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Thank you
● Megan Bedell (Flatiron)
● Josh Bloom (Berkeley)
● Doug Finkbeiner (Harvard)
● Dan Foreman-Mackey (Flatiron)
● Dustin Lang (Toronto)
● Sam Roweis (deceased)
● Bernhard Schoelkopf (MPI-IS)
● Dun Wang (NYU)
● ...and many more
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(this talk)
● This is intended to be a conversation starter about scientific projects.

○ (and my visuals suck)
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Exoplanet discovery
● There are six methods for finding planets around other stars.

○ Transit, radial-velocity, timing, direct imaging, microlensing, astrometry.

● Transit (thousands) and radial-velocity (hundreds) are the market leaders.
○ But not for long!
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What is a transit?
● Because of insane good luck, a planet passes between us and its host star.
● It blots out a fraction of the star’s light that is proportional to the area ratio.

○ Rp^2 / Rs^2
○ (modified by lots of details)



David W. Hogg (NYU) (MPIA) (Flatiron)

What is the radial-velocity method?
● Planet and star orbit a common center of mass.
● Look for star’s consequently variable Doppler shift.
● Jupiter-like planets induce few-m/s signals.
● Earth-like planets induce 10-ish-cm/s signals.
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NASA Kepler Mission
● 42-CCD camera pointing at 100 square degrees continuously for 4.1 years.
● Designed with the sole purpose of finding Earth-like exoplanets.

○ All trades made for simplicity and stability.
○ Data designed to require minimal calibration or spacecraft knowledge.
○ Inexpensive.

● Delivered 2300 to 4000 planets (depending on definitions).
○ (far exceeding all expectations)

● Also did amazing science with stars
○ (and there is a whole awesome K2 story.)
○ (and an awesome #openscience #otherpeoplesdata story)
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A transiting exoplanet
● A transit is a blunt tool.
● Learn period, a radius ratio (planet to star) and a stellar density (yes, density).
● Almost no information about orbital eccentricity or planet mass.
● Also, the signal is exceedingly sparse.

○ Earth transits the Sun (for some exo-astronomers) for 13 hours every 365.26 days.
○ Exo-astronomers have to be both lucky and persistent to observe it.
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Extreme-precision radial-velocity experiments
● Typically:
● Have a few to many nights per year on an expensive telescope.
● Measure Doppler shifts for a dozen or so stars per night.

○ These days: With a precision of 1 m/s! Soon: 10 cm/s!!
○ (precision and accuracy very different here!)

● Don’t want to “waste time” on stars that won’t produce planets.
● Harsh decisions are made.

○ This star’s past data look more promising than this star’s.
○ There are even exoplanet savants!
○ Telescope time-allocation committees demand efficient programs.

● Literally no-one has ever fully automated these decisions.



David W. Hogg (NYU) (MPIA) (Flatiron)

Humans
● I can’t say this enough:
● We are swinging around literally hundreds of millions of dollars of equipment 

on the unrecorded whims of humans, talking to each other in windowless 
conference rooms.
○ and for what?
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Exoplanet populations
● A (or the?) key goal of all this is to figure out the properties of the full 

population of planets.
● We want to account for (very very complex) selection effects.

○ Shorter periods easier to find.
○ Larger planets easier to find.
○ “Quieter” stars easier to search.
○ Plus non-trivial dynamical issues, like resonances and interactions.

● Radial-velocity experiments deliver more information per system, and yet:
● All populations inferences have been performed with the transit data alone.

○ Why?



David W. Hogg (NYU) (MPIA) (Flatiron)

Exoplanet populations
● There are more planets than stars!
● Super-Earths and mini-Neptunes are (by far) the most common planet types.
● The Solar System is not really “typical”.
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Humans vs machines
● Humans are fucking great at efficiently finding planets!

○ Even NASA Kepler had human-vetting in the loop until its final data release.

● But humans are fucking hard to model quantitatively in any statistical model 
of planet populations!
○ And you will simply get wrong answers if you don’t model the human decisions.
○ And humans really, really don’t want to “waste time” on control samples!

● If the RV communities had accepted some efficiency hit for algorithmic 
operations and control samples, their data would have been useful for 
something other than just discovery.
○ But, to be fair, no-one would have given them telescope time.
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Exoplanets
● I’m being negative.
● But seriously, the breakthroughs in exoplanet science over the last decade, 

from joint analysis of many data streams, have been absolutely incredible.
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switch gears
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Sloan Digital Sky Survey
● First really big university-based astronomy research project.
● Took imaging of ¼ of the sky in five optical passbands.
● Took spectra of 1,000,000 galaxies and quasars to obtain redshifts.
● Measured the inhomogeneous structure in the Universe and it’s growth with 

cosmic time.
● All parts of the survey were operationally algorithmic and repeatable.

