sampling.

- Upsampling x proportional to sup_f f(x)² gets O(d log d) sample complexity.
 - Essentially the same as leverage score sampling.
 - Also analogous to Spielman-Srivastava graph sparsification

- Upsampling x proportional to sup_f f(x)² gets O(d log d) sample complexity.
 - Essentially the same as leverage score sampling.
 - Also analogous to Spielman-Srivastava graph sparsification
- Can we bring this down to O(d)?

- Upsampling x proportional to sup_f f(x)² gets O(d log d) sample complexity.
 - Essentially the same as leverage score sampling.
 - Also analogous to Spielman-Srivastava graph sparsification
- Can we bring this down to O(d)?
 - Not with independent sampling (coupon collector).

- Upsampling x proportional to sup_f f(x)² gets O(d log d) sample complexity.
 - Essentially the same as leverage score sampling.
 - Also analogous to Spielman-Srivastava graph sparsification
- Can we bring this down to O(d)?
 - Not with independent sampling (coupon collector).
 - Analogous to Batson-Spielman-Srivastava linear size sparsification.

- Upsampling x proportional to sup_f f(x)² gets O(d log d) sample complexity.
 - Essentially the same as leverage score sampling.
 - Also analogous to Spielman-Srivastava graph sparsification
- Can we bring this down to O(d)?
 - Not with independent sampling (coupon collector).
 - Analogous to Batson-Spielman-Srivastava linear size sparsification.
 - **Yes** using Lee-Sun sparsification.

- Upsampling x proportional to sup_f f(x)² gets O(d log d) sample complexity.
 - Essentially the same as leverage score sampling.
 - Also analogous to Spielman-Srivastava graph sparsification
- Can we bring this down to O(d)?
 - Not with independent sampling (coupon collector).
 - Analogous to Batson-Spielman-Srivastava linear size sparsification.
 - ▶ Yes using Lee-Sun sparsification.
- Mean zero noise: $\mathbb{E}[(\widehat{f}(x) f(x))^2] \le \epsilon \mathbb{E}[(y f(x))^2].$

- Upsampling x proportional to sup_f f(x)² gets O(d log d) sample complexity.
 - Essentially the same as leverage score sampling.
 - Also analogous to Spielman-Srivastava graph sparsification
- Can we bring this down to O(d)?
 - Not with independent sampling (coupon collector).
 - Analogous to Batson-Spielman-Srivastava linear size sparsification.
 - ▶ Yes using Lee-Sun sparsification.
- Mean zero noise: $\mathbb{E}[(\widehat{f}(x) f(x))^2] \le \epsilon \mathbb{E}[(y f(x))^2].$
- Generic noise: $\mathbb{E}[(\widehat{f}(x) f(x))^2] \le (1 + \epsilon) \mathbb{E}[(y f(x))^2].$

 \bullet Query model supposes we know ${\cal D}$ and can query any point.

- \bullet Query model supposes we know ${\cal D}$ and can query any point.
- Active learning:

- \bullet Query model supposes we know ${\cal D}$ and can query any point.
- Active learning:
 - Get $x_1, \ldots, x_m \sim \mathcal{D}$.

- \bullet Query model supposes we know ${\cal D}$ and can query any point.
- Active learning:

• Get
$$x_1, \ldots, x_m \sim \mathcal{D}$$
.

• Pick $S \subseteq [m]$ of size s.

- Query model supposes we know $\mathcal D$ and can query any point.
- Active learning:
 - Get $x_1, \ldots, x_m \sim \mathcal{D}$.
 - Pick $S \subseteq [m]$ of size s.
 - Learn y_i for $i \in S$.

- Query model supposes we know $\mathcal D$ and can query any point.
- Active learning:
 - Get $x_1, \ldots, x_m \sim \mathcal{D}$.
 - Pick $S \subseteq [m]$ of size s.
 - Learn y_i for $i \in S$.
- Minimize *s*:

- Query model supposes we know $\mathcal D$ and can query any point.
- Active learning:
 - Get $x_1, \ldots, x_m \sim \mathcal{D}$.
 - Pick $S \subseteq [m]$ of size s.
 - Learn y_i for $i \in S$.
- Minimize s:
 - ▶ $m \to \infty$

- Query model supposes we know $\mathcal D$ and can query any point.
- Active learning:
 - Get $x_1, \ldots, x_m \sim \mathcal{D}$.
 - Pick $S \subseteq [m]$ of size s.
 - Learn y_i for $i \in S$.
- Minimize *s*:
 - $\blacktriangleright \ m \to \infty \implies {\sf learn} \ {\mathcal D} \ {\sf and} \ {\sf query} \ {\sf any} \ {\sf point}$

- Query model supposes we know $\mathcal D$ and can query any point.
- Active learning:
 - Get $x_1, \ldots, x_m \sim \mathcal{D}$.
 - Pick $S \subseteq [m]$ of size s.
 - Learn y_i for $i \in S$.
- Minimize *s*:
 - $m \to \infty \implies$ learn \mathcal{D} and query any point \implies query model.

