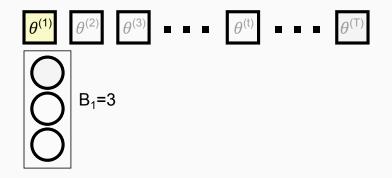


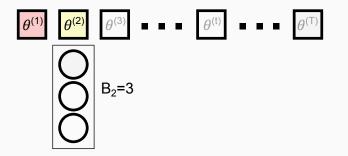
Allocating Resources, in the Future

Sid Banerjee School of ORIE May 3, 2018

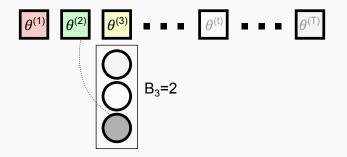
Simons Workshop on Mathematical and Computational Challenges in Real-Time Decision Making



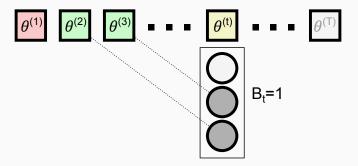
- single resource, initial capacity B; T agents arrive sequentially
- agent t has type $\theta^{(t)}$ = reward earned if agent is allocated



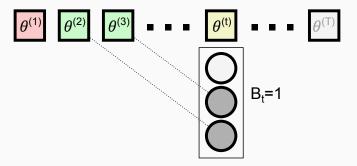
- single resource, initial capacity B; T agents arrive sequentially
- agent t has type $\theta^{(t)}$ = reward earned if agent is allocated
- principle makes irrevocable decisions



- single resource, initial capacity B; T agents arrive sequentially
- agent t has type $\theta^{(t)}$ = reward earned if agent is allocated
- principle makes irrevocable decisions; resource is non-replenishable



- single resource, initial capacity B; T agents arrive sequentially
- agent t has type $\theta^{(t)}$ = reward earned if agent is allocated
- principle makes irrevocable decisions; resource is non-replenishable
- assumptions on agent types $\{\theta_t\}$
 - finite set of values $\{v_i\}_{i=1}^n$ (e.g. $\theta^{(t)} = v_i$ with prob p_i i.i.d.)
 - in general: arrivals can be time varying, correlated

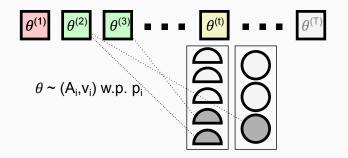


- single resource, initial capacity B; T agents arrive sequentially
- agent t has type $\theta^{(t)}$ = reward earned if agent is allocated
- principle makes irrevocable decisions; resource is non-replenishable
- assumptions on agent types $\{\theta_t\}$
 - finite set of values $\{v_i\}_{i=1}^n$ (e.g. $\theta^{(t)} = v_i$ with prob p_i i.i.d.)
 - in general: arrivals can be time varying, correlated

online resource allocation problem

allocate resources to maximize sum of rewards

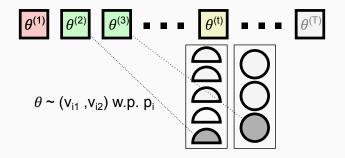
online resource allocation: first generalization



- *d* resources, initial capacities (B^1, B^2, \ldots, B^d)
- **T** agents; each has type $\theta_i = (A_i, v_i)$
 - $A_i \in \{0,1\}^d$: resource requirement, v_i : value
 - agent has type θ_i with prob p_i

also known as: network revenue management; single-minded buyer

online resource allocation: second generalization



- *d* resources, initial capacities (B^1, B^2, \ldots, B^d)
- T agents arrive sequentially
- each has type $\theta = (v_{i1}, v_{i2}, \dots, v_{id})$, wants single resource

