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What is “Date Assimilation”?

Weather prediction:

• How to initialize PDE-based circulation models?

• Data gathered from many different sources: ground stations,

satellites, weather ships, etc.
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What are Discrete-event Simulations?

The type of dynamic simulation that arises in dealing with discrete

entities:

• queues/customers

• inventory

• production systems

• ride-sharing platforms

etc
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G/G/1 Queue

“Residual Time” Representation

4



G/G/1 Queue

“Elapsed Time” Representation
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Mathematical Formalism: Generalized Semi-Markov Processes

(GSMP’s)

Residual time Markov process:

(S(t),C (t))

Elapsed time Markov process:

(S(t),C (t))

East German probability school initiated study of GSMPs in 60s through

80s...
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An Example: Container Fleet for Auto-maker

• multi-billion dollar inventory

• factory shuts down if it runs out of containers filled with incoming

parts or containers to hold outgoing components

• very few containers have digital tags

• only know when containers pass through trans-shipment points

Decision:

• How to re-allocate containers to avoid shortages?
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• GSMP Markov process:

X (t) = (S(t),C (t)

• Observables:

Z (t) = k(S(t)),

where k(·) may significantly “collapse” S(t)

• We wish to compute:

E[Y (s + t)|Z (u) : 0 ≤ u ≤ s]

current time
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E[Y (s + t)|Z (u) : 0 ≤ u ≤ s]

=

∫
E[Y (s + t)|X (s) = x ]P(X (s) ∈ dx |Z (u) : 0 ≤ u ≤ s)

If we can sample from

P(X (s) ∈ ·|Z (u) : 0 ≤ u ≤ s),

we can run simulation forward to time s + t
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This is a filtering problem...
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Evolution Equation for Filter for Elapsed Time Markov Process

(G + Haas (2018))

Between jumps in k(S(t)):

∂

∂t
v(t, s ′, c)

=−
∑

e∈E(s′)

∂

∂ce
v(t, s ′, c)−

∑
e∈E(s′)

v(t, s ′, c)re(ce)

+ v(t, s ′, c)
∑

s′′∈k−1(Z(t))

∑
e∈E(s′)

∫
v(t, s ′, c)re(ce)dce

− v(t, s ′, c)
∑

s′′∈k−1(Z(t))

∑
s∈k−1(Z(t))

∑
e′∈E(s)

∫
v(t, s, c ′)re′(c

′′
e )p(t ′, s, e′)dc ′dc ′′
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A different update at the jump times of Z (t) = k(S(t)) . . .
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Another set of filtering equations for the “residual time” Markov process
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Challenges:

• very high-dimensional

• Transition density intractable

• Particle filtering highly non-trivial
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• Instead, we implement something simpler

• Sample from

P(X (s) ∈ ·|Z (s))

rather than

P(X (s) ∈ c · |Z (u) : 0 ≤ u ≤ s)

• Put Z (s) = ẑ ; we want

P(X (s) ∈ ·|Z (s) = ẑ)
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• If P(Z (s) = ẑ) is not too small, we can approximate via∑n
i=1 I (Xi (s) ∈ ·,Zi (s) = ẑ)∑n

i=1 I (Zi (s) = ẑ)
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• To compute E[Y (s + t)|Z (s) = ẑ ], we now run m simulations

forward to time s + t

1
m

∑n
i=1

∑m
j=1 Yij(s + t)I (Zi (s) = ẑ)∑n
i=1 I (Zi (s) = ẑ)

Splitting...

17



What about if P(Z (s) = ẑ) is small?

e.g. container problem
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Even though k(·) is typically discrete, we can apply density estimation

ideas to an estimator with “local averaging”:

P̂n(X (s) ∈ ·|Z (s) = ẑ) =

∑n
i=1 I (Xi (s) ∈ ·)ρn(Zi (s), ẑ)∑n

i=1 ρn(Zi (s), ẑ)

The smoothing kernel ρn(·) can be chosen using similar principles as in

the standard (continuous) setting.

Justification: Imagine system as being embedded in a “fluid limit” envi-

ronment

“discrete system can be approximated via continuous sys-

tem”
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Other Challenges/Issues

• Need to simultaneously estimate model parameters

• Possibility of assessing “model error” based on

Y (s + t)− E[Y (s + t)|Z (s)]

↗ ↖
Real Data Simulation
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Conclusions

• Discrete-simulation is likely to find increasing usage as a real-time

decision-making tool

• Mis-match between “mathematical state” underlying simulation and

what is observable leads to a very hard filtering problem with

non-standard features

• Even initializing with P(X (s) ∈ ·|Z (s) = ẑ) leads to computational

challenges
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