
Streaming Algorithms for Matchings
in Low Arboricity Graphs

Sofya Vorotnikova

University of Massachusetts Amherst

Joint work with Andrew McGregor

Representing Data as a Graph
Example: Social Network

Representing Data as a Graph
Example: Social Network

Representing Data as a Graph
Example: Social Network

List of edges incident to a vertex

Representing Data as a Graph
Example: Social Network

users can friend and
unfriend others

edges of the graph get
added and deleted

Updates are not grouped by user/vertex — arbitrary order

Representing Data as a Graph
Example: Social Network

Simpler model: arbitrary order, but only adding edges

Streaming Model(s)

• Vertex set is fixed

• Start with no edges

• Edge updates arrive in a sequence

• One pass

insertions deletions arbitrary order

dynamic

insert-only

adjacency-list

edges incident to the same
vertex arrive together;
see every edge twice

Streaming Model(s)

• Vertex set is fixed

• Start with no edges

• Edge updates arrive in a sequence

• One pass

insertions deletions arbitrary order

dynamic

insert-only

adjacency-list

edges incident to the same
vertex arrive together;
see every edge twice

Streaming Model: Objectives

• Compute some function of the graph defined by the stream

• maximum matching, connectivity, number of triangles, etc

• Minimize amount of space: cannot store the entire graph

• Fast update time is generally encouraged

• Solution extraction (postprocessing) time can be large

Why Streaming?

Problem Streaming Advantage

graph is too large to be
stored in main memory

sequential reading from
external memory device

graph is distributed across
multiple machines

edge-by-edge is an extreme
version of batch-by-batch

graph is changing over time store/update the summary
of data

restricted model
+

general problems
=

techniques that extend to other models and
can be used in a variety of real-life applications

Why Streaming?

Problem Streaming Advantage

graph is too large to be
stored in main memory

sequential reading from
external memory device

graph is distributed across
multiple machines

edge-by-edge is an extreme
version of batch-by-batch

graph is changing over time store/update the summary
of data

restricted model
+

general problems
=

techniques that extend to other models and
can be used in a variety of real-life applications

What Can Be Done in Graph Streams?

Sampling!

• Sample edges uniformly

• Sample edges non-uniformly

• Sample vertices, then collect incident edges

Other things:

• Compute degrees of vertices or other quantities
depending on degrees

• Using stream ordering as part of the algorithm

How Can It Be Done?

Sampling a random edge (uniformly)

• Insertions only: reservoir sampling
• for ei , the i-th edge in the stream, replace currently

stored edge with ei with probability 1/i

• Insertions and deletions: L0-sampling
• fails with probability δ
• uses space O(log2 n log δ−1)

For sampling vertices use hash functions

Problem: Maximum Matching

• Department event

• Each grad student can bring a “plus one”

Problem: Maximum Matching

• Department event

• Each grad student can bring a “plus one”

• Want to maximize the number of pairs

List of pairs is then a matching.

Problem: Maximum Matching

• Department event

• Each grad student can bring a “plus one”

• Want to maximize the number of pairs

List of pairs is then a matching.

Approximating Size of Maximum Matching

Matching is a set of edges that don’t share endpoints.

In insert-only stream can run greedy algorithm to obtain maximal
matching, which is a 2-approximation of maximum matching.

Maximum matching can be as large as n/2.

By approximating the size of the matching without finding the
matching itself, we can use smaller space.

Low Arboricity Graphs

We concentrate on the class of graphs of arboricity α.

Arboricity is the minimum number of forests into which the edges
of the graph can be partitioned.

No dense subgraphs ⇔ low arboricity.

Property: Every subgraph on r vertices has at most αr edges.

Planar graphs have arboricity at most 3.

In dynamic stream, intermediate graphs can have high arboricity.

Low Arboricity Graphs

We concentrate on the class of graphs of arboricity α.

Arboricity is the minimum number of forests into which the edges
of the graph can be partitioned.

No dense subgraphs ⇔ low arboricity.

Property: Every subgraph on r vertices has at most αr edges.

Planar graphs have arboricity at most 3.

In dynamic stream, intermediate graphs can have high arboricity.

Low Arboricity Graphs

We concentrate on the class of graphs of arboricity α.