also known as: online weighted matching; unit-demand buyer

online allocation across fields

Foundations and Trends [®] In Theoretical Computer Science 3:2-3	Algorithms and Uncertainty Boot Camp Aug. 22. Aug. 28, 2010 Return to evert \$ Click on the titles of individual tables for abstract, sildes and archived video. Please note that this activative is achieved to change. All events table place in the Cabin Lab Ac Monday, August 22nd, 2016		THE THEORY AND PRACTICE OF REVENUE MANAGEMENT
The Design of Competitive Online Algorithms via a Primal–Dual Approach			
Niv Buchbinder and Joseph (Seffi) Naor	8:45 am - 9:20 am 9:20 am - 9:30 am	Coffee and Check-In Opening Remarks	
	9:30 am - 10:30 am 10:30 am - 11:00 am	Approximation Algorithms for Stochastic Optimization I Kamesh Munagala, Duke University Break	
	11:00 am - 12:00 pm 12:00 pm - 1:30 pm	Approximation Algorithms for Stochastic Optimization II Karnesh Munagala, Duke University Lunch	
new	1:30 pm - 2:30 pm 2:30 pm - 3:00 pm	Sequential Decision Making: Prophets and Secretaries I Matt Weinberg, Princeton University Break	
the essence of knowledge	2:30 pm - 3:00 pm 3:00 pm - 4:00 pm	Dreak Sequential Decision Making: Prophets and Secretaries II Matt Weinbarg, Princeton University	n Springer

- related problems studied in Markov decision processes, online algorithms, prophet inequalities, revenue management, etc.
- informational variants:

distributional knowledge \prec bandit settings \prec adversarial inputs

the 'deep' learning revolution

vast improvements in machine learning for data-driven prediction

the deep learning revolution

vast improvements in machine learning for data-driven prediction

• axiom: have access to black-box predictive algorithms

the deep learning revolution

vast improvements in machine learning for data-driven prediction

• axiom: have access to black-box predictive algorithms

core question of this talk

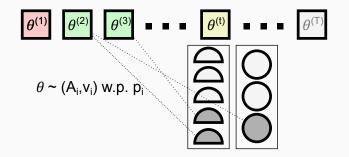
how does having such an oracle affect online resource allocation?

- TL;DR new online allocation policies with strong regret bounds
- · re-examining old questions leads to surprising new insights

bridging online allocation and predictive models

The Bayesian Prophet: A Low-Regret Framework for Online Decision Making Alberto Vera & S.B. (2018) https://ssrn.com/abstract_id=3158062

focus of talk: allocation with single-minded agents

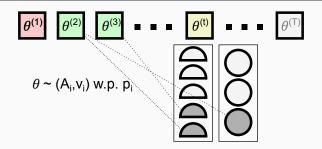


- *d* resources, initial capacities (B^1, B^2, \ldots, B^d)
- T agents arrive sequentially; each has type $\theta = (A, v)$
 - A = resource requirement, v = value
 - agent has type θ_i with prob p_i , i.i.d.

online allocation problem

allocate resources to maximize sum of rewards

performance measure

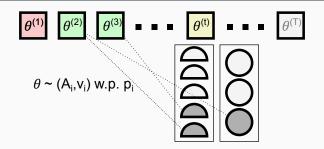


optimal policy

can be computed via dynamic programming

- requires exact distributional knowledge
- 'curse of dimensionality': |state-space| = $T \times B_1 \times \ldots \times B_d$
- does not quantify cost of uncertainty

performance measure



optimal policy

can be computed via dynamic programming

- requires exact distributional knowledge
- 'curse of dimensionality': |state-space| = $T \times B_1 \times \ldots \times B_d$
- does not quantify cost of uncertainty

