Accelerating Data Collection and Processing at the Large Hadron Collider

Benjamin Nachman

Lawrence Berkeley National Laboratory and the Simons Institute

<u>Real Time Decision Making for Applications in the Natural</u> <u>Sciences and Physical Systems, Feb. 28, 2018</u>

Science at the LHC

Goal: We want to study the structure of the smallest building blocks of matter. For this, we need the most powerful microscope ever built!

Data pipeline at the LHC

25 ns 10⁻¹⁹-10⁻¹⁵ s ~ms 0.01-20 ns ~min 1-100 ns ~100 ms 2.5 µs 200 ms ~100 ms

~months

O(100) pp collisions

data / simulation

(sub-)nuclear physics

out-going particles interact with detector

detector response (signal formation + digitization)

hardware-based trigger decision

software-based trigger decision

event reconstruction

event processing (skim, thin, augment)

final data analysis (uses millions of events)

Data pipeline at the LHC

25 ns 10⁻¹⁹-10⁻¹⁵ s ~ms 0.01-20 ns ~min 1-100 ns ~100 ms 2.5 µs 200 ms

~100 ms

~months

O(100) pp collisions

data / simulation

(sub-)nuclear physics

out-going particles interact with detector

detector response (signal formation + digitization)

hardware-based trigger decision

software-based trigger decision

event reconstruction

event processing (skim, thin, augment)

final data analysis (uses millions of events)

Collider-based HEP detectors are like onions

Biggest challenge for data volume is innermost layer

Collider-based HEP detectors are like onions

Biggest challenge for data volume is innermost layer

The future: Higher bandwidth, hit rate, radiation damage

Challenge of the LHC upgrade (~2025; HL-LHC)

8

Generation	Run 1 (FEI3, PSI46)	Runs 2+3 (FEI4, PSI46DIG)	Runs 4+5
Chip Size	7.5 x 10.5 mm ² 8 x 10 mm ²	20 x 20 mm ² 8 x 10 mm ²	> 20 x 20 mm ²
Transistors	3.5 M 1.3 M	87 M	~1 G
Hit Rate	100 MHz/cm ²	400 MHz/cm ²	~2 GHz/cm ²
Hit Memory / Chip	0.1 Mb	1 Mb	~16 Mb
Trigger Rate	100 kHz	100 kHz	200 kHz - 1MHz
Trigger Latency	<mark>2.5 μs</mark> 3.2 μs	2.5 μs 3.2 μs	6 - 20 μs
Readout rate	40 Mb/s	320 Mb/s	1-4 Gb/s
Radiation	100 Mrad	200 Mrad	1 Grad
Technology	250 nm	130 nm 250 nm	65 nm
Power	~1/4 W/cm ²	~1/4 W/cm ²	1/2 - 1 W/cm ²

Challenge of the LHC upgrade (~2025; HL-LHC)

Generation	Run 1 (FEI3, PSI46)	Runs 2+3 (FEI4, PSI46DIG)	Runs 4+5
Chip Size	7.5 x 10.5 mm ² 8 x 10 mm ²	20 x 20 mm ² 8 x 10 mm ²	> 20 x 20 mm ²
Transistors	3.5 M 1.3 M	87 M	G
Hit Rate	100 MHz/cm ²	400 MHz/00°hO	~2 GHz/cm ²
Hit Memory / Chip	0.1 Mera i	n your lear	reaution (these)
Trigger Rate	1e Calling 100 kHz t to	a nuo 100 klake 0	ne 01 200 kHz - 1MHz
Trigger Latency	ids, 2.5 µs 3.2 Apple d	0 esi 2 .5 μs 3.2 μs	6 - 20 μs
Readout ratertur	nately, Mb/s	320 Mb/s	1-4 Gb/s
Radiation	100 Mrad	200 Mrad	1 Grad
Technology	250 nm	130 nm 250 nm	65 nm
Power	~1/4 W/cm ²	~1/4 W/cm ²	1/2 - 1 W/cm ²

The big LHC experiments are combing forces

A significant component of the design and testing is happening right here at Berkeley!

Real time decision making: what to readout?

Readout regions N x M pixel regions; helps to recover small charge hits. What is optimal?

This is just one of many choices we are currently studying!

Real time decision making: how to read it out?

Optimization studies: Use of charge

10

-2000 -1500 -1000 -500

0

500

1000

2000

q p [MeV]

2500

Currently, ATLAS uses 4/8 bit ToT with a linear charge to ToT conversion.