Arboricity is the minimum number of forests into which the edges
of the graph can be partitioned.

No dense subgraphs ⇔ low arboricity.

Property: Every subgraph on r vertices has at most αr edges.

Planar graphs have arboricity at most 3.

In dynamic stream, intermediate graphs can have high arboricity.

Results

space approx factor work

Õ(αn4/5) (5α + 9)(1 + ε) CCEHMMV16

Õ(αn4/5) (α + 2)(1 + ε) MV16

d
yn

a
m
ic

Õ(α10/3n2/3) (22.5α + 6)(1 + ε) CJMM17*

Ω(
√
n/α2.5) O(α) AKL17

Õ(αn2/3) (5α + 9)(1 + ε) EHLMO15

Õ(αn2/3) (α + 2)(1 + ε) MV16

in
se
rt
-o
n
ly

O(αε−3 log2 n) (22.5α + 6)(1 + ε) CJMM17

O(ε−2 log n) (α + 2)(1 + ε) MV18

adj O(1) α + 2 MV16

*Restriction: O(αn) deletions.
Space is specified in words. An edge or a counter = one word.

Approach

All our results have the following two parts:

• Structural result: define Σ that is an
(α + 2) approximation of match(G)

• Algorithm: (1 + ε) approximation of Σ in streaming
(exact computation in adjacency list stream)

Dynamic: Σdyn

• (1 + ε)-approximation in Õ(αn4/5) space

• Also gives Õ(αn2/3) space algorithm in insert-only streams

Insert-only: Σins

• (1 + ε)-approximation in O(ε−2 log n) space

Adjacency list: Σadj

• Exact computation in O(1) space

Approach

All our results have the following two parts:

• Structural result: define Σ that is an
(α + 2) approximation of match(G)

• Algorithm: (1 + ε) approximation of Σ in streaming
(exact computation in adjacency list stream)

Dynamic: Σdyn

• (1 + ε)-approximation in Õ(αn4/5) space

• Also gives Õ(αn2/3) space algorithm in insert-only streams

Insert-only: Σins

• (1 + ε)-approximation in O(ε−2 log n) space

Adjacency list: Σadj

• Exact computation in O(1) space

Structural Results

Structural Results: Definitions

VH = heavy vertices of degree ≥ α + 2
EH = heavy edges with 2 heavy endpoints
V L = light vertices
EL = light edges

Structural Results: Definitions: Σadj

Σadj = |EL|+ |VH |(α + 1)− |EH |

Structural Results: Definitions: Σdyn

xe = xuv = min

(
1

d(u)
,

1

d(v)
,

1

α + 1

)

Structural Results: Definitions: Σdyn

xe = xuv = min

(
1

d(u)
,

1

d(v)
,

1

α + 1

)

Structural Results: Definitions: Σdyn

xe = xuv = min

(
1

d(u)
,

1

d(v)
,

1

α + 1

)

Structural Results: Definitions: Σdyn

xe = xuv = min

(
1

d(u)
,

1

d(v)
,

1

α + 1

)

Σdyn = (α + 1)
∑
e

xe

Structural Results: Σdyn and Σadj

match(G) ≤ |EL|+ |VH |

since a matched
edge is either light
or incident to a
heavy vertex

≤ |EL|+ |VH |(α + 1)− |EH | = Σadj since |EH | ≤ α|VH |

≤ (α + 1)
∑
e

xe = Σdyn Lemma 1

≤ (α + 2) match(G) Lemma 2

Structural Results: Σdyn and Σadj

Lemma 1:

Σadj = |EL|+ |VH |(α + 1)− |EH | ≤ (α + 1)
∑
e

xe = Σdyn

• Split
∑

e xe into 3 sums for e ∈ EL, e ∈ EH , and e 6∈ EL,EH

• Bound xe in each case

Lemma 2:

Σdyn = (α + 1)
∑
e

xe ≤ (α + 2) match(G)

• {xe}e∈E is a fractional matching with max weight 1/(α + 1)

• Use Edmond’s thm to relate
∑

e xe to match(G)

Structural Results: Σdyn and Σadj

Lemma 1:

Σadj = |EL|+ |VH |(α + 1)− |EH | ≤ (α + 1)
∑
e

xe = Σdyn

• Split
∑

e xe into 3 sums for e ∈ EL, e ∈ EH , and e 6∈ EL,EH

• Bound xe in each case

Lemma 2:

Σdyn = (α + 1)
∑
e

xe ≤ (α + 2) match(G)

• {xe}e∈E is a fractional matching with max weight 1/(α + 1)

• Use Edmond’s thm to relate
∑

e xe to match(G)

Structural Results: Definitions: Σins

Let Eα be the set of edges uv where the number of edges incident
to u or v that appear in the stream after uv are both at most α.