'prophet' benchmark

 V^{off} : OFFLINE optimal policy; has full knowledge of $\{\theta_1, \theta_2, \ldots, \theta_T\}$

performance measure: regret

prophet benchmark: V^{off}

- OFFLINE knows entire type sequence $\{\theta_t | t = 1 \dots T\}$
- for the network revenue management setting, V^{off} given by

$$max. \sum_{i=1}^{n} x_i v_i$$

s.t. $\sum_{i=1}^{n} A_i x_i \le B$
 $0 \le x_i \le N_i [1:$

 $-N_i[1:T] \sim \#$ of arrivals of type $\theta_i = (A_i, v_i)$ over $\{1, 2, \dots, T\}$

regret

$$\mathbb{E}[Regret] = \mathbb{E}[V^{off} - V^{alg}]$$

given black-box predictive oracle about performance of OFFLINE (specifically, for any t, B, have statistical info about $V^{off}[t, T]$)

given black-box predictive oracle about performance of OFFLINE (specifically, for any t, B, have statistical info about $V^{off}[t, T]$)

• let $\pi_t = \mathbb{P}[V^{off}[t, T]$ decreases if OFFLINE accepts t^{th} arrival]

given black-box predictive oracle about performance of OFFLINE (specifically, for any t, B, have statistical info about $V^{off}[t, T]$)

• let $\pi_t = \mathbb{P}[V^{off}[t, T]$ decreases if OFFLINE accepts t^{th} arrival]

Bayes selector

accept t^{th} arrival iff $\pi_t > 0.5$

given black-box predictive oracle about performance of OFFLINE (specifically, for any t, B, have statistical info about $V^{off}[t, T]$)

• let $\pi_t = \mathbb{P}[V^{off}[t, T]$ decreases if OFFLINE accepts t^{th} arrival]

Bayes selector

accept t^{th} arrival iff $\pi_t > 0.5$

theorem [Vera & B, 2018]

(under mild tail bounds on $N_i[t : T]$) Bayes selector has $\mathbb{E}[Regret]$ independent of T, B_1, B_2, \dots, B_d

given black-box predictive oracle about performance of OFFLINE (specifically, for any t, B, have statistical info about $V^{off}[t, T]$)

• let $\pi_t = \mathbb{P}[V^{off}[t, T]$ decreases if OFFLINE accepts t^{th} arrival]

Bayes selector

accept t^{th} arrival iff $\pi_t > 0.5$

theorem [Vera & B, 2018]

(under mild tail bounds on $N_i[t:T]$) Bayes selector has $\mathbb{E}[Regret]$ independent of T, B_1, B_2, \dots, B_d

- arrivals can be time-varying, correlated; discounted rewards
- works for general settings (single-minded, unit-demand, etc.)
- can use approx oracle (e.g., from samples)

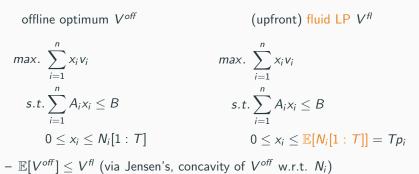
standard approach: randomized admission control (RAC)

offline optimum V^{off}

$$max. \sum_{i=1}^{n} x_i v_i$$

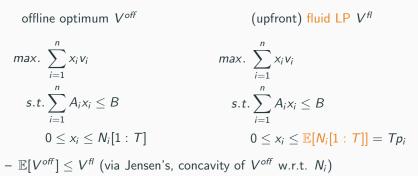
s.t. $\sum_{i=1}^{n} A_i x_i \le B$
 $0 \le x_i \le N_i [1:T]$

standard approach: randomized admission control (RAC)



- fluid RAC: accept type θ_i with prob $\frac{x_i}{T_{p_i}}$

standard approach: randomized admission control (RAC)



- fluid RAC: accept type θ_i with prob $\frac{x_i}{T\rho_i}$

proposition

fluid RAC has $\mathbb{E}[Regret] = \Theta(\sqrt{T})$

- [Gallego & van Ryzin'97], [Maglaras & Meissner'06]
- N.B. this is a static policy!