13

Optimization studies: Use of charge

Down-sampling

Can add digital logic so that N digitized bits are stored as $M \le N$ bits. 15

There are $\begin{pmatrix} 2^N - 2 \\ 2^M - 2 \end{pmatrix}$

possible functions mapping N to M bits.

We could gain space without much loss in performance

+ many more considerations for readout design!

Data pipeline at the LHC

25 ns 10⁻¹⁹-10⁻¹⁵ s ~ms 0.01-20 ns ~min 1-100 ns ~100 ms 2.5 µs 200 ms

~100 ms

~months

O(100) pp collisions

data / simulation

(sub-)nuclear physics

out-going particles interact with detector

detector response (signal formation + digitization)

hardware-based trigger decision

software-based trigger decision

event reconstruction

event processing (skim, thin, augment)

final data analysis (uses millions of events)

Cross-section is dominated by final states with no electrons, no muons, and no neutrinos

Recorded events are dominated by final states with electrons, muons, neutrinos

usual paradigm

If your favorite process cannot be triggered on, then it will **not be recorded** and there is **no way to analyze it**.

new paradigms

"If your favorite process cannot be triggered on inclusively, look for **associated production** with an object you can trigger."

-I.S. Radiation, 2015

"If your favorite process cannot be triggered on at HLT, make your analysis faster and simpler and do it after L1."

-T.L. Analysis, 2012

(see Caterina's talk)

usual paradigm

If your favorite process cannot be triggered on, then it will **not be recorded** and there is **no way to analyze it**.

New paradigm: look to the pileup (extra pp interactions) 21

Run Number: 266904, Event Number: 25884352

Date: 2015-06-03 13:41:54 CEST

trigger on pink

L1 (TLA) or HLT (offline) rate

$$\int_{1}^{2} \left(\text{"Zero bias}_{\text{trigger" data}} \right) = \frac{h}{H} \times \left(\begin{array}{c} \text{Triggered}_{\text{data amount}} \right)$$

$$\int_{1}^{2} 40 \text{ MHz}$$

<i># pp</i> interactions	L1 Rate	HLT Rate	ZBT	ZBT @HLT
20	100 kHz	100 Hz	4 x 10 ⁵	400
80 (~now)	100 kHz	1 kHz	4 x 10 ⁴	400
200	400 kHz	10 kHz	4 x 10 ³	100

If you run a zero-background search and can't beat a trigger efficiency of ~0.02%, then you should be using the ZBT! \trigger" data / H \data amount ...and if you can do TLA, that number goes up to ~1%!

# pp interactions	L1 Rate	HLT Rate	ZBT	ZBT @HLT
20	100 kHz	100 Hz	4 x 10 ⁵	400
80 (~now)	100 kHz	1 kHz	4 x 10 ⁴	400
200	400 kHz	10 kHz	4 x 10 ³	100

How does the ZBT compare to the other paradigms?

24

There is a huge dataset that we are currently ignoring.

New physics may be hiding in these data and we are collecting them anyway

Most powerful when combined with triggerlevel analysis (**so need to design ASAP**!)

Takeaway message: the baseline is the ZBT >> 0!

Think creatively about new possibilities... the sky, and not the trigger, is the limit!

(also, remember ZBT offline has ~infinite time for processing)

Data pipeline at the LHC

25 ns 10⁻¹⁹-10⁻¹⁵ s ~ms 0.01-20 ns ~min 1-100 ns ~100 ms 2.5 μs

200 ms

~100 ms

~months

O(100) pp collisions

data / simulation

(sub-)nuclear physics

out-going particles interact with detector

detector response (signal formation + digitization)

hardware-based trigger decision

software-based trigger decision

event reconstruction

event processing (skim, thin, augment)

final data analysis (uses millions of events)

The extra pileup collisions add unwanted soft radiation on top of the event

This degrades trigger and offline performance

akin to image de-noising ... we can use ML for that!