α = 3

Structural Results: Definitions: Σins

Let Eα be the set of edges uv where the number of edges incident
to u or v that appear in the stream after uv are both at most α.

α = 3

Structural Results: Definitions: Σins

Let Eα be the set of edges uv where the number of edges incident
to u or v that appear in the stream after uv are both at most α.

α = 3
e ∈ Eα

Structural Results: Definitions: Σins

Let Eα be the set of edges uv where the number of edges incident
to u or v that appear in the stream after uv are both at most α.

α = 3

Structural Results: Definitions: Σins

Let Eα be the set of edges uv where the number of edges incident
to u or v that appear in the stream after uv are both at most α.

α = 3
e 6∈ Eα
Eα depends on stream ordering

Structural Results: Definitions: Σins

Lemma 3

match(G) ≤ |Eα| ≤ (α + 2) match(G)

Let Gt be the graph defined by the first t edges in the stream.

Let E t
α be Eα(Gt). Then

match(Gt) ≤ |E t
α| ≤ (α + 2) match(Gt)

Let Σins = maxt |E t
α| = |ET

α |.
Since match(Gt) is non-decreasing function of t,

match(G) ≤ |Eα| ≤ Σins = |ET
α | ≤ (α+2) match(GT) ≤ (α+2) match(G)

Structural Results: Definitions: Σins

Lemma 3

match(G) ≤ |Eα| ≤ (α + 2) match(G)

Let Gt be the graph defined by the first t edges in the stream.

Let E t
α be Eα(Gt). Then

match(Gt) ≤ |E t
α| ≤ (α + 2) match(Gt)

Let Σins = maxt |E t
α| = |ET

α |.
Since match(Gt) is non-decreasing function of t,

match(G) ≤ |Eα| ≤ Σins = |ET
α | ≤ (α+2) match(GT) ≤ (α+2) match(G)

Structural Results: Definitions: Σins

Lemma 3

match(G) ≤ |Eα| ≤ (α + 2) match(G)

Let Gt be the graph defined by the first t edges in the stream.

Let E t
α be Eα(Gt). Then

match(Gt) ≤ |E t
α| ≤ (α + 2) match(Gt)

Let Σins = maxt |E t
α| = |ET

α |.
Since match(Gt) is non-decreasing function of t,

match(G) ≤ |Eα| ≤ Σins = |ET
α | ≤ (α+2) match(GT) ≤ (α+2) match(G)

Structural Results: Σins : Lemma 3

Upper bound:
|Eα| ≤ (α + 2) match(G)

• Let
ye =

{
1/(α + 1) if e ∈ Eα

0 otherwise

• {ye}e∈E is a fractional matching with max weight 1/(α + 1)

• ∑
e ye = |Eα|/(α + 1)

• Use Edmond’s thm to relate
∑

e ye to match(G)

Lower bound:
|Eα| ≥ match(G)

• Count light edges and edges on heavy vertices in Eα
to show |Eα| ≥ |EL|+ |VH | ≥ match(G)

Structural Results: Σins : Lemma 3

Upper bound:
|Eα| ≤ (α + 2) match(G)

• Let
ye =

{
1/(α + 1) if e ∈ Eα

0 otherwise

• {ye}e∈E is a fractional matching with max weight 1/(α + 1)

• ∑
e ye = |Eα|/(α + 1)

• Use Edmond’s thm to relate
∑

e ye to match(G)

Lower bound:
|Eα| ≥ match(G)

• Count light edges and edges on heavy vertices in Eα
to show |Eα| ≥ |EL|+ |VH | ≥ match(G)