12/18

offline optimum V^{off} re-solved fluid LP $V^{fl}(t)$:max. $\sum_{i=1}^{n} x_i v_i$ max. $\sum_{i=1}^{n} x_i[t] v_i$ s.t. $\sum_{i=1}^{n} A_i x_i \leq B$ s.t. $\sum_{i=1}^{n} A_i x_i[t] \leq B[t]$ $0 \leq x_i \leq N_i$ $0 \leq x_i[t] \leq \mathbb{E}[N_i[t:T]] = (T-t)p_i$

AC with re-solving: at time t, accept type θ_i with prob $\frac{x_i[t]}{(T-t)p_i}$

offline optimum V^{off} re-solved fluid LP $V^{fl}(t)$:max. $\sum_{i=1}^{n} x_i v_i$ max. $\sum_{i=1}^{n} x_i[t] v_i$ s.t. $\sum_{i=1}^{n} A_i x_i \leq B$ s.t. $\sum_{i=1}^{n} A_i x_i[t] \leq B[t]$ $0 \leq x_i \leq N_i$ $0 \leq x_i[t] \leq \mathbb{E}[N_i[t:T]] = (T-t)p_i$

AC with re-solving: at time t, accept type θ_i with prob $\frac{x_i[t]}{(T-t)p_i}$

- regret improves to $o(\sqrt{T})$ [Reiman & Wang'08]
- O(1) regret under (dual) non-degeneracy [Jasin & Kumar'12]

offline optimum V^{off} re-solved fluid LP $V^{fl}(t)$:max. $\sum_{i=1}^{n} x_i v_i$ max. $\sum_{i=1}^{n} x_i[t] v_i$ s.t. $\sum_{i=1}^{n} A_i x_i \leq B$ s.t. $\sum_{i=1}^{n} A_i x_i[t] \leq B[t]$ $0 \leq x_i \leq N_i$ $0 \leq x_i[t] \leq \mathbb{E}[N_i[t:T]] = (T-t)p_i$

AC with re-solving: at time t, accept type θ_i with prob $\frac{x_i[t]}{(T-t)p_i}$

- regret improves to $o(\sqrt{T})$ [Reiman & Wang'08]
- O(1) regret under (dual) non-degeneracy [Jasin & Kumar'12]
- most results use V^{fl} as benchmark (including 'prophet inequality')

proposition [Vera & B'18]

for degenerate instances, $V^{fl} - \mathbb{E}[V^{off}] = \Omega(\sqrt{T})$

 $\pi_t = \mathbb{P}[V^{off}[t, T] \text{ decreases if OFFLINE accepts } t^{th} \text{ arrival}] \\ - \text{ accept } t^{th} \text{ arrival iff } \pi_t > 0.5$

 $\pi_t = \mathbb{P} \big[V^{off}[t, T] \text{ decreases if OFFLINE accepts } t^{th} \text{ arrival} \big] \\ - \text{ accept } t^{th} \text{ arrival iff } \pi_t > 0.5$

re-solved fluid LP

$$max. \sum_{i=1}^{n} x_i[t] v_i$$

s.t. $Ax[t] \le B[t],$
 $0 \le x_i[t] \le \mathbb{E}[N_i[t:T]]$

 $\pi_t = \mathbb{P}[V^{off}[t, T] \text{ decreases if OFFLINE accepts } t^{th} \text{ arrival}] \\ - \text{ accept } t^{th} \text{ arrival iff } \pi_t > 0.5$

re-solved fluid LP

 $max. \sum_{i=1}^{n} x_i[t] v_i$ s.t. $Ax[t] \le B[t],$ $0 \le x_i[t] \le \mathbb{E}[N_i[t:T]]$ the re-solved LP gives an approximate admission oracle

fluid Bayes selector

accept type θ_i iff $\frac{x_i[t]}{\mathbb{E}[N_i[t:T]]} > 0.5$

 $\pi_t = \mathbb{P}[V^{off}[t, T] \text{ decreases if OFFLINE accepts } t^{th} \text{ arrival}] \\ - \text{ accept } t^{th} \text{ arrival iff } \pi_t > 0.5$

re-solved fluid LP max. $\sum_{i=1}^{n} x_i[t] v_i$ s.t. $Ax[t] \le B[t],$ $0 \le x_i[t] \le \mathbb{E}[N_i[t:T]]$

the re-solved LP gives an approximate admission oracle

fluid Bayes selector

accept type θ_i iff $\frac{x_i[t]}{\mathbb{E}[N_i[t:T]]} > 0.5$

proposition [Vera & B, 2018]

fluid Bayes selector has $\mathbb{E}[Regret] \leq 2v_{\max} \sum_{i=1}^{n} p_i^{-1}$