Pileup mitigation with machine learning

Pileup mitigation with machine learning

P. Komiske, E. Metodiev, BPN, and M. Schwartz, JHEP 12 (2017) 051

P. Komiske, E. Metodiev, BPN, and M. Schwartz, JHEP 12 (2017) 051

Data pipeline at the LHC

25 ns 10⁻¹⁹-10⁻¹⁵ s ~ms 0.01-20 ns ~min 1-100 ns ~100 ms 2.5 µs 200 ms

~100 ms

~months

O(100) pp collisions

data / simulation

(sub-)nuclear physics

out-going particles interact with detector

detector response (signal formation + digitization)

hardware-based trigger decision

software-based trigger decision

event reconstruction

event processing (skim, thin, augment)

final data analysis (uses millions of events)

Data pipeline at the LHC

25 ns 10⁻¹⁹⁻10⁻¹⁵ s ~ms 0.01-20 ns ~min 1-100 ns ~100 ms 2.5 μs

200 ms

~100 ms

~months

O(100) pp collisions

data / simulation

(sub-)nuclear physics

out-going particles interact with detector

detector response (signal formation + digitization) hardware-based trigger decision, but we software-based *** decisions, but we software-based *** decisions, but we need for "real time" decisions, work make this work Not needed for "real time" make this work Not needed for "real time" decisions, but we need real time speed to make this work heed real time speed to make this work

final data analysis (uses millions of events)

Simulation at the LHC

Simulation at the LHC

This is only possible because of **factorization** (*Markov Property*): given the physics at one energy (~1/length) scale, the physics at the next one is independent of what came before.

Spanning 10⁻²⁰ m up to 1 m can take O(min/event)

Part I: "Hard-scatter"

We begin with equations of motion

......

$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + i\bar{\psi} D\psi + \psi_i y_{ij} \psi_j \phi + \text{h.c.} + |D_\mu \phi|^2 - V(\phi) + ???$

See this paper for adapting a ME to HPC

See this paper for ME integration with GNNs

Many tools exist for automating this highest energy step

For many cases, this is slow but not limiting (yet)

11

State-of-the-art for material interactions is Geant4.

Includes electromagnetic and hadronic physics with a variety of lists for increasing/decreasing accuracy (at the cost of time)

This accounts for O(1) fraction of all HEP competing resources!

Part IV: Digitization

It is important to mention that **after** Geant4, each experiment has custom code for *digitization*

this can also be slow; but is usually faster than Geant4 and reconstruction

deposited charge It is important to mention that **after** Geant4, each experiment has custom code for *digitization*

N.B. calorimeter energy deposits factorize (sum of the deposits is the deposit of the sum) but digitization (w/ noise) does not!

Goal: replace (or augment) simulation steps with a faster, powerful generator based on state-of-the-art machine learning techniques

To start: attack the most important part: Calorimeter Simulation

Why should **you** care? Many analyses are forced to use a Geant4-based simulation as current fast sim. is not good enough.

Why should **you** care? Many analyses are forced to use a Geant4-based simulation as current fast sim. is not good enough.

Standard Model Production Cross Section Measurements

Status: July 20

[qd	10^{11} $\overbrace{\square \triangle O}$ total (x2) inelastic	ATLAS Preliminary	Theory
6		Run 1,2 $\sqrt{s} = 7, 8, 13$ TeV	LHC pp √s = 7 TeV

If we don't do something, the HL-LHC won't be possible. If we do something now, we can save O(\$10 million/year).

How can ML help?

Training NN's is slow, but evaluation is **fast**

Physics-based simulations are **slow**

What if we can learn to simulate calorimeter showers with a NN?

43

Generative Adversarial Networks (GAN): A two-network game where one maps noise to images and one classifies images as fake or real.

When **D** is maximally confused, **G** will be a good generator

+ More Layers for Generation

What about **multiple layers** with **non-uniform granularity** and a **causal relationship**?

M. Paganini, L. de Oliveira, **BPN**, *PRL 120 (2018) 042003*

45

46

Generator Network

Average Images

CaloGAN

Shower shapes

Qualitative agreement; clearly also room for improvement.

48

In fact, one could add this into the training; for now held out for validation.

Generation Method	Hardware	Batch Size	milliseconds/shower
GEANT4	CPU	N/A	1772 -
Calogan	CPU	1	13.1
		10	5.11
		128	2.19
		1024	2.03
	GPU	1	14.5
		4	3.68
		128	0.021
		512	0.014
		1024	0.012 -

M. Paganini, L. de Oliveira, **BPN**, *PRL 120 (2018) 042003*

Conclusions and outlook

The LHC is a unique science tool with extreme challenges related to the data rate: real time / ultra fast algorithms are required.

There are many exciting opportunities and ideas for fully exploiting our data we must make sure no stone is left unturned !

Discriminator Network for CaloGAN

M. Paganini, et al., PRL 120 (2018) 042003

"Overtraining"

A key challenge for GANs is the diversity of generated images. This does not seem to be a problem for CaloGAN.

