Alert Streams in the LSST Era:
 Challenges and Opportunities

Eric Bellm

University of Washington
LSST DM Alert Production Science Lead
for M. Juric; on behalf of the LSST Data Management Team

REAL-TIME DECISION MAKING: APPLICATIONS IN THE NATURAL SCIENCES AND PHYSICAL SYSTEMS

February 26, 2018

Scan the sky...

$\angle S T$

LSST

Aitoff plot showing HA/Dec of simulated survey pointings

- 20 deg elevation limit (Light=New)

Scan the sky...

$\angle S T$

LSST

Aitoff plot showing HA/Dec of simulated survey pointings

- 20 deg elevation limit (Light=New)

Find things that change.

SN 2011fe
06 Feb. 2011
The Virtual Telescope Proiect (www.virtualtelescope.eu)

Find things that change.

SN 2011fe
06 Feb. 2011
The Virtual Telescope Proiect (www.virtualtelescope.eu)

Follow them up!

When making decisions, watch out for junk.

a Bad astrometry

eKernel matching failure

i Incomplete masking

Masci+ 2017

b Bad gain matching \mathbf{C} Bad astrometry

f streak

j Incomplete masking

g Unmasked halo

k Bad background matching

d Kernel matching failure

But there are lots of real events, too...

Find exotic explosions...

Gamma-ray bursts

Tidal Disruption Events

... binary neutron star mergers...

Fermi

Reported 16 seconds after detection

Gamma rays, 50 to 300 keV
GRB 170817A

LIGO-Virgo

Reported 27 minutes after detection

... interstellar visitors \& "killer" asteroids...

... and weird stars.

Many surveys are already active.

OGLE I - OGLE II - OGLE III -OGLE IV
DPOSS ---...- Palomar-Quest ---- La Silla Quest

Events are sorted and reported a wide variety of ways. 5

private databases \& scripts
public webpages
email lists
Astronomer's Telegram
GCN
IAU circulars

Transient Name Server

VOEvent Network

Events are sorted and reported a wide variety of ways. 5

private databases \& scripts
public webpages
email lists
Astronomer's Telegram
GCN
IAU circulars

Transient Name Server

VOEvent Network
more automated,
general purpose

The Large Synoptic Survey Telescope will produce an alert stream of greater scale and generality than any survey to date.

An automated 8.4 meter telescope that for 10 years will image half the sky every ~ 3 days, generate ~ 50 PB of (raw) imaging data, issue real-time alerts to any changes in the sky (~ 10 million/night),
measure properties of ~ 40 billion objects in the sky (~1000 times each), and make the results available in a web-accessible database.

First Light: 2019 Operations: 2022

LSST is located in Cerro Pachon, Chile.

Cerro Pachón - Future site of the LSST

Leveling of El Peñón (the summit of Cerro Pachón)

The summit, April 2015.

The summit, February 2018.

$\angle S I$

LSST is a database of the optical sky.

LSST data, including images and catalogs, will be available with no proprietary period to the astronomical community of the United States, Chile, and International Contributors. LSST's alerts are immediately world-public.

LSST is a public facility: all science will be done by the community (not the Project!), using LSST's data products.

The ultimate deliverable of LSST is not the telescope, nor the instruments; it is the fully reduced data. LSST is a facility that delivers data products and data access and analysis services.

Table 4: Level 2 Catalog Object Table			
Name	Type	Unit	Description
psRadecTai	double	time	Point source model: Time at which the object was at position radec.
psPm	float[2]	mas/yr	Point source model: Proper motion vector.
psParallax	float	mas	Point source model: Parallax.
psFlux	float[ugrizy]	nmgy	Point source model fluxes ${ }^{58}$.
psCov	float[66]	various	Point-source model covariance matrix ${ }^{59}$.
psLnL	float		Natural \log likelihood of the observed data given the point source model.
bdRadec	double[2]	degrees	$\mathrm{B}+\mathrm{D}$ model ${ }^{60}:(\alpha, \delta)$ position of the object at time radecTai, in each band.
	atalc	gS	flou ot fug oplecf of fluw $\mathrm{B}+\mathrm{D}$ woqब e_{e} : $\left(\mathrm{a}^{2} q\right)$ box!Bomuf anmag tuogel

We are building a multi-continent Data Management System.