○ It was literally designed with long-term statistical legacy value in mind from day one.
○ (there is also a great #openscience and #otherpeoplesdata story here too)
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Sloan Digital Sky Survey
● Project was enormously over-designed:
● Imaging was far deeper than needed to target spectroscopy.

○ (factor of hundreds in observing-time equivalent) 

● Spectroscopy was far higher in signal-to-noise than needed to obtain 
redshifts.
○ (factor of tens in observing-time equivalent)

● Project went enormously over budget.
○ (it was completed by the University partners)

● Project was enormously productive.
○ There are almost ten thousand papers from the original survey, and thousands more from the 

subsequent surveys SDSS-II, SDSS-III, and SDSS-IV
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What to conclude?
● SDSS didn’t get the balances all exactly right, but it was successful for two 

reasons:
● It was operationally algorithmic and statistically reliable.
● The over-design meant that there was lots of additional, unplanned discovery 

space for astronomers and cosmologists across all domains.
● Part of the Survey’s success was a result of its inefficiency.
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Present-day cosmology experiments
● Cosmology is a mature field with extremely mature questions.
● We are required (by funding partners) to make new projects highly efficient 

for measuring particular parameters.
● This could have disastrous consequences.
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(off topic?)
● What does this have to do with Real-Time Decision Making?

○ Nothing! But it does have a lot to do with Decision Making.
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Valuation and discovery
● Fundamentally the issue is that we can put quantitative measures over 

improvements in parameter estimation.
○ Cramer–Rao bounds or Fisher information.
○ Information or entropies.

● We don’t know how to put quantitative measures over unplanned discovery 
space.
○ The situation is a bit like testing in schools: It leads you to value what you can test, rather than 

what you want to test.
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switch gears
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Astrometry.net
● Here’s an image of the night sky. What’s the pointing, rotation, and scale?
● The first-ever reliable image-recognition system in any domain.

○ Make it rain!

● That said, it is in a domain that has no commercial value whatsoever.
○ (whoops)
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Astrometry.net
● Automated detection of stars and background in arbitrary imaging.
● Lookup of geometric hashes in immense database.
● Fastest kd-tree (of its type) in the world (at the time).
● Bayesian inference conditioned on stars in the image.
● Explicit decision-theory implementation for user response.
● Automatic visualization of results.
● Open data and code.
● Dustin Lang et al (2010) The Astronomical Journal 139 1782–1800
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Bayesian decision theory
● Astrometry.net obtains probabilistic information about the pointing, rotation, 

and scale of the astronomical image.
● It has to decide what to say to the user.
● We explicitly cast this as a decision theory problem:

○ What are our long-term cash-flow implications if we give an answer and it’s right?
○ What if we give an answer and it’s wrong?
○ What if we don’t give an answer but we could have?

● We make the decision that maximizes our expected long-term cash flow.
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What?
● We had to make a judgement about the astronomical community’s long-term 

view of Astrometry.net:
○ Would they trust a system that gives wrong answers?
○ How would reputation propagate in the astronomical community?
○ How much do we value different kinds of users with different attitudes towards risk?

● This is hard!
○ In the end we just made up reasonable numbers.

● This is hard, and it’s in a domain of absolutely no consequence whatsoever.
○ If we want to get serious about quantitative decision making in real contexts (like, say, 

self-driving cars), it’s going to hurt.
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Long-term future discounted free-cash flow
● Long-term future: All parameters and context are variable.

○ (so there is no confident computation of anything)
○ (the specific time frame for the long term is very context-dependent)

● Discounted: You prefer cash now to cash later.
○ (discount rate is different for investigators in different positions)

● Free-cash flow: Current revenue less current expenses.
○ (cash that could be paid out to investors without impact to the present-day scale of the 

business)
○ (doesn’t take account of expenditures to make capital improvements for growth; we do what 

we do in order to get those opportunities)
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Scientific LTFDFCF
● The fact that the objective is explicitly long-term means that it can’t be 

precisely estimated.
● The discount rate is a strong function of career stage or project scale.
● The costs and benefits of individual scientific papers are measured in the 

hundreds of thousands of dollars.
● It is pointless to compute the LTFDFCF in any units other than real currency 

units (eg, USD or EUR or BTC).
○ You need to make trades between software, hardware, personnel, travel, and all other budget 

categories.



David W. Hogg (NYU) (MPIA) (Flatiron)

Implications for RTDM
● We need to build utility models for trades.
● Our utility models need to explicitly look towards end goals of discoveries:

○ publications,
○ future grant funding success,
○ junior-scientist careers, 

● We need to think about outcomes in terms of probabilities and utilities.
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Implications for model selection
● On a tiny, tiny scale:
● Any time you say “I have discovered X” or “I have ruled out Y” you are explicitly 

making (and announcing) a decision.
● Most hard-core Bayesians think you do this by marginalizing likelihoods.