- Query model supposes we know $\mathcal D$ and can query any point.
- Active learning:
 - Get $x_1, \ldots, x_m \sim \mathcal{D}$.
 - Pick $S \subseteq [m]$ of size s.
 - Learn y_i for $i \in S$.
- Minimize s:
 - ▶ $m \to \infty \implies$ learn D and query any point \implies query model.
 - Hence $s = \Theta(d)$ optimal.

- Query model supposes we know $\mathcal D$ and can query any point.
- Active learning:
 - Get $x_1, \ldots, x_m \sim \mathcal{D}$.
 - Pick $S \subseteq [m]$ of size s.
 - Learn y_i for $i \in S$.
- Minimize s:
 - $\blacktriangleright \ m \to \infty \implies \text{ learn } \mathcal{D} \text{ and query any point } \implies \text{ query model}.$
 - Hence $s = \Theta(d)$ optimal.
- Minimize *m*:

- Query model supposes we know $\mathcal D$ and can query any point.
- Active learning:
 - Get $x_1, \ldots, x_m \sim \mathcal{D}$.
 - Pick $S \subseteq [m]$ of size s.
 - Learn y_i for $i \in S$.
- Minimize s:
 - $\blacktriangleright \ m \to \infty \implies \text{ learn } \mathcal{D} \text{ and query any point } \implies \text{ query model}.$
 - Hence $s = \Theta(d)$ optimal.
- Minimize m:
 - Label every point \implies agnostic learning.

- Query model supposes we know $\mathcal D$ and can query any point.
- Active learning:
 - Get $x_1, \ldots, x_m \sim \mathcal{D}$.
 - Pick $S \subseteq [m]$ of size s.
 - Learn y_i for $i \in S$.
- Minimize s:
 - ▶ $m \to \infty \implies$ learn D and query any point \implies query model.
 - Hence $s = \Theta(d)$ optimal.
- Minimize m:
 - Label every point \implies agnostic learning.
 - Hence $m = \Theta(K \log d + \frac{K}{\epsilon})$ optimal.

- Query model supposes we know $\mathcal D$ and can query any point.
- Active learning:
 - Get $x_1, \ldots, x_m \sim \mathcal{D}$.
 - Pick $S \subseteq [m]$ of size s.
 - Learn y_i for $i \in S$.
- Minimize s:
 - ▶ $m \to \infty \implies$ learn D and query any point \implies query model.
 - Hence $s = \Theta(d)$ optimal.
- Minimize m:
 - Label every point \implies agnostic learning.
 - Hence $m = \Theta(K \log d + \frac{K}{\epsilon})$ optimal.
- Our result: both at the same time.

- Query model supposes we know $\mathcal D$ and can query any point.
- Active learning:
 - Get $x_1, \ldots, x_m \sim \mathcal{D}$.
 - Pick $S \subseteq [m]$ of size s.
 - Learn y_i for $i \in S$.
- Minimize s:
 - ▶ $m \to \infty \implies$ learn D and query any point \implies query model.
 - Hence $s = \Theta(d)$ optimal.
- Minimize m:
 - Label every point \implies agnostic learning.
 - Hence $m = \Theta(K \log d + \frac{K}{\epsilon})$ optimal.
- Our result: both at the same time.
 - In this talk: mostly $s = O(d \log d)$ version.