Algorithms

Algorithms: Dynamic Stream

Σdyn = (1 + α)
∑
e

xe = (1 + α)
∑
e

min

(
1

d(u)
,

1

d(v)
,

1

α + 1

)
In parallel:

If matching is small: ≤ n
2/5

• Use algorithm for bounded size matchings [CCEHMMV16]:
Õ(n4/5) space

If matching is large: > n
2/5

• Estimate Σdyn by computing xe for a particular set of edges

• Accurate since matching and thus Σdyn are large

Note: In insert-only streams, can use greedy algorithm for approxi-
mating small matching. Reduces total space to Õ(αn2/3).

Algorithms: Dynamic Stream

Σdyn = (1 + α)
∑
e

xe = (1 + α)
∑
e

min

(
1

d(u)
,

1

d(v)
,

1

α + 1

)
In parallel:

If matching is small: ≤ n
2/5

• Use algorithm for bounded size matchings [CCEHMMV16]:
Õ(n4/5) space

If matching is large: > n
2/5

• Estimate Σdyn by computing xe for a particular set of edges

• Accurate since matching and thus Σdyn are large

Note: In insert-only streams, can use greedy algorithm for approxi-
mating small matching. Reduces total space to Õ(αn2/3).

Algorithms: Dynamic Stream

Σdyn = (1 + α)
∑
e

xe = (1 + α)
∑
e

min

(
1

d(u)
,

1

d(v)
,

1

α + 1

)
Estimating Σdyn

• Sample a set of vertices T with probability p = Θ̃(1/n1/5)
• |T | = Θ̃(n4/5)

• Compute degrees of vertices in T

• Let ET be edges with both endpoints in T
• |ET | = Õ(αn4/5) at the end of the stream
• |ET | can be larger in the middle of the stream

• Sample min(|ET |, Θ̃(αn4/5)) edges in ET

• Use (α + 1)/p ·
∑

e∈ET
xe as estimate

Algorithms: Insert-only Stream

Σins = max
t
|E t
α|

where E t
α is the set of edges uv , s.t. the number of edges incident

to u or v between arrival of uv and time t is at most α.

Idea: keep a sample of edges in E t
α by sampling with probability

that allows us to

• keep an accurate approximation of |E t
α|

• use small amount of space

Algorithms: Insert-only Stream

Σins = max
t
|E t
α|

where E t
α is the set of edges uv , s.t. the number of edges incident

to u or v between arrival of uv and time t is at most α.

1. Set p ← 1

2. Start sampling each edge with probability p

3. If e is sampled:
• store e
• store counters for degrees of endpoints in the rest of the stream
• if later we detect e 6∈ E t

α, it is deleted

4. If the number of stored edges > 40ε−2 log n
• p ← p/2
• delete every edge currently stored with probability 1/2

5. Return maxt
samples at time t

p at time t

Algorithms: Insert-only Stream

Σins = max
t
|E t
α|

where E t
α is the set of edges uv , s.t. the number of edges incident

to u or v between arrival of uv and time t is at most α.

Let k be s.t. (20ε−2 log n)2k−1 ≤ Σins < (20ε−2 log n)2k .

We show that whp:

1. If sampling probability is high enough (≥ 1/2k),
can compute |E t

α| ± εΣins for all t.
From Chernoff and union bounds.

2. We do not switch to probability that is too low (< 1/2k),
since the # edges sampled wp 1/2k does not exceed
(1 + ε)Σins/2k < (1 + ε)(20ε−2 log n) ≤ 40ε−2 log n.

Algorithms: Adjacency List Stream

Σadj = |EL|+ |VH |(α + 1)− |EH |

Treat adjacency stream as a degree sequence of the graph.
|VH | can be computed easily.

|EL| − |EH | = |E | −
∑
h∈VH

d(h)

which is also easy to compute.

Conclusion

Summary:

• There are quantities that provide good approximation of the
size of maximum matching in graphs of arboricity α.

• Computing those quantities can be done efficiently.

Open questions:

• Better than α + 2 approximation.

• Closing the gap between upper and lower bounds
for dynamic streams.

Thank you for your attention!

	Introduction
	Structural Results
	Algorithms
	Conclusion

