DECODING THE FUNCTIONAL NETWORKS OF CEREBRAL CORTEX

SIMONS COMPUTATIONAL THEORIES OF THE BRAIN APRIL 18, 2018

VISUAL CORTEX DISPLAYS ACTIVITY NOT DIRECTLY TIED TO VISUAL STIMULI

J. Physiol. (1959) 147, 226–238

SINGLE UNIT ACTIVITY IN STRIATE CORTEX OF UNRESTRAINED CATS

By D. H. HUBEL*

From the Department of Neurophysiology, Walter Reed Army Institute of Research, Walter Reed Army Medical Center, Washington 12, D.C., U.S.A.

(Received 15 December 1958)

.....

Background activity

In the unrestrained preparation most units showed activity in the absence of intentional stimulation on the part of the observer. As the cat looked about, spurts and pauses in firing were seen to accompany eye movements. When the eyes were closed either passively by the observer or by the cat, firing usually persisted, although it was generally less active. Even when the room was made completely dark most units continued to fire.

GOALS

Extend theories of cortical computation from the average case to single trials using network based analytical tools

Incorporate a more comprehensive sampling of the network to include unbiased sample of neurons

OUTLINE

- Mouse V1 & high speed two-photon imaging
- What are functional networks?
- Functional networks accurately predict neuronal activity
- Higher order structure in functional networks
- Assemblies

OUR EXPERIMENTAL SET-UP

Awake behaving (ambulating) animals

Top down view

RETINOTOPY TO CONFIRM VISUAL CORTEX

IN VIVO 2P SOMATIC IMAGING OF VISUALLY EVOKED ACTIVITY

CORTICAL V1 MICROCIRCUIT DYNAMICS IMAGED WITH HOPS

MULTINEURONAL RESPONSES TO DRIFTING GRATINGS

REPRESENTATIVE TUNED AND UNTUNED RESPONSES

TUNED NEURONS SHOW VARIABLE SINGLE TRIAL ACTIVITY

TUNED NEURONS SHOW VARIABLE SINGLE TRIAL ACTIVITY

TUNING DOESN'T PREDICT SINGLE TRIAL RESPONSES VERY WELL

OUTLINE

- Mouse V1 & high speed two-photon imaging
- What are functional networks?
- Functional networks accurately predict neuronal activity
- Higher order structure in functional networks

Network: A mathematical representation of a real-world complex system defined by a collection of nodes (vertices) and links (edges) between pairs of nodes.

BUILDING A FUNCTIONAL NETWORK USING PAIRWISE PARTIAL CORRELATION

FUNCTIONAL NETWORKS CONTAIN EDGES BETWEEN TUNED AND UNTUNED NEURONS

FUNCTIONAL NETWORKS REFLECT TUNING IN THE POPULATION

OUTLINE

- Mouse V1 & high speed two-photon imaging
- What are functional networks?
- Functional networks accurately predict neuronal activity
- Higher order structure in functional networks

MODELING NEURON RESPONSES USING FUNCTIONAL NETWORKS

ACCURATE PREDICTION OF MOMENT TO MOMENT ACTIVITY USING FUNCTIONAL NETWORKS

predicted activity / measured activity

FUNCTIONAL NETWORKS PROVIDE NEAR OPTIMAL PREDICTIONS OF SINGLE TRIAL RESPONSES

predicted activity / measured activity

FUNCTIONAL NETWORKS ALSO PREDICT TUNING

POPULATION SIZE UNDERLIES PREDICTION ACCURACY

LARGE WEIGHTS CONTRIBUTE DISPROPORTIONATELY TO PREDICTION ACCURACY

RECURRENT CONNECTIONS ARE BIASED TOWARD LARGE EDGE WEIGHTS

OUTLINE

- Mouse V1 & high speed two-photon imaging
- What are functional networks?
- Functional networks accurately predict neuronal activity

moment to moment prediction Higher order structure in functional networks

BEYOND PAIRWISE

TRIPLET MOTIF STRUCTURE IN FUNCTIONAL NETWORKS

TRIPLET MOTIF STRUCTURE UNDERLIES PREDICTION ACCURACY

CONCLUSIONS

Neurons are variable making prediction of single trial activity from tuning properties difficult

Functional networks provide near optimal predictions of activity in individual neurons

And predict tuning

Triplet correlations are predictive of more than 90% of a moment to moment activity

ASSEMBLIES

- Data demonstrates a loose coalition of neurons that covary with one another and consequently are predictive of one another
- Multineuronal activity shows pairwise timing differences as indicated by the fact that the majority of entries in the matrix are asymmetric

But many unknowns

ACKNOWLEDGMENTS

<u>Current Lab</u>

Joe Dechery Vaughn Spurrier Maayan Levy Peter Malonis Zania Zayyad Kyle Bojanek Subhodh Kotekal Isabel Garon Carolina Yu Harrison Grier Friederice Pirschen Anne Havlik

<u>Lab Alumni</u>

Brendan Chambers Alex Sadovsky Peter Kruskal Melissa Runfeldt Lucy Li SJ Weinberg Veronika Hanko Lane McIntosh Suchin Gururangan Charles Frye Alexa Carlson **Caroline Heimerl** Isabella Penido Areknaz Khaligian Audrey Sederberg