- Query model supposes we know $\mathcal D$ and can query any point.
- Active learning:
 - Get $x_1, \ldots, x_m \sim \mathcal{D}$.
 - Pick $S \subseteq [m]$ of size s.
 - Learn y_i for $i \in S$.
- Minimize s:
 - ▶ $m \to \infty \implies$ learn D and query any point \implies query model.
 - Hence $s = \Theta(d)$ optimal.
- Minimize m:
 - Label every point \implies agnostic learning.
 - Hence $m = \Theta(K \log d + \frac{K}{\epsilon})$ optimal.
- Our result: both at the same time.
 - In this talk: mostly $s = O(d \log d)$ version.
 - Prior work: $s = O((d \log d)^{5/4})$ [Sabato-Munos '14],

- Query model supposes we know $\mathcal D$ and can query any point.
- Active learning:
 - Get $x_1, \ldots, x_m \sim \mathcal{D}$.
 - Pick $S \subseteq [m]$ of size s.
 - Learn y_i for $i \in S$.
- Minimize s:
 - ▶ $m \to \infty \implies$ learn D and query any point \implies query model.
 - Hence $s = \Theta(d)$ optimal.
- Minimize m:
 - Label every point \implies agnostic learning.
 - Hence $m = \Theta(K \log d + \frac{K}{\epsilon})$ optimal.
- Our result: both at the same time.
 - In this talk: mostly $s = O(d \log d)$ version.
 - Prior work: s = O((d log d)^{5/4}) [Sabato-Munos '14], s = O(d log d) via "volume sampling" [Derezinski-Warmuth-Hsu '18].

• Warmup: suppose we know \mathcal{D} .

- Warmup: suppose we know \mathcal{D} .
- Can simulate the query algorithm via rejection sampling:

$$\mathsf{Pr}[\mathsf{Label}\ x_i] \propto \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x_i)^2.$$

- Warmup: suppose we know \mathcal{D} .
- Can simulate the query algorithm via rejection sampling:

$$\Pr[\text{Label } x_i] = \frac{1}{K} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x_i)^2.$$

- Warmup: suppose we know \mathcal{D} .
- Can simulate the query algorithm via rejection sampling:

$$\Pr[\text{Label } x_i] = \frac{1}{K} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x_i)^2.$$

• Just needs $s = O(d \log d)$.

- Warmup: suppose we know \mathcal{D} .
- Can simulate the query algorithm via rejection sampling:

$$\Pr[\text{Label } x_i] = \frac{1}{K} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x_i)^2.$$

- Just needs $s = O(d \log d)$.
- Chance each sample gets labeled is

$$\mathbb{E}_{x}[\Pr[\mathsf{Label}\ x_{i}]] = \frac{\kappa}{K}$$

- Warmup: suppose we know \mathcal{D} .
- Can simulate the query algorithm via rejection sampling:

$$\Pr[\text{Label } x_i] = \frac{1}{K} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x_i)^2.$$

- Just needs $s = O(d \log d)$.
- Chance each sample gets labeled is

$$\mathbb{E}_{x}[\Pr[\text{Label } x_{i}]] = \frac{\kappa}{K} = \frac{d}{K}.$$

- Warmup: suppose we know \mathcal{D} .
- Can simulate the query algorithm via rejection sampling:

$$\Pr[\text{Label } x_i] = \frac{1}{K} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x_i)^2.$$

- Just needs $s = O(d \log d)$.
- Chance each sample gets labeled is

$$\mathbb{E}_{\times}[\Pr[\text{Label } x_i]] = \frac{\kappa}{K} = \frac{d}{K}.$$

Gives m = O(K log d) unlabeled samples, s = O(d log d) labeled samples.

- Warmup: suppose we know \mathcal{D} .
- Can simulate the query algorithm via rejection sampling:

$$\Pr[\text{Label } x_i] = \frac{1}{K} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x_i)^2.$$

- Just needs $s = O(d \log d)$.
- Chance each sample gets labeled is

$$\mathbb{E}_{x}[\Pr[\text{Label } x_{i}]] = \frac{\kappa}{K} = \frac{d}{K}.$$

Gives m = O(K log d) unlabeled samples, s = O(d log d) labeled samples.

without knowing $\ensuremath{\mathcal{D}}$

without knowing $\ensuremath{\mathcal{D}}$

• Want to perform rejection sampling:

$$\Pr[\text{Label } x_i] = \frac{1}{K} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x_i)^2.$$

without knowing $\ensuremath{\mathcal{D}}$

• Want to perform rejection sampling:

$$\Pr[\text{Label } x_i] = \frac{1}{K} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x_i)^2.$$

but don't know \mathcal{D} .