Bayes selector $\pi_t = \mathbb{P}[V^{off}[t, T] \text{ decreases if OFFLINE accepts } t^{th} \text{ arrival}]$ - accept t^{th} arrival iff $\pi_t > 0.5$

re-solved fluid LP max. $\sum_{i=1}^{n} x_i[t] v_i$ s.t. $Ax[t] \le B[t],$ $0 \le x_i[t] \le \mathbb{E}[N_i[t:T]]$

the re-solved LP gives an approximate admission oracle

fluid Bayes selector

accept type
$$\theta_i$$
 iff $\frac{x_i[t]}{\mathbb{E}[N_i[t:T]]} > 0.5$

proposition [Vera & B, 2018]

fluid Bayes selector has $\mathbb{E}[Regret] \leq 2v_{\max} \sum_{i=1}^{n} p_i^{-1}$

- proposed for multi-secretary by [Gurvich & Arlotto, 2017]
- NRM via partial resolving [Bumpensanti & Wang, 2018]

the proof comprises two parts

- 1. compensated coupling: regret bound for Bayes selector for generic online decision problem
- 2. bound compensation for online packing problems via LP sensitivity, measure concentration

• let $V^{off}(t, B[t]) \triangleq \text{OFFLINE}$ starting from current state

- let $V^{off}(t, B[t]) \triangleq \text{OFFLINE}$ starting from current state
- for any action a, disagreement set Q_t(a) ≜ set of sample-paths ω where a is sub-optimal (given B[t])

- let $V^{off}(t, B[t]) \triangleq$ OFFLINE starting from current state
- for any action a, disagreement set Q_t(a) ≜ set of sample-paths ω where a is sub-optimal (given B[t])
- can compensate OFFLINE to follow same action a as ONLINE

$$V^{off}(t, B[t]) \leq R_t^{alg} + v_{\max} \mathbf{1}_{\omega \in Q_t(a)} + V^{off}(t+1, B[t+1])$$

- let $V^{off}(t, B[t]) \triangleq$ OFFLINE starting from current state
- for any action a, disagreement set Q_t(a) ≜ set of sample-paths ω where a is sub-optimal (given B[t])
- can compensate OFFLINE to follow same action *a* as ONLINE

$$V^{off}(t, B[t]) \leq R_t^{alg} + v_{\max} \mathbf{1}_{\omega \in Q_t(a)} + V^{off}(t+1, B[t+1])$$

• iterating, we get

$$\mathbb{E}[V^{off}] \leq \mathbb{E}[V^{alg}] + v_{\max} \sum_{t=1}^{T} \mathbb{P}[Q_t(a_t)]$$

note: Bayes selector picks $a_t = \min_a \mathbb{P}[Q_t(a_t)]$

- if Bayes selector rejects type θ_i, assume OFFLINE front-loads θ_i
 error only if OFFLINE rejects all future θ_i
- if Bayes selector accepts type θ_i , assume OFFLINE back-loads θ_i
 - error only if OFFLINE accepts all future θ_i

- if Bayes selector rejects type θ_i, assume OFFLINE front-loads θ_i
 error only if OFFLINE rejects all future θ_i
- if Bayes selector accepts type θ_i, assume OFFLINE back-loads θ_i
 error only if OFFLINE accepts all future θ_i
- claim: smaller of the two events has probability $e^{-c(T-t)}$

online allocation via the Bayes selector

- new online allocation policy with horizon-independent regret
- way to use black-box predictive algorithms
- generic regret bounds for any online decision problem

Thanks!