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Networks are mathematical abstractions of complex
systems

Networks are useful for

visualization

discovery of regularity
patterns

exploratory analysis

. . .

of complex systems.
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Interactions between variables are not always observable
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Interactions between variables are not always observable

Data collected over a period of
time is easily accessible

M. Kolar (Chicago Booth) Estimating Time-Varying Networks November 20, 2013 5



Estimating time-varying networks
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Talk Objective

How to recover changing interactions between objects from data
collected over time?

Challenges:

- Number of samples small

- Large number of objects

- Noisy data

- Data may contain missing values

- . . .
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Markov Networks

Random vector X = (X1, . . . , Xp)
′

Graph G = (V,E) with p nodes

- represents conditional independence relationships between nodes

Useful for exploring associations between measured variables

(a, b) 6∈ E ⇐⇒ Xa ⊥ Xb | Xab

(
ab := V \{a, b}

)
P[Xa | Xb, Xab] = P[Xa | Xab]

(Koller and Friedman, 2009)
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Two Common Markov Networks

Gaussian Markov Network: X ∼ N (µ,Σ)

p(x) ∝ exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
The precision matrix Ω = Σ−1 encodes both parameters and the graph
structure

∗ ∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ 0
∗ ∗ ∗ 0 0 0
∗ ∗ 0 ∗ 0 0
∗ ∗ 0 0 ∗ 0
0 0 0 0 0 0


1 2

3

45

6

(Koller and Friedman, 2009; Lauritzen, 1996)
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Two Common Markov Networks

Gaussian Markov Network: X ∼ N (µ,Σ)

p(x) ∝ exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
The precision matrix Ω = Σ−1 encodes both parameters and the graph
structure

Discrete Markov network: X ∈ {−1, 1}p (Ising model)

p(x; Θ) ∝ exp

∑
a∈V

xaθaa +
∑

a,b∈V×V
xaxbθab


Θ = (θab)ab encodes the conditional independence relationships

(Koller and Friedman, 2009; Lauritzen, 1996)
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Structure Learning Problem

Given an i.i.d. sample Dn = {xi}ni=1 from a distribution P ∈ P

Learn the set of conditional independence relationships

Ĝ = Ĝ(Dn)

Gaussian Markov Networks (Drton and Perlman, 2007)

- Form the maximum likelihood estimator for the covariance matrix

- Test for zeros in the precision matrix

Discrete Markov Networks (Chickering, 1996)

- Hard to learn structure, since the log partition function cannot be
evaluated efficiently
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Structure Learning in High-Dimensions

Penalized Pseudo-Likelihood Estimation

- Neighborhood Selection

- Useful for learning the structure of Gaussian and discrete Markov
Networks

θ̂a = arg max
θa∈Rp

∑
i∈[n]

γ(θa; xi)− λ||θa||1

Conditional likelihood: γ(θa; xi) = logP[xi,a | xi,a;θa]

(Meinshausen and Bühlmann, 2006)
(Ravikumar, Wainwright, and Lafferty, 2009)
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Neighborhood Selection

Local structure estimation

θ̂a = arg max
θa∈Rp

`(θa;Dn)−λ||θa||1

θ̂1 =
(
∗ ∗ 0 ∗ 0 0 0

)

Estimated neighborhood

N̂a = {b ∈ V | θ̂ab 6= 0}

N̂a = {2, 3, 5}

1

2

3

4

5

6

7

8
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Properties of Neighborhood Selection

Graph structure can be recovered consistently

- provable guarantees in a high-dimensional setting
- Meinshausen and Bühlmann (2006); Ravikumar, Wainwright, and Lafferty (2009)

Peng, Wang, Zhou, and Zhu (2009)

Fast estimation procedures

- efficient solvers for `1 penalized problems

- Beck and Teboulle (2009); Friedman, Hastie, and Tibshirani (2008)
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Estimating Time-Varying Networks
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Estimating Time-Varying Networks

Et = {(a, b) ∈ V × V | θtab 6= 0}
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Estimating Time-Varying Networks

Et = {(a, b) ∈ V × V | θtab 6= 0}
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General Estimation Framework

Data: Dn = {xt | xt ∼ P(θt;Gt)}t∈Tn , Tn = {1/n, 2/n, . . . , 1}

argmax `(Dn, {θt})− pen
(
{θt}

)
Loss: `(Dn, {θt})

- measures the fit of model to data

Penalty: pen
(
{θt}

)
- balances the complexity of model and the fit to data

- encodes structural assumptions about model class
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Two scenarios

1 Smooth Networks

(Song et al., 2009)
(Kolar et al., 2010)
(Kolar and Xing, 2011)
(Kolar and Xing, 2012c)

2 Networks With Jumps
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Smoothly Evolving Networks

γ(θ; xt) = logP[xt,a | xt,a;θ]

wτ (t) =
Kh(t− τ)∑
t∈Tn Kh(t− τ)

Kolar, Song, Ahmed, and Xing (2010)
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Two scenarios

1 Smooth Networks

2 Networks With Jumps

(Kolar et al., 2010)
(Kolar, Song, and Xing, 2009)
(Kolar and Xing, 2012a)
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Two scenarios

1 Smooth Networks

2 Networks With Jumps
(Kolar et al., 2010)
(Kolar, Song, and Xing, 2009)
(Kolar and Xing, 2012a)
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Networks With Jumps

max
{θt}t∈Tn

∑
t

γ(θt; xt)− λ1

∑
t

||θt||1

− λ2

∑
t

||θt − θt−1||2

Fused Penalty (Tibshirani et al., 2005)

Kolar, Song, Ahmed, and Xing (2010)
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Drosophila Life Cycle

Data from Arbeitman et al. (2002)

66 microarray measurements across
full life cycle

Four stages in the life cycle

- embryo

- larva

- pupal

- adult

Analyze subset of 588 genes related
to development

Kolar, Song, Ahmed, and Xing (2010)
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Estimated Dynamic Network
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biological

process

cellular
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Transient Group Interactions
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Known Gene Interactions
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Known Gene Interactions
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Known Gene Interactions
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Theoretical Properties

Theorem (Kolar and Xing (2012c))

Under suitable technical assumptions the graph Gτ is recovered with
exponentially high probability for any fixed point τ ∈ [0, 1].

Fisher information matrix:

Qτ
a := E[∇2 logPθτa [Xa|Xa]], a ∈ V, τ ∈ [0, 1]

- bounded eigenvalues

- incoherence condition

Smoothness: Σt = (σtab) are smooth functions of time

Kernel satisfies regularity conditions
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Theoretical Properties

Theorem (Kolar and Xing (2012c))

Under suitable technical assumptions the graph Gτ is recovered with
exponentially high probability for any fixed point τ ∈ [0, 1].

Parameters: λ �
√

log p
n1/3 , h � n−

1
3

Sparsity: s3 log p
n2/3 = o(1) (s – maximal node degree)

Signal strength: θmin = mine∈Eτ |θτe | = Ω
(√

s log p
n1/3

)

P [graph not recovered] = O
(
exp

(
−Cs−3nh+ C ′ log p

)) n,p→∞−−−−−→ 0
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Simulation Results
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Thank you!
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