○ But that’s wrong!
○ And it is super-duper espensivo to do these marginalization integrals precisely.

● You really ought to do this by integrating utilities over posterior beliefs about 
outcomes.
○ And if you don’t know the utilities precisely (see previous slides),
○ there is no point in doing these integrals precisely!
○ It’s not just the Bitcoin miners that are wasting CPU cycles.



David W. Hogg (NYU) (MPIA) (Flatiron)

switch gears
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Star bucks?
● Imagine you had a heterogeneous network of astronomical resources.

○ And note: The astronomical community, viewed as a whole, does!

● How would you objectively and optimally apportion these resources?
● You would run a live auction (or something like it).

○ cf: Endless late-night conversations with Josh Bloom.
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Global telescope networks
● There are now many global telescope networks, some operated by 

professionals and some operated by amateurs.
● There is much focus on making sure that the nodes in the network are as 

similar as possible.
● That choice is pessimal.

○ Q: Who, when hiring employees, tries to hire people who are as similar as possible?
○   

● But that choice (homogeneity) is made because there is no theory of how to 
make trades across heterogeneous assets.

           A: Only extremely bad employers.
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Managing heterogeneous networks
● Our vision for RTDM in the LSST and SKA era is autonomous trades among 

assets in a heterogeneous network.
● Each asset will have a utility model.

○ A function of what it observes, and what it is trying to measure or discover.

● Each asset earns and spends cash (real if possible) making trades with other 
assets in a live market.
○ Notice that some assets could be human-operated; this encourages human–machine 

collaborations.

● This is not a near-term goal.
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Heterogeneity in general
● Most astronomers abhor heterogeneity:
● Data are easier to use if they are flat, identical, evenly sampled.
● But in every context, there is more information if the data are heterogeneous.

○ This is not just a theoretical point:
○ Consider sampling theorems in evenly vs randomly sampled time series.
○ Consider time-scale sensitivity as exposure times are varied.
○ Consider spectral coverage as wavelength bandpasses are moved.
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Sloan Digital Sky Survey, once again
● Original plan for imaging was to do a single pass over the sky. One shot. 

Calibrate externally, and rely on system stability for calibration stability.
● We moved the survey to a mode in which it did some overlapping imaging, so 

the same star would see a few different detector locations.
● This operational heterogeneity permitted us to self-calibrate the survey with 

no use of any external calibration data whatsoever.
○ The self-calibration ended up far more precise than the external calibration.
○ It was adopted at DR8 and for all subsequent data releases.

● Even this tiny bit of heterogeneity made the Survey far more capable.
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NASA Kepler, once again
● Kepler kept its pointing as stable as possible, so that each star is always 

nailed to the same focal-plane position as precisely as possible.
● This led to very stable, homogeneous data, but prevented us from learning 

anything about the spacecraft calibration.
○ This limited our final precision, and precluded certain kinds of investigations.

● We could have learned more (but at substantial operational cost) with some 
small dithering of the spacecraft.
○ We show this empirically—in some sense—in Wang et al, arXiv:1508.01853
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Operations and ethics
● Everything I have said here would substantially complexify operations.

○ That is, the hardware would become cheaper, and we could do more science, but not nearly as 
simply.

○ There will be hardware–software trades to consider.

● Astronomy is paid-for by the public; we have an obligation to maximize 
scientific return on those dollars.
○ (even astronomy funded by the Simons Foundation is ultimately paid-for by the public)

● Full Disclosure: My group is a computational data-analysis group. We benefit 
directly from complexity in operations!
○ So long as it doesn’t involve modeling humans.
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Radial-velocity experiments, once again
● If we can make progress towards specifying utility,

○ (even very, very poor approximations)

● then we can create algorithmic, adaptive programs for radial-velocity 
exoplanet discovery that are explicitly optimized to maximize utility.
○ Related to active learning.

● If the utility is sophisticated enough, the program will generate all needed 
statistical controls along with high efficiency at finding new systems.
○ We are working on these utility proxies now (though we are not close).
○ They are based on discounted information about exoplanet populations.

● And then we can use (or combine) RV data for population inferences.
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Discussion triggers
● Exoplanet science and the problem of having humans in the discovery loop.
● Decisions are different from inferences! They involve utility.
● Your utility is your LTFDFCF.
● Astronomical projects need to be designed for discovery goals.
● Almost any scientific or engineering goal benefits from heterogeneity of 

hardware and observing.
● As heterogeneity increases, software inevitably becomes more complex.


