Streaming Algorithms for Matchings in Low Arboricity Graphs

Sofya Vorotnikova

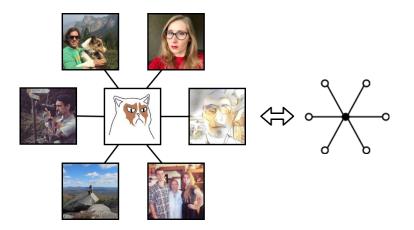
University of Massachusetts Amherst

Joint work with Andrew McGregor

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

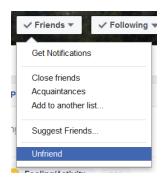
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



List of edges incident to a vertex

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆



users can friend and unfriend others

edges of the graph get added and deleted

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Updates are not grouped by user/vertex — arbitrary order

Simpler model: arbitrary order, but only adding edges

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

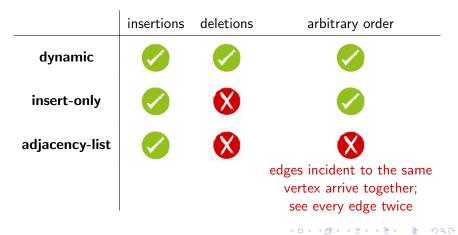
Streaming Model(s)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Vertex set is fixed
- Start with no edges
- Edge updates arrive in a sequence
- One pass

Streaming Model(s)

- Vertex set is fixed
- Start with no edges
- Edge updates arrive in a sequence
- One pass



Streaming Model: Objectives

- Compute some function of the graph defined by the stream
 - maximum matching, connectivity, number of triangles, etc

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Minimize amount of space: cannot store the entire graph
- Fast update time is generally encouraged
- Solution extraction (postprocessing) time can be large

Why Streaming?

Problem

graph is too large to be stored in main memory

graph is distributed across multiple machines

graph is changing over time

Streaming Advantage

sequential reading from external memory device

edge-by-edge is an extreme version of batch-by-batch

store/update the summary of data

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Why Streaming?

Problem

graph is too large to be stored in main memory

graph is distributed across multiple machines

graph is changing over time

Streaming Advantage

sequential reading from external memory device

edge-by-edge is an extreme version of batch-by-batch

store/update the summary of data

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

```
restricted model
+
general problems
```

techniques that extend to other models and can be used in a variety of real-life applications

What Can Be Done in Graph Streams?

Sampling!

- Sample edges uniformly
- Sample edges non-uniformly
- Sample vertices, then collect incident edges

Other things:

- Compute degrees of vertices or other quantities depending on degrees
- Using stream ordering as part of the algorithm

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

How Can It Be Done?

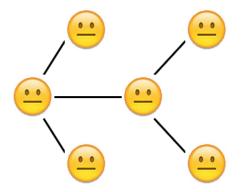
Sampling a random edge (uniformly)

- Insertions only: reservoir sampling
 - for e_i , the *i*-th edge in the stream, replace currently stored edge with e_i with probability 1/i

- Insertions and deletions: L₀-sampling
 - fails with probability δ
 - uses space $O(\log^2 n \log \delta^{-1})$

For sampling vertices use hash functions

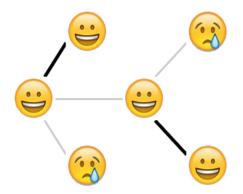
Problem: Maximum Matching



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Department event
- Each grad student can bring a "plus one"

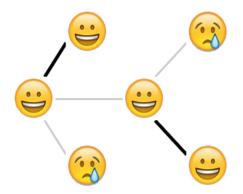
Problem: Maximum Matching



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Department event
- Each grad student can bring a "plus one"
- Want to maximize the number of pairs

Problem: Maximum Matching



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Department event
- Each grad student can bring a "plus one"
- Want to maximize the number of pairs

List of pairs is then a matching.

Approximating Size of Maximum Matching

Matching is a set of edges that don't share endpoints.

In insert-only stream can run greedy algorithm to obtain *maximal* matching, which is a 2-approximation of *maximum* matching.

Maximum matching can be as large as n/2.

By approximating the **size** of the matching without finding the matching itself, we can use smaller space.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Low Arboricity Graphs

We concentrate on the class of graphs of arboricity α .