Satellite Processing Center

Archive Site
 Archive Center
 Alert Production

Data Release Production (50\%)
EPO Infrastructure
Long-term Storage (copy 2)
Data Access Center
Data Access and User Services

HQ Site

Science Operations Observatory Management Education and Public Outreach

Chilean Sites

Telescope and Camera
Data Acquisition Crosstalk Correction Chilean DAC Entry-point

LSST has three data processing modes.

A stream of ~ 10 million time-domain events per night, detected and transmitted to event distribution networks within 60 seconds of observation.
A catalog of orbits for ~ 6 million bodies in the Solar System.

Prompt: Time-Domain Alerts

We expect a high rate of alerts, approaching 10 million per night. We'll also provide an alert filtering service, to select subsets of alerts, as well as serve the full stream to external event brokers.

Each alert will include the following:

- Alert and database ID: IDs uniquely identifying this alert.
- The photometric, astrometric, and shape characterization of the detected source
- 30x30 pixel (on average) cut-out of the difference image (FITS)
- 30×30 pixel (on average) cut-out of the template image (FITS)
- The time series (up to a year) of all previous detections of this source
- Various summary statistics ("features") computed of the time series

The goal is to quickly transmit nearly everything LSST knows about any given event, enabling downstream classification and decision making.

Prompt processing also includes nightly identification of Solar System Objects.

Prompt Processing: System Architecture

String

 2

LSST has three data processing modes.

A stream of ~ 10 million time-domain events per night, detected and transmitted to event distribution networks within 60 seconds of observation.
A catalog of orbits for ~ 6 million bodies in the Solar System.

A catalog of ~ 37 billion objects (20B galaxies, 17B stars), ~ 7 trillion observations ("sources"), and ~30 trillion measurements ("forced sources") accessible through online databases.
Reduced single-epoch, deep co-added images.

Data Releases provide the most thorough processing. 5

Made available in Data Releases

- Annually, except for Year 1
- Two DRs for the first year of data

Well calibrated, consistently processed, catalogs and images

- Catalogs of objects, detections, detections in difference images, etc.

Complete reprocessing of all data, for each release

- Every DR will reprocess all data taken up to the beginning of that DR

Projected catalog sizes:

- 18 billion objects (DR1) $\rightarrow \quad 37$ billion (DR11)
- 750 billion observations (DR1) $\rightarrow 30$ trillion (DR11)

Data Release Catalog Contents

Object characterization (models):

- Moving Point Source model
- Double Sérsic model (bulge+disk)
- Maximum likelihood peak
- Samples of the posterior (hundreds) Object characterization (non-parametric):

Target

LSST Science Book, Fig. 9.3

LSST has three data processing modes.

A stream of ~ 10 million time-domain events per night, detected and transmitted to event distribution networks within 60 seconds of observation.
A catalog of orbits for ~ 6 million bodies in the Solar System.

A catalog of ~ 37 billion objects (20B galaxies, 17B stars), ~ 7 trillion observations ("sources"), and ~30 trillion measurements ("forced sources") accessible through online databases.
Reduced single-epoch, deep co-added images.

LSST is planning a ten-year survey.

Survey in ugrizy bands, with ~825 visits per pointing

Wide-Fast-Deep:

2x/night every three nights over 18,000 square degrees

Special programs:

- Deep Drilling
- Galactic Plane
- North Ecliptic Spur
- South Celestial Pole

Ongoing cadence development \& evaluation: https://github.com/
LSSTScienceCollaborations/
ObservingStrategy

A series of software pipelines produces the LSST alert stream.

Nightly Processing Pipeline

> Single Frame Processing

Alert Generation

Alert Distribution

LSST LDM-151:
Data Management
Applications Design
Is.st/LDM-151

Single Frame Processing

Is.st/LDM-151

Alert Generation detects and associates transients.

SUB

Alert Generation

Is.st/LDM-151

Alert Distribution packages and sends alerts.

Alert Distribution

LSST LDM-151:
Data Management
Applications Design
Is.st/LDM-151

LSST's alert stream differs in scale and motivation

 from current astronomical databases.Primary interface is an alert stream, not a batch query
Real-time, low-latency, naturally distributed \& decentralized
All* subtraction candidates are streamed at low latency
"turn the database inside out"
("alert" is somewhat of a misnomer...)
Events sent in (world-public!) rich alert packets
enable standalone classification

Users find events of interest through classification \& filtering systems
full stream to community brokers: ANTARES, ALeRCE, etc.
simple LSST "mini-broker" filtering service
key decision: is this an object I want to follow up?