• Just need to estimate $||f||_{\mathcal{D}}$ for all $f \in \mathbb{F}$.

without knowing $\ensuremath{\mathcal{D}}$

• Want to perform rejection sampling:

$$\Pr[\text{Label } x_i] = \frac{1}{K} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x_i)^2.$$

- Just need to estimate $||f||_{\mathcal{D}}$ for all $f \in \mathbb{F}$.
- Matrix Chernoff gets this with $m = O(K \log d)$ unlabeled samples.

without knowing $\ensuremath{\mathcal{D}}$

• Want to perform rejection sampling:

$$\Pr[\text{Label } x_i] = \frac{1}{K} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x_i)^2.$$

- Just need to estimate $||f||_{\mathcal{D}}$ for all $f \in \mathbb{F}$.
- Matrix Chernoff gets this with $m = O(K \log d)$ unlabeled samples.
- Gives m = O(K log d) unlabeled samples, s = O(d log d) labeled samples.

without knowing $\ensuremath{\mathcal{D}}$

• Want to perform rejection sampling:

$$\Pr[\text{Label } x_i] = \frac{1}{K} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x_i)^2.$$

- Just need to estimate $||f||_{\mathcal{D}}$ for all $f \in \mathbb{F}$.
- Matrix Chernoff gets this with $m = O(K \log d)$ unlabeled samples.
- Gives m = O(K log d) unlabeled samples, s = O(d log d) labeled samples.
- Can improve to $m = O(K \log d)$, s = O(d).

Getting to s = O(d)

Based on Lee-Sun '15

• $O(d \log d)$ comes from coupon collector.

- $O(d \log d)$ comes from coupon collector.
- Change to non-independent sampling:

- $O(d \log d)$ comes from coupon collector.
- Change to non-independent sampling:
 - $x_i \sim \mathcal{D}_i$ where \mathcal{D}_i depends on x_1, \ldots, x_{i-1} .

- $O(d \log d)$ comes from coupon collector.
- Change to non-independent sampling:
 - $x_i \sim \mathcal{D}_i$ where \mathcal{D}_i depends on x_1, \ldots, x_{i-1} .
 - $D_1 = \mathcal{D}'$, D_2 avoids points near x_1 , etc.

- $O(d \log d)$ comes from coupon collector.
- Change to non-independent sampling:
 - $x_i \sim \mathcal{D}_i$ where \mathcal{D}_i depends on x_1, \ldots, x_{i-1} .
 - $D_1 = \mathcal{D}'$, D_2 avoids points near x_1 , etc.
- Need two properties:

- $O(d \log d)$ comes from coupon collector.
- Change to non-independent sampling:
 - $x_i \sim \mathcal{D}_i$ where \mathcal{D}_i depends on x_1, \ldots, x_{i-1} .
 - $D_1 = \mathcal{D}'$, D_2 avoids points near x_1 , etc.
- Need two properties:
 - Norms preserved for all functions in class:

Based on Lee-Sun '15

- $O(d \log d)$ comes from coupon collector.
- Change to non-independent sampling:
 - $x_i \sim \mathcal{D}_i$ where \mathcal{D}_i depends on x_1, \ldots, x_{i-1} .
 - $D_1 = \mathcal{D}'$, D_2 avoids points near x_1 , etc.
- Need two properties:
 - Norms preserved for all functions in class:

Based on Lee-Sun '15

- $O(d \log d)$ comes from coupon collector.
- Change to non-independent sampling:
 - $x_i \sim \mathcal{D}_i$ where \mathcal{D}_i depends on x_1, \ldots, x_{i-1} .
 - $D_1 = \mathcal{D}'$, D_2 avoids points near x_1 , etc.
- Need two properties:
 - Norms preserved for all functions in class:

$$\mathop{\mathbb{E}}_{x\sim D} f(x)^2 \approx \sum_{i=1}^s \frac{1}{s} \frac{D(x_i)}{\mathcal{D}_i(x_i)} f(x_i)^2$$

Based on Lee-Sun '15

- $O(d \log d)$ comes from coupon collector.
- Change to non-independent sampling:
 - $x_i \sim \mathcal{D}_i$ where \mathcal{D}_i depends on x_1, \ldots, x_{i-1} .
 - $D_1 = \mathcal{D}'$, D_2 avoids points near x_1 , etc.
- Need two properties:
 - Norms preserved for all functions in class:

$$\mathop{\mathbb{E}}_{x\sim D} f(x)^2 \approx \sum_{i=1}^s \frac{1}{s} \frac{D(x_i)}{\mathcal{D}_i(x_i)} f(x_i)^2$$