Arboricity is the minimum number of forests into which the edges of the graph can be partitioned.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Low Arboricity Graphs

We concentrate on the class of graphs of arboricity α .

Arboricity is the minimum number of forests into which the edges of the graph can be partitioned.

No dense subgraphs \Leftrightarrow low arboricity.

Property: Every subgraph on r vertices has at most αr edges.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Planar graphs have arboricity at most 3.

Low Arboricity Graphs

We concentrate on the class of graphs of arboricity α .

Arboricity is the minimum number of forests into which the edges of the graph can be partitioned.

No dense subgraphs \Leftrightarrow low arboricity.

Property: Every subgraph on r vertices has at most αr edges.

Planar graphs have arboricity at most 3.

In dynamic stream, intermediate graphs can have high arboricity.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Results

	space	approx factor	work
dynamic	$ ilde{O}(lpha n^{4/5})$	$(5\alpha + 9)(1 + \epsilon)$	CCEHMMV16
	$ ilde{O}(lpha n^{4/5})$	$(lpha+2)(1+\epsilon)$	MV16
	$ ilde{O}(lpha^{10/3}n^{2/3})$	$(22.5\alpha+6)(1+\epsilon)$	CJMM17*
	$\Omega(\sqrt{n}/lpha^{2.5})$	O(lpha)	AKL17
insert-only	$ ilde{O}(lpha n^{2/3})$	$(5\alpha + 9)(1 + \epsilon)$	EHLMO15
	$ ilde{O}(lpha n^{2/3})$	$(lpha+2)(1+\epsilon)$	MV16
	$O(\alpha \epsilon^{-3} \log^2 n)$	$(22.5\alpha+6)(1+\epsilon)$	CJMM17
	$O(\epsilon^{-2}\log n)$	$(lpha+2)(1+\epsilon)$	MV18
adj	<i>O</i> (1)	$\alpha + 2$	MV16

*Restriction: $O(\alpha n)$ deletions.

Space is specified in words. An edge or a counter = one word.

Approach

All our results have the following two parts:

- Structural result: define Σ that is an (α + 2) approximation of match(G)
- Algorithm: $(1 + \epsilon)$ approximation of Σ in streaming (exact computation in adjacency list stream)

Approach

All our results have the following two parts:

- Structural result: define Σ that is an (α + 2) approximation of match(G)
- Algorithm: $(1 + \epsilon)$ approximation of Σ in streaming (exact computation in adjacency list stream)

Dynamic: Σ_{dyn}

- $(1+\epsilon)$ -approximation in $ilde{O}(lpha n^{4/5})$ space
- Also gives $ilde{O}(lpha n^{2/3})$ space algorithm in insert-only streams

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Insert-only: Σ_{ins}

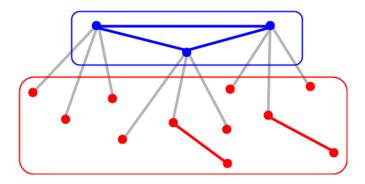
• $(1 + \epsilon)$ -approximation in $O(\epsilon^{-2} \log n)$ space

Adjacency list: Σ_{adj}

• Exact computation in O(1) space

Structural Results

Structural Results: Definitions



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

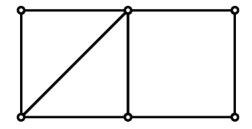
- V^{H} = heavy vertices of degree $\geq \alpha + 2$
- E^{H} = heavy edges with 2 heavy endpoints
- V^L = light vertices
- $E^{L} =$ light edges

Structural Results: Definitions: Σ_{adj}

$$\Sigma_{adj} = |E^L| + |V^H|(\alpha + 1) - |E^H|$$

Structural Results: Definitions: Σ_{dyn} $x_e = x_{uv} = \min\left(\frac{1}{1+1}, \frac{1}{1+1}, \frac{1}{1+1}\right)$

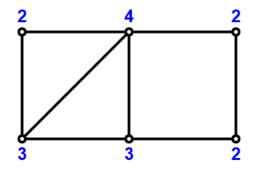
$$x_e = x_{uv} = \min\left(\frac{\overline{d(u)}}{\overline{d(v)}}, \frac{\overline{d(v)}}{\overline{\alpha+1}}\right)$$