LSST uses rich alert packets to minimize followup queries.

Each alert will at least include the following:

- alertID: An ID uniquely identifying this alert. It can also be used to execute a query against the Level 1 database as it existed when this alert was issued
- Level 1 database ID
- Science Data:
- The DIASource record that triggered the alert
- The entire DIAObject (or SSObject) record
- All previous DIASource records -> last 12 months
- A matching DIAObject from the latest Data Release, if it exists, and its DIASource records
- Cut-out of the difference image centered on the DIASource (10 bytes/pixel, FITS MEF)
- Cut-out of the template image centered on the DIASource (10 bytes/pixel, FITS MEF)

LSST LSE-163:
Data Products
Definition Document
Is.st/DPDD

DIASources:

- Position
- aperture/PSF/dipole/trailed fluxes
- moments
- likelihoods, extendedness, spuriousness

DIAObjects:

- linkages to DIASources [-> light curve], Data Release Objects
- time series statistics

SSObjects:

- linkages to DIASources
- variety of solar system parameters

LSST alert distribution requires a new community ecosystem.

At ~20 full sized events per visit per user (or summarizing the lightcurve for all events in ~40 numbers) we can serve ~ 500 simultaneous users for the cost of a single full data stream

LSST is testing new technologies for alert distribution.

1. Transport system: Apache Kafka

- Scalability
- Replication
- Allows stream "rewind"

2. Data formatting: Apache Avro

- Fast parsing with structured messages (typing)
- Strictly enforced schemas, but schema evolution
- Allows postage stamp cutout files

3. Filtering/ processing: Apache Spark

- Direct connection to transport system
- Stream interface similar to batch
- Allows for Python or simple SQL-like queries

Transport prototyping: Apache Kafka

ঞokafka
A distributed streaming platform

- Distributed log system/ messaging queue
- Reinvented as strongly ordered, pub/sub streaming platform
- Highly scalable, in production at
 Linkedln, Netflix, Microsoft
- Great clients + connectors, including Python - good usability

Data formatting: Apache Avro

UNSTRUCTURED
SEMI-STRUCTURED
STRUCTURED

More efficient storage and performance

- Schemas defined with JSON
- Dynamic typing- strict adherence
- Flexible format- schema evolution
- Also used in production, science, recommended by Kafka

Filtering/Processing: Apache Spark

- cross-match with other catalogs and alert streams
- classify events (the LSST Project can only characterize)
- redistribute alert packets
- filter alerts
- provide user interfaces
- enable community coordination
- trigger followup resources and manage that data
- provide storage and archiving
- provide annotation \& citation
- manage "discovery"
- ...probably more?

A finite number of brokers will be selected by a proposal process to receive the full stream.

LSST will provide a "mini-broker" service

User-defined filters that act only on alert packet contents

Access to the filtered stream through LSST's Science Platform

Cap of ~20 alerts per user per visit; some limits on computing capacity

Simple single-alert filters can enable a lot of science. $5 S$

 time-domain brokers on an LSST-like alert stream.

First light October 2017

Survey begins March 2018

Planning an LSST-like public alert stream Q2 2018

ZTF \& LSST are quite different...

ZTF provides a natural stepping stone to LSST.

ZTF: 1M alerts/night LSST: 10M alerts/night

LSST Commissioning

The LSST alert stream presents both opportunities and challenges.

Opportunities

- a powerful new facility; huge discovery space
- rich data products to enable general-purpose inference:
"batteries included"
- naturally distributed, BYOC

Challenges

- large data volumes and event rates
- sparse \& irregular sampling due to LSST cadence
- faint targets; limited followup resources
- need to join with heterogenous data sets, other alert streams
- LSST survey and tools must serve many science goals
- key scientific capabilities delegated to community brokers not directed by the LSST Project
- how is information shared in a distributed ecosystem?

Conclusions

LSST will deliver an alert stream of unprecedented scale and great scientific potential.

We are prototyping industry-proven technologies to deliver the alert stream.

Discovery and followup of time-sensitive events requires new community-developed decision-making infrastructure.

ZTF will use prototype versions of LSST tools to provide an LSST-like alert stream and filtering service this year.

Are we building a firehose?

or a community fountain everyone can play in?

