CRISP: Challenging the Standard Framework of Hippocampal Memory Function

Laurenz Wiskott

Mehdi Bayati Sen Cheng Jan Melchior Torsten Neher

supported by: Deutsche Forschungsgemeinschaft - Sonderforschungsbereich 874

Theories of the Hippocampus

(2016-02-15 http://www.fusedjaw.com/wp-content/uploads/2011/12/seahorse-anatomy-male-female.png)

Standard Framework of the Hippocampus

- Entorhinal cortex (EC) serves as an interface between association areas of neocortex and the hippocampus.
- The subareas of the hippocampus are connected in a loop: EC - DG - CA3 - CA1 subiculum - EC.
- Because of its recurrent connectivity, CA3 serves as the central autoassociative memory.
- Dentate gyrus (DG) orthogonalizes similar patterns by sparsification.
- CA1 helps expanding the highly compressed representation in CA3 on the way back to the association areas.
- Subiculum has no specific function associated with it.
- The entorhinal-hippocampal part has been implemented as a connectionist model.

(Treves and Rolls, 1994, Hippocampus 4(3):374-391)

CRISP Theory

- Context Reset by dentate gyrus (DG)
 - Dentage gyrus performs disambiguation of similar patterns.
- Intrinsic Sequences in CA3
 - Patterns are connected by association with pre-existing sequences.
- Pattern completion in CA1
 - > Pattern storage and retrieval is done through feedforward hetero-association.
- This is a conceptual model.

(Cheng, 2013, Frontiers in Neural Circuits 7(88):1-14)

Memory Fidelity of Single Patterns

(2018-01-26 https://pixabay.com/en/loving-memory-memorial-grief-1207568/)

Network

- ► Cell numbers, connectivity and sparsity are derived from rat. Scaling factor for number of neurons is 100, for connections per neuron is 10.
- Activation is $p_i(t+1) = \sum w_{ij}p_j(t)$ with k-winners-take-all.
- Autoassociative feedback loop in CA3 is run 15 times per pattern.
- Learning rules exactly as in (Rolls, 1995).
- ► Storage is done via DG, recall via EC→CA3 connections.

Following the Rolls (1995) Model

Solid/dashed lines: with/without recurrent dynamics in CA3.

The Rolls model (top and lower left) used 1% activity in CA1 for 100 patterns and full connectivity from CA1 to EC. We changed that to 10% and sparse connectivity from CA1 to EC, and during storage CA1 was activated by EC \rightarrow CA1.

Correlated Input

- ► Four modules of grid cells as mEC input.
- Population activity at random locations serves as input.

Performance on 252 Random and Correlated Patterns

Solid/dashed lines: with/without recurrent dynamics in CA3.

Learning in DG is disabled, because it drops performance. 252 patterns were used.

Performance on 252 Correlated Patterns

Solid/dashed lines: with/without recurrent dynamics in CA3.

Learning in DG is disabled, because it drops performance. 252 patterns were used.

(Neher, Cheng, & Wiskott, 2015, PLoS Comp. Biol. 11:e1004250)

Performance on Correlated Patterns

Top/bottom: without/with recurrent dynamics in CA3. Red: correlations with wrong patterns. Blue/cyan: correlations with correct pattern. Blue: cases where the recalled pattern is closer to a wrong than to a correct pattern. Black star: average correlation with correct pattern. Histograms taken at cue quality levels marked by red diomonds in previous graphs.

(Neher, Cheng, & Wiskott, 2015, PLoS Comp. Biol. 11:e1004250)

Performance with EC \rightarrow CA1 \rightarrow EC Network

- ► Storage: Activity in CA1 triggered by EC→CA3→CA1, without plasticity. Connections EC→CA1→EC are plastic.
- ▶ Retrieval: $EC \rightarrow CA1 \rightarrow EC$ only is effective.

Solid/dashed lines: with/without recurrent dynamics in CA3.

⁽Neher, Cheng, & Wiskott, 2015, PLoS Comp. Biol. 11:e1004250)

Summary

- Qualitative behavior of a network can be very different for random and for more natural input patterns.
- Correlation between stored and retrieved patterns is only one measure of performance. Confusion rate might be more important.
- ► We found feed-forward hetero-association to be more powerful than recurrent auto-association.
- Recurrent dynamics in CA3 was even harmful.
- ▶ A simple EC \rightarrow CA1 \rightarrow EC performed best on correlated input.