$$\frac{1}{s}K_{\mathcal{D}_i} \leq \epsilon$$

Based on Lee-Sun '15

- $O(d \log d)$ comes from coupon collector.
- Change to non-independent sampling:
 - $x_i \sim \mathcal{D}_i$ where \mathcal{D}_i depends on x_1, \ldots, x_{i-1} .
 - $D_1 = \mathcal{D}'$, D_2 avoids points near x_1 , etc.
- Need two properties:
 - Norms preserved for all functions in class:

$$\mathop{\mathbb{E}}_{x\sim D} f(x)^2 \approx \sum_{i=1}^s \frac{1}{s} \frac{D(x_i)}{\mathcal{D}_i(x_i)} f(x_i)^2$$

$$\sup_{f,x} \frac{f(x)^2}{\mathbb{E}_{x'\sim\mathcal{D}_i} f(x')^2} =: \frac{1}{s} \mathcal{K}_{\mathcal{D}_i} \leq \epsilon$$

Based on Lee-Sun '15

- $O(d \log d)$ comes from coupon collector.
- Change to non-independent sampling:
 - $x_i \sim \mathcal{D}_i$ where \mathcal{D}_i depends on x_1, \ldots, x_{i-1} .
 - $D_1 = \mathcal{D}'$, D_2 avoids points near x_1 , etc.
- Need two properties:
 - Norms preserved for all functions in class:

$$\mathop{\mathbb{E}}_{x\sim D} f(x)^2 \approx \sum_{i=1}^s \frac{\alpha_i}{\mathcal{D}_i(x_i)} f(x_i)^2$$

$$\sup_{f,x} \frac{f(x)^2}{\mathbb{E}_{x'\sim \mathcal{D}_i} f(x')^2} =: \alpha_i \mathcal{K}_{\mathcal{D}_i} \le \epsilon$$

Based on Lee-Sun '15

- $O(d \log d)$ comes from coupon collector.
- Change to non-independent sampling:
 - $x_i \sim \mathcal{D}_i$ where \mathcal{D}_i depends on x_1, \ldots, x_{i-1} .
 - $D_1 = \mathcal{D}'$, D_2 avoids points near x_1 , etc.
- Need two properties:
 - Norms preserved for all functions in class:

$$\mathop{\mathbb{E}}_{x\sim D} f(x)^2 \approx \sum_{i=1}^s \alpha_i \frac{D(x_i)}{\mathcal{D}_i(x_i)} f(x_i)^2$$

$$\sup_{f,x} \frac{f(x)^2}{\mathbb{E}_{x'\sim\mathcal{D}_i} f(x')^2} =: \alpha_i \mathcal{K}_{\mathcal{D}_i} \le \epsilon$$

- Both properties achievable with Lee-Sun sparsification.
- Xue Chen, Eric Price (UT Austin)

Nonlinear spaces

$$f(x) = \sum_{j=1}^d v_j e^{2\pi i f_j x}.$$

$$f(x) = \sum_{j=1}^d v_j e^{2\pi i f_j x}.$$

• Can pick sample points $x \in [0, 1]$, want to minimize

$$\mathop{\mathbb{E}}_{x\in[0,1]}(\widehat{f}(x)-f(x))^2.$$

$$f(x) = \sum_{j=1}^d v_j e^{2\pi i f_j x}.$$

• Can pick sample points $x \in [0, 1]$, want to minimize

$$\mathop{\mathbb{E}}_{x\in[0,1]}(\widehat{f}(x)-f(x))^2.$$

• For noise tolerance, need empirical norm pprox actual norm.

$$f(x) = \sum_{j=1}^d v_j e^{2\pi i f_j x}.$$

• Can pick sample points $x \in [0, 1]$, want to minimize

$$\mathop{\mathbb{E}}_{x\in[0,1]}(\widehat{f}(x)-f(x))^2.$$

• For noise tolerance, need empirical norm pprox actual norm.

• Uniform sampling depends on

$$K = \sup_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^2.$$

• Uniform sampling depends on

$$K = \sup_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^2.$$

Unknown exactly what this is for Fourier-sparse signals.