(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

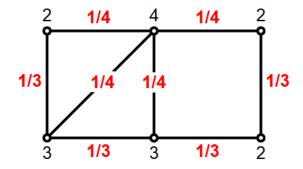
Structural Results: Definitions: Σ_{dyn}

$$x_e = x_{uv} = \min\left(\frac{1}{d(u)}, \frac{1}{d(v)}, \frac{1}{\alpha+1}\right)$$



Structural Results: Definitions: Σ_{dyn}

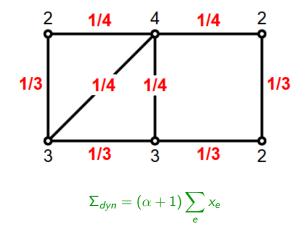
$$x_e = x_{uv} = \min\left(\frac{1}{d(u)}, \frac{1}{d(v)}, \frac{1}{\alpha+1}\right)$$



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Structural Results: Definitions: Σ_{dyn}

$$x_e = x_{uv} = \min\left(\frac{1}{d(u)}, \frac{1}{d(v)}, \frac{1}{\alpha+1}\right)$$



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Structural Results: Σ_{dyn} and Σ_{adj}

$$\mathsf{match}(G) \leq |E^L| + |V^H|$$

since a matched edge is either light or incident to a heavy vertex

A D N A 目 N A E N A E N A B N A C N

 $\leq |E^{L}| + |V^{H}|(\alpha + 1) - |E^{H}| = \sum_{adj} \text{ since } |E^{H}| \leq \alpha |V^{H}|$ $\leq (\alpha + 1) \sum_{e} x_{e} = \sum_{dyn} \text{ Lemma 1}$ $\leq (\alpha + 2) \operatorname{match}(G) \text{ Lemma 2}$

Structural Results: Σ_{dyn} and Σ_{adj}

Lemma 1:

$$\Sigma_{adj} = |E^L| + |V^H|(\alpha + 1) - |E^H| \le (\alpha + 1) \sum_e x_e = \Sigma_{dyn}$$

• Split $\sum_{e} x_{e}$ into 3 sums for $e \in E^{L}$, $e \in E^{H}$, and $e \notin E^{L}$, E^{H}

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Bound *x_e* in each case

Structural Results: Σ_{dyn} and Σ_{adj}

Lemma 1:

$$\Sigma_{adj} = |E^L| + |V^H|(\alpha + 1) - |E^H| \le (\alpha + 1) \sum_e x_e = \Sigma_{dyn}$$

- Split $\sum_{e} x_{e}$ into 3 sums for $e \in E^{L}$, $e \in E^{H}$, and $e \notin E^{L}$, E^{H}
- Bound x_e in each case

Lemma 2:

$$\Sigma_{dyn} = (lpha + 1) \sum_{e} x_e \le (lpha + 2) \operatorname{match}(G)$$

• $\{x_e\}_{e \in E}$ is a fractional matching with max weight $1/(\alpha + 1)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

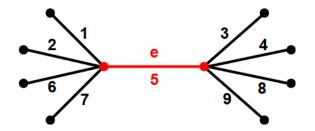
• Use Edmond's thm to relate $\sum_{e} x_{e}$ to match(G)

Structural Results: Definitions: Σ_{ins}

Let E_{α} be the set of edges uv where the number of edges incident to u or v that appear in the stream after uv are both at most α .

Structural Results: Definitions: Σ_{ins}

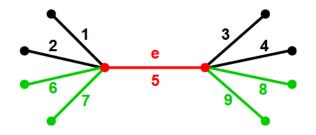
Let E_{α} be the set of edges uv where the number of edges incident to u or v that appear in the stream after uv are both at most α .



 $\alpha = 3$

Structural Results: Definitions: Σ_{ins}

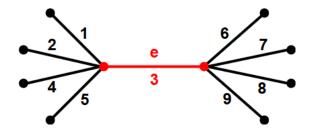
Let E_{α} be the set of edges uv where the number of edges incident to u or v that appear in the stream after uv are both at most α .



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

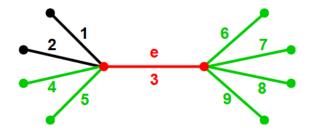
 $\alpha = 3$ $e \in E_{\alpha}$

Let E_{α} be the set of edges uv where the number of edges incident to u or v that appear in the stream after uv are both at most α .