Instantaneous Sequential Storage and Retrieval of Pattern Sequences

(2018-02-07 https://commons.wikimedia.org/wiki/File:Egyptmotionseries.jpg)

Network

- ► *N* = 200.
- Fixed connections were pre-trained with gradient descent, plastic connections were trained with Hebbian learning plus weight decay.

Raw Input Patterns

► A random sequence of 200 handwritten digits of size 28×28 = 784 from the MNIST database serves as raw input, shown here by rows from top left to bottom right.

Reconstructed Input Patterns

- Raw images are compressed with an auto-encoder network down to 220 dimensions to yield the EC representation.
- ► This image shows the reconstructed images from the auto-encoder.

Full Recall from Cue 10 Without Noise

- Cue image is shown negative. Retrieved sequence is rotated for easier comparison.
- The recently stored patterns (lower right) are clearer than the earlier stored patterns (upper left). The quality loss is roughly linear.
- ▶ In this run 196/200 of the retrieved sequences are correct.

Full Recall from Cue 10 With 20% Input Noise

Same as before but with 20% input pixel noise.

(Melchior, Bayati, Cheng, & Wiskott, 2018, in preparation)

Full Recall from Cue 10 Without Noise

Full Recall from Cue 10 With 20% EC Noise

Same as before but with 20% noise in EC.

(Melchior, Bayati, Cheng, & Wiskott, 2018, in preparation)

Reconstructed Input Patterns

Full Recall from Cue 121 Without Noise

• Cue 121 does not trigger the correct sequence.

(Melchior, Bayati, Cheng, & Wiskott, 2018, in preparation)

Full Recall from Cue 121 Without Noise Shifted by 39

 But after about 60 time steps CA3 converges to the correct sequence shifted by 39.

(Melchior, Bayati, Cheng, & Wiskott, 2018, in preparation)

Reconstructed Input Patterns

Full Recall from Cue 14 Without Noise

1	100	3	1	1		S.	1	G.	-	1	2	\mathcal{I}_{ij}	3	1	7	5	5	F	1
1.	17	2	3		3	5	17	õ	¥.	3	3	3	ġ	$\widetilde{\mathcal{H}}_{\mathcal{C}}^{r,r}$	9	B	Ŧ	ℓ_{j}^{*}	ų,
- -	3	Ť			T	1	IJ	$\{\overline{a}_i\}$	1	1	7	4	*	${}^{i}C$	6	3	3		3
3	Ţ	A	$\mathcal{L}_{\mathcal{X}}$	Ē	1	\mathcal{G}	100	3	¥	a	1	Ş	1	4	${\mathbb C}^{(n)}$	503	2	3	\$
1	3	2		Î		5	1	3		2	${\mathbb G}_{2}$		3	2	3	2	S	$\mathcal{C}_{\mathcal{C}}$	1
$\mathbf{S}_{\mathbf{r}}$	8		2	7		53	ŝ	4	999	9	3			20		Ś	3	\mathcal{G}	1
1	200	9	9	S,	5	\tilde{c}	14	3	2	3	4	-			3	E,	3	3	Ŕ
121	4	3	J	03	9	2	3		ų.	\mathcal{G}	3	Ê.	7	9	2	9	С.	\$	100
3	3	3	22	3		2	3	2	4	5	2	9		7	2	\hat{G}		52	1
1	1	3	8	64		2	2	17	Дж	G.	÷	9	3	37	2	$\overset{\mathfrak{a}}{\simeq}$	5	3	1

 Cue 14 does not trigger the correct sequence and CA3 does not recover into the correct sequence at all.

CA3 fluctuates around a spurious attractor state.

Summary

- ▶ It is possible to store a sequence of up to 1.5*N* random patterns in a recurrent CA3 network of *N* units with gradient descent.
- It is possible to do instantaneous sequential hetero-association of a sequence of correlated patterns to the intrinsic sequence of patterns in a CA3 with some preprocessing (auto-encoder + DG).
- The system has no catastrophic interference/forgetting, quality of retrieved patterns degrades linearly.
- Sequential order is preserved reliably even for similar stimuli and overlapping sequences.

Thank you!