• Uniform sampling depends on

$$K = \sup_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^2.$$

- Unknown exactly what this is for Fourier-sparse signals.
- ► $d^2 \le K \lesssim d^4 \log^3 d$. [Chen-Kane-Price-Song '16]

• Uniform sampling depends on

$$K = \sup_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^2.$$

- Unknown exactly what this is for Fourier-sparse signals.
- ► $d^2 \le K \lesssim d^4 \log^3 d$. [Chen-Kane-Price-Song '16]
- Biasing the samples lets us reduce this to

$$\kappa = \mathop{\mathbb{E}}_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^{2}.$$

• Uniform sampling depends on

$$K = \sup_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^2.$$

- Unknown exactly what this is for Fourier-sparse signals.
- $d^2 \le K \lesssim d^4 \log^3 d$. [Chen-Kane-Price-Song '16]

• Biasing the samples lets us reduce this to

$$\kappa = \mathop{\mathbb{E}}_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^{2}.$$

•
$$d \leq \kappa \lesssim d \log^2 d$$
.

• Uniform sampling depends on

$$K = \sup_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^2.$$

- Unknown exactly what this is for Fourier-sparse signals.
- ► $d^2 \le K \lesssim d^4 \log^3 d$. [Chen-Kane-Price-Song '16]
- Biasing the samples lets us reduce this to

$$\kappa = \mathop{\mathbb{E}}_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} f(x)^{2}.$$

- $d \leq \kappa \lesssim d \log^2 d$.
- Analogous to distinction between Markov Brothers' inequality and Bernstein's inequality for polynomials.

• For any $\Delta > 0$, consider the degree-*d* polynomial $p(z) = \sum_{i=1}^{d} \beta_i z^i$ with roots at $e^{2\pi i f_j \Delta}$ for all *j*.

• For any $\Delta > 0$, consider the degree-*d* polynomial $p(z) = \sum_{i=1}^{d} \beta_i z^i$ with roots at $e^{2\pi i f_j \Delta}$ for all *j*.

$$\sum_{i=1}^d \beta_i f(x + \Delta i)$$

• For any $\Delta > 0$, consider the degree-*d* polynomial $p(z) = \sum_{i=1}^{d} \beta_i z^i$ with roots at $e^{2\pi i f_j \Delta}$ for all *j*.

$$\sum_{i=1}^{d} \beta_i f(x + \Delta i) = \sum_{j=1}^{d} v_j e^{2\pi i f_j x} p(e^{2\pi i f_j \Delta})$$

• For any $\Delta > 0$, consider the degree-*d* polynomial $p(z) = \sum_{i=1}^{d} \beta_i z^i$ with roots at $e^{2\pi i f_j \Delta}$ for all *j*.

$$\sum_{i=1}^d \beta_i f(x+\Delta i) = \sum_{j=1}^d v_j e^{2\pi \mathbf{i} f_j x} p(e^{2\pi \mathbf{i} f_j \Delta}) = 0.$$

• For any $\Delta > 0$, consider the degree-*d* polynomial $p(z) = \sum_{i=1}^{d} \beta_i z^i$ with roots at $e^{2\pi i f_j \Delta}$ for all *j*.

$$\sum_{i=1}^d \beta_i f(x+\Delta i) = \sum_{j=1}^d v_j e^{2\pi i f_j x} p(e^{2\pi i f_j \Delta}) = 0.$$

• For any $\Delta > 0$, consider the degree-*d* polynomial $p(z) = \sum_{i=1}^{d} \beta_i z^i$ with roots at $e^{2\pi i f_j \Delta}$ for all *j*.

$$\sum_{i=1}^d \beta_i f(x+\Delta i) = \sum_{j=1}^d v_j e^{2\pi i f_j x} p(e^{2\pi i f_j \Delta}) = 0.$$

• For any $\Delta > 0$, consider the degree-*d* polynomial $p(z) = \sum_{i=1}^{d} \beta_i z^i$ with roots at $e^{2\pi i f_j \Delta}$ for all *j*.

$$\sum_{i=1}^d \beta_i f(x+\Delta i) = \sum_{j=1}^d v_j e^{2\pi i f_j x} p(e^{2\pi i f_j \Delta}) = 0.$$

For any Δ > 0, consider the degree-d polynomial p(z) = Σ^d_{i=1} β_izⁱ with roots at e^{2πif_jΔ} for all j.

• For any x,

$$\sum_{i=1}^d \beta_i f(x+\Delta i) = \sum_{j=1}^d v_j e^{2\pi i f_j x} p(e^{2\pi i f_j \Delta}) = 0.$$

• In particular, for $i^* = \arg \max |\beta_i|$,

$$|f(x+i^*\Delta)| \leq \sum_{i \in [d] \setminus i^*} |f(x+i\Delta)|$$

For any Δ > 0, consider the degree-d polynomial p(z) = Σ^d_{i=1} β_izⁱ with roots at e^{2πif_jΔ} for all j.