 $\alpha = 3$

Let E_{α} be the set of edges uv where the number of edges incident to u or v that appear in the stream after uv are both at most α .



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $\begin{array}{l} \alpha = 3 \\ e \not\in E_{\alpha} \\ E_{\alpha} \end{array}$ depends on stream ordering

Lemma 3

$match(G) \leq |E_{\alpha}| \leq (\alpha + 2) match(G)$

Lemma 3

$$match(G) \le |E_{\alpha}| \le (\alpha + 2) match(G)$$

Let G_t be the graph defined by the first t edges in the stream. Let E_{α}^t be $E_{\alpha}(G_t)$. Then

$$\mathsf{match}(G_t) \leq |E_{\alpha}^t| \leq (\alpha + 2) \mathsf{match}(G_t)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lemma 3

$$match(G) \le |E_{\alpha}| \le (\alpha + 2) match(G)$$

Let G_t be the graph defined by the first t edges in the stream. Let E_{α}^t be $E_{\alpha}(G_t)$. Then

$$match(G_t) \leq |E_{\alpha}^t| \leq (\alpha + 2) match(G_t)$$

Let $\Sigma_{ins} = \max_t |E_{\alpha}^t| = |E_{\alpha}^T|$.

Since $match(G_t)$ is non-decreasing function of t,

 $\mathsf{match}(G) \leq |E_{\alpha}| \leq \sum_{ins} = |E_{\alpha}^{\mathsf{T}}| \leq (\alpha+2) \mathsf{match}(G_{\mathsf{T}}) \leq (\alpha+2) \mathsf{match}(G)$

Structural Results: Σ_{ins} : Lemma 3

Upper bound:

 $|E_{\alpha}| \leq (\alpha + 2) \operatorname{match}(G)$

• Let
$$y_e = egin{cases} 1/(lpha+1) & ext{if } e \in E_lpha \ 0 & ext{otherwise} \end{cases}$$

• $\{y_e\}_{e \in E}$ is a fractional matching with max weight $1/(\alpha + 1)$

- $\sum_{e} y_{e} = |\mathbf{E}_{\alpha}|/(\alpha+1)$
- Use Edmond's thm to relate $\sum_e y_e$ to match(G)

Structural Results: \sum_{ins} : Lemma 3

Upper bound:

 $|E_{\alpha}| \leq (\alpha + 2) \operatorname{match}(G)$

• Let
$$y_e = egin{cases} 1/(lpha+1) & ext{if } e \in E_lpha \ 0 & ext{otherwise} \end{cases}$$

- {y_e}_{e∈E} is a fractional matching with max weight 1/(α + 1)
 ∑_e y_e = |E_α|/(α + 1)
- Use Edmond's thm to relate $\sum_{e} y_{e}$ to match(G)

Lower bound:

 $|E_{\alpha}| \geq \mathsf{match}(G)$

 Count light edges and edges on heavy vertices in E_α to show |E_α| ≥ |E^L| + |V^H| ≥ match(G)

Algorithms

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Algorithms: Dynamic Stream

$$\Sigma_{dyn} = (1 + \alpha) \sum_{e} x_{e} = (1 + \alpha) \sum_{e} \min\left(\frac{1}{d(u)}, \frac{1}{d(v)}, \frac{1}{\alpha + 1}\right)$$

In parallel:

If matching is small: $\leq n^{2/5}$

- Use algorithm for bounded size matchings [CCEHMMV16]: $\tilde{O}(n^{4/5})$ space
- If matching is large: $> n^{2/5}$
 - Estimate Σ_{dyn} by computing x_e for a particular set of edges

• Accurate since matching and thus Σ_{dyn} are large

Algorithms: Dynamic Stream

$$\Sigma_{dyn} = (1 + \alpha) \sum_{e} x_{e} = (1 + \alpha) \sum_{e} \min\left(\frac{1}{d(u)}, \frac{1}{d(v)}, \frac{1}{\alpha + 1}\right)$$

In parallel:

If matching is small: $\leq n^{2/5}$

- Use algorithm for bounded size matchings [CCEHMMV16]: $\tilde{O}(n^{4/5})$ space
- If matching is large: $> n^{2/5}$
 - Estimate Σ_{dyn} by computing x_e for a particular set of edges
 - Accurate since matching and thus Σ_{dyn} are large

Note: In insert-only streams, can use greedy algorithm for approximating small matching. Reduces total space to $\tilde{O}(\alpha n^{2/3})$.