• For any x,

$$\sum_{i=1}^d \beta_i f(x+\Delta i) = \sum_{j=1}^d v_j e^{2\pi i f_j x} p(e^{2\pi i f_j \Delta}) = 0.$$

• In particular, for $i^* = \arg \max |\beta_i|$,

$$|f(x+i^*\Delta)| \leq \sum_{i \in [d] \setminus i^*} |f(x+i\Delta)|$$

Hence

$$|f(x)| \leq \sum_{\substack{i=-d\\i\neq 0}}^{d} |f(x+i\Delta)|$$

Xue Chen, Eric Price (UT Austin)

Active Regression via Linear-Sample Sparsification

For any Δ > 0, consider the degree-d polynomial p(z) = Σ^d_{i=1} β_izⁱ with roots at e^{2πif_jΔ} for all j.

• For any x,

$$\sum_{i=1}^d \beta_i f(x+\Delta i) = \sum_{j=1}^d v_j e^{2\pi i f_j x} p(e^{2\pi i f_j \Delta}) = 0.$$

• In particular, for $i^* = \arg \max |\beta_i|$,

$$|f(x+i^*\Delta)| \leq \sum_{i\in [d]\setminus i^*} |f(x+i\Delta)|$$

• Hence (with a little more care)

$$|f(x)|^2 \le 3\sum_{\substack{i=-2d \ i\neq 0}}^{2d} |f(x+i\Delta)|^2$$

Xue Chen, Eric Price (UT Austin)

Lemma

If f is d-Fourier-sparse, then for all x and Δ we have

$$|f(x)|^2 \le 3\sum_{\substack{i=-2d\\i\neq 0}}^{2d} |f(x+i\Delta)|^2$$

Lemma

If f is d-Fourier-sparse, then for all x and Δ we have

$$|f(x)|^2 \le 3\sum_{\substack{i=-2d\\i\neq 0}}^{2d} |f(x+i\Delta)|^2$$

• Suppose $\mathcal D$ is uniform on [-1,1]. Then for all $x\in [-1,1]$,

$$|f(x)|^2 \lesssim rac{d\log d}{1-|x|} \mathop{\mathbb{E}}\limits_{x'} f(x')^2.$$

by integrating Δ from 0 to 1 - |x|.

Lemma

If f is d-Fourier-sparse, then for all x and Δ we have

$$|f(x)|^2 \le 3\sum_{\substack{i=-2d\\i\neq 0}}^{2d} |f(x+i\Delta)|^2$$

• Suppose \mathcal{D} is uniform on [-1,1]. Then for all $x \in [-1,1]$,

$$|f(x)|^2 \lesssim rac{d\log d}{1-|x|} \mathop{\mathbb{E}}\limits_{x'} f(x')^2.$$

by integrating Δ from 0 to 1 - |x|.

Hence

$$\kappa = \mathop{\mathbb{E}}\limits_{x} \sup_{\substack{f \in \mathbb{F} \\ \|f\|_{\mathcal{D}} = 1}} |f(x)|^2 \lesssim d \log^2 d.$$

Xue Chen, Eric Price (UT Austin)

Biased sampling means ||f||_S ≈ ||f||_D in O(κ) samples for any single f ∈ 𝔽.

- Biased sampling means ||f||_S ≈ ||f||_D in O(κ) samples for any single f ∈ 𝔽.
- Linear spaces: $O(\kappa \log d)$ for every $f \in \mathbb{F}$ by matrix Chernoff.

- Biased sampling means ||f||_S ≈ ||f||_D in O(κ) samples for any single f ∈ 𝔽.
- Linear spaces: $O(\kappa \log d)$ for every $f \in \mathbb{F}$ by matrix Chernoff.
- Sparse Fourier: need to union bound over a net

- Biased sampling means ||f||_S ≈ ||f||_D in O(κ) samples for any single f ∈ 𝔽.
- Linear spaces: $O(\kappa \log d)$ for every $f \in \mathbb{F}$ by matrix Chernoff.
- Sparse Fourier: need to union bound over a net
 - Known net size is $2^{\tilde{O}(d^3)}$.