Algorithms: Dynamic Stream $\Sigma_{dyn} = (1+\alpha) \sum_{e} x_{e} = (1+\alpha) \sum_{e} \min\left(\frac{1}{d(u)}, \frac{1}{d(v)}, \frac{1}{\alpha+1}\right)$

Estimating Σ_{dyn}

Sample a set of vertices T with probability p = Θ(1/n^{1/5})
 |T| = Θ(n^{4/5})

- Compute degrees of vertices in T
- Let E_T be edges with both endpoints in T
 - $|E_T| = ilde{O}(lpha n^{4/5})$ at the end of the stream
 - $|E_T|$ can be larger in the middle of the stream
- Sample min $(|E_{\mathcal{T}}|, \tilde{\Theta}(\alpha n^{4/5}))$ edges in $E_{\mathcal{T}}$

• Use
$$(\alpha + 1)/p \cdot \sum_{e \in E_T} x_e$$
 as estimate

Algorithms: Insert-only Stream

 $\Sigma_{ins} = \max_{t} |E_{\alpha}^{t}|$

where E_{α}^{t} is the set of edges uv, s.t. the number of edges incident to u or v between arrival of uv and time t is at most α .

Idea: keep a sample of edges in E_{α}^{t} by sampling with probability that allows us to

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- keep an accurate approximation of $|E_{\alpha}^{t}|$
- use small amount of space

Algorithms: Insert-only Stream

 $\Sigma_{ins} = \max_{t} |E_{\alpha}^{t}|$

where E_{α}^{t} is the set of edges uv, s.t. the number of edges incident to u or v between arrival of uv and time t is at most α .

- 1. Set $p \leftarrow 1$
- 2. Start sampling each edge with probability p
- 3. If e is sampled:
 - store e
 - store counters for degrees of endpoints in the rest of the stream
 - if later we detect $e \notin E_{\alpha}^{t}$, it is deleted
- 4. If the number of stored edges $> 40e^{-2} \log n$
 - *p* ← *p*/2
 - delete every edge currently stored with probability 1/2
- 5. Return $\max_t \frac{\# \text{ samples at time } t}{p \text{ at time } t}$

Algorithms: Insert-only Stream

$$\Sigma_{ins} = \max_{t} |E_{\alpha}^{t}|$$

where E_{α}^{t} is the set of edges uv, s.t. the number of edges incident to u or v between arrival of uv and time t is at most α .

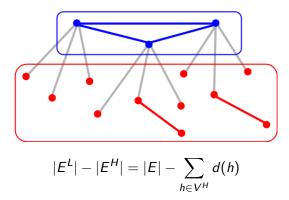
Let k be s.t. $(20\epsilon^{-2}\log n)2^{k-1} \leq \sum_{ins} < (20\epsilon^{-2}\log n)2^k$. We show that whp:

- 1. If sampling probability is high enough $(\geq 1/2^k)$, can compute $|E_{\alpha}^t| \pm \epsilon \sum_{ins}$ for all t. From Chernoff and union bounds.
- 2. We do not switch to probability that is too low $(< 1/2^k)$, since the # edges sampled wp $1/2^k$ does not exceed $(1 + \epsilon)\sum_{ins}/2^k < (1 + \epsilon)(20\epsilon^{-2}\log n) \le 40\epsilon^{-2}\log n$.

Algorithms: Adjacency List Stream

$$\Sigma_{adj} = |E^L| + |V^H|(\alpha + 1) - |E^H|$$

Treat adjacency stream as a degree sequence of the graph. $|V^{H}|$ can be computed easily.



▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

which is also easy to compute.

Conclusion

Summary:

• There are quantities that provide good approximation of the size of maximum matching in graphs of arboricity α .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Computing those quantities can be done efficiently.

Open questions:

- Better than $\alpha + 2$ approximation.
- Closing the gap between upper and lower bounds for dynamic streams.

Thank you for your attention!

<ロト < 団ト < 団ト < 団ト < 団ト 三 のQの</p>