- Biased sampling means ||f||_S ≈ ||f||_D in O(κ) samples for any single f ∈ 𝔽.
- Linear spaces: $O(\kappa \log d)$ for every $f \in \mathbb{F}$ by matrix Chernoff.
- Sparse Fourier: need to union bound over a net
 - Known net size is $2^{\tilde{O}(d^3)}$.
 - Gives $\tilde{O}(d^3\kappa) = \tilde{O}(d^4)$ queries/labeled samples.

- Biased sampling means ||f||_S ≈ ||f||_D in O(κ) samples for any single f ∈ 𝔽.
- Linear spaces: $O(\kappa \log d)$ for every $f \in \mathbb{F}$ by matrix Chernoff.
- Sparse Fourier: need to union bound over a net
 - Known net size is $2^{\tilde{O}(d^3)}$.
 - Gives $\tilde{O}(d^3\kappa) = \tilde{O}(d^4)$ queries/labeled samples.
 - Gives $\tilde{O}(d^3K) = \tilde{O}(d^7)$ unlabeled samples.

• Active learning can be optimal in both criteria simultaneously

• Active learning can be optimal in both criteria simultaneously

• $O(K \log d + \frac{K}{\epsilon})$ unlabeled examples.

- Active learning can be optimal in both criteria simultaneously
 - $O(K \log d + \frac{K}{\epsilon})$ unlabeled examples.
 - $O(d/\epsilon)$ labeled examples

- Active learning can be optimal in both criteria simultaneously
 - $O(K \log d + \frac{K}{\epsilon})$ unlabeled examples.
 - $O(d/\epsilon)$ labeled examples
- Gets some improvement for Fourier-sparse signals.

- Active learning can be optimal in both criteria simultaneously
 - $O(K \log d + \frac{K}{\epsilon})$ unlabeled examples.
 - $O(d/\epsilon)$ labeled examples
- Gets some improvement for Fourier-sparse signals.
 - Tight results via chaining and/or better net?

- Active learning can be optimal in both criteria simultaneously
 - $O(K \log d + \frac{K}{\epsilon})$ unlabeled examples.
 - $O(d/\epsilon)$ labeled examples
- Gets some improvement for Fourier-sparse signals.
 - Tight results via chaining and/or better net?
- Can we go beyond ℓ_2 and linear spaces?

- Active learning can be optimal in both criteria simultaneously
 - $O(K \log d + \frac{K}{\epsilon})$ unlabeled examples.
 - $O(d/\epsilon)$ labeled examples
- Gets some improvement for Fourier-sparse signals.
 - Tight results via chaining and/or better net?
- Can we go beyond ℓ_2 and linear spaces?
 - Logistic regression?

- Active learning can be optimal in both criteria simultaneously
 - $O(K \log d + \frac{K}{\epsilon})$ unlabeled examples.
 - $O(d/\epsilon)$ labeled examples
- Gets some improvement for Fourier-sparse signals.
 - Tight results via chaining and/or better net?
- Can we go beyond ℓ_2 and linear spaces?
 - Logistic regression?
- Better theory for active learning ?

- Active learning can be optimal in both criteria simultaneously
 - $O(K \log d + \frac{K}{\epsilon})$ unlabeled examples.
 - $O(d/\epsilon)$ labeled examples
- Gets some improvement for Fourier-sparse signals.
 - Tight results via chaining and/or better net?
- Can we go beyond ℓ_2 and linear spaces?
 - Logistic regression?
- Better theory for active learning ?
 - Choose sample points sequentially.

- Active learning can be optimal in both criteria simultaneously
 - $O(K \log d + \frac{K}{\epsilon})$ unlabeled examples.
 - $O(d/\epsilon)$ labeled examples
- Gets some improvement for Fourier-sparse signals.
 - Tight results via chaining and/or better net?
- Can we go beyond ℓ_2 and linear spaces?
 - Logistic regression?
- Better theory for active learning ?
 - Choose sample points sequentially.
 - Dynamically changing functions.

- Active learning can be optimal in both criteria simultaneously
 - $O(K \log d + \frac{K}{\epsilon})$ unlabeled examples.
 - $O(d/\epsilon)$ labeled examples
- Gets some improvement for Fourier-sparse signals.
 - Tight results via chaining and/or better net?
- Can we go beyond ℓ_2 and linear spaces?
 - Logistic regression?
- Better theory for active learning ?
 - Choose sample points sequentially.
 - Dynamically changing functions.

Thank You

Xue Chen, Eric Price (UT Austin)

Active Regression via Linear-Sample Sparsification

Xue Chen, Eric Price (UT Austin)

Active Regression via Linear-Sample Sparsification