
Sub-Linear Time Algorithms: Fast, 
Cheap and (Only a Little) Out of 

Control

Ronitt Rubinfeld

MIT and Tel Aviv U.



Algorithms for REALLY big data



Part I



No time

What can we hope to do without viewing 
most of the data?



Small world phenomenon

• The social network is a 
graph:

– “node’’ is a person

– “edge’’ between people that 
know each other

• “6 degrees of separation’’ 

• Are all pairs of people 
connected by path of 
distance at most 6?



Vast data

• Impossible to access all of it

• Accessible data is too enormous to be 
viewed by a single individual

• Once accessed, data can change



The Gold Standard

• linear time algorithms!

• Inadequate…



What can we hope to do without viewing 
most of the data?

• Can’t answer “for all” or “exactly” type statements:

• exactly how many individuals on earth are left-handed?

• are all individuals connected by at most 6 degrees of 
separation? 

• Compromise?

• approximately how many individuals on earth are left-handed?

• is there a large group of individuals connected by at most 6 
degrees of separation?



Property testing

Traditional approximation

Types of approximation:



“In the ballpark” vs. “out of the ballpark” 
tests

• Property testing:   Distinguish inputs that have specific 
property from those that are far from having that 
property

• Benefits:
– Can often answer such questions much faster
– May be the natural question to ask

• When some “noise”  always present
• When data constantly changing 
• Gives fast sanity check  to rule out very “bad” inputs 
• Model selection problem in machine learning



Requirements of property tester:

• if input has property, tester passes (whp)

• if input 𝜖-far from all inputs with property, tester 
fails (whp)

(“in between cases” – ok for tester to pass OR fail)

Property testing



Sortedness of a sequence

• Given: list  y1 y2 ... yn

• Question: is the list sorted?

• Clearly requires n steps – must look at each yi



Sortedness of a sequence

• Given: list  y1 y2 ... yn

• Question: can we quickly test if the list close to
sorted?



What do we mean by ``quick’’?

• query complexity measured in terms of list 
size n

• Our goal (if possible): 

• Very small compared to n, will go for clog n



What do we mean by “close’’?

Definition: a list of size n is -close to sorted if can 
delete at most n values to make it sorted.  
Otherwise, -far

( is given as input, e.g., =1/10)

Sorted: 1   2   4  5    7  11  14  19  20  21  23  38  39  45
Close: 1   4  2 5    7  11  14  19  20 39 23  21 38  45  

1   4       5    7  11  14  19  20     23     38  45
Far: 45 39 23 1 38 4    5   21  20  19   2 7  11  14

1         4    5           7  11  14



Requirements for algorithm:

• Pass sorted lists 

• Fail lists that are -far
• Equivalently:  if list likely to pass test, can change at most 

fraction of list  to make it sorted

Probability of success > ¾
(can boost it arbitrarily high by repeating several times.  Then output “fail” if 
ever see “fail”, “pass” otherwise)

• Can test in O(1/ log n) time
(and can’t do any better!)

What if list not sorted, 
but not far? 



An attempt:

• Proposed algorithm:

• Pick random i and test that yi≤yi+1

• Bad input type:

• 1,2,3,4,5,…n/4, 1,2,….n/4, 1,2,…n/4, 1,2,…,n/4

• Difficult for this algorithm to find “breakpoint” 

• But other tests work well…

i

yi



A second attempt:

• Proposed algorithm:

• Pick random i<j and test that yi≤yj

• Bad input type:

• n/4 groups of 4 decreasing elements  

4,3, 2, 1,8,7,6,5,12,11,10,9…,4k, 4k-1,4k-2,4k-3,…

• Largest monotone sequence is n/4

• must pick i,j in same group to see problem

• need W(n1/2) samples

i

yi



A minor simplification:

• Assume list is distinct (i.e. xi  xj)

• Claim:  this is not really easier

• Why?

Can “virtually” append i to each xi

x1,x2,…xn  (x1,1), (x2,2),…,(xn,n)

e.g., 1,1,2,6,6   (1,1),(1,2),(2,3),(6,4),(6,5)

Breaks ties without changing order



A test that works
[Ergun Kannan Kumar R Viswanathan]

• The test: 

Test O(1/) times:
• Pick random i

• Look at value of yi

• Do binary search for yi

• Does the binary search find any inconsistencies?  If yes, 
FAIL

• Do we end up at location i?  If not FAIL

Pass if never failed

• Running time:   O(-1 log n) time

• Why does this work?



Behavior of the test:
• Index i is good if binary search for yi successful

• Test (restated): 
• pick O(1/) i’s and pass if they are all good

• Correctness:
• If list is sorted, then all i’s good  (uses distinctness)  test  

always passes
• If list likely to pass test, then at least (1-)n i’s are good.

• Main observation:  good elements form increasing 
sequence
• Proof:  for i<j both good need to show yi < yj

• let k = least common ancestor of i,j
• Search for i went left of k and search for j went 

right of k  yi < yk <yj

• Thus  list is -close to monotone (delete < n bad 
elements)

𝑂(
1

𝜖
⋅ log 𝑛 )

time



• Find characterization of property that is
• Efficiently (locally) testable

• Robust -

• objects that have the property satisfy characterization, 

• and objects far from having the property are unlikely to 
PASS

Constructing a property tester:

Usually the 
bigger 

challenge



More examples

• Can test if a function is a homomorphism in CONSTANT 
TIME (no dependence on domain size) [Blum Luby R.]

• Can test if the (sparse) social network has 6 degrees of 
separation in CONSTANT TIME [Parnas Ron]



• A “bad” testing characterization:

∀x,y f(x)+f(y) = f(x+y)

• Another bad characterization:   

For most x  f(x)+f(1) = f(x+1) 

• Good characterization ([Blum Luby R.]…):   

For most x,y f(x)+f(y) = f(x+y)  

Example:   Homomorphism property of 
functions



• Two “bad” testing characterizations:  

For every node, all other nodes within distance 6. 

For most nodes, all other nodes within distance 6. 

• Good characterization [Parnas Ron]:  

For most nodes, there are many other nodes within distance 6. 

Example:   6 degrees of separation



Many more properties studied!

• Graphs, functions, point sets, strings, …

• Amazing characterizations of problems testable in 
graph and function testing models!



Properties of functions:

low total degree polynomial

submodular

lots 
more!



Properties of graphs

• Dense graph properties:
• completely characterized! (≈hereditary) [Alon Shapira] [Alon Fischer 

Newman Shapira] [Borgs Chayes Lovasz Sos Szegedy Vesztergombi]

• Hyperfinite graphs:
• completely characterized!  (all) … [Newman Sohler]

• General Sparse graphs:  
• bipartiteness, connectivity, diameter, colorability, expansion, rapid 

mixing, triangle free,… [Goldreich Ron] [Parnas Ron] [Czumaj Sohler] [Elek] 
[Batu Fortnow R. Smith White] [Kaufman Krivelevich Ron] [Alon Kaufman 
Krivelevich Ron]…

• Tools:  Szemeredi regularity lemma, random walks, local 
search, simulate greedy, borrow from parallel algorithms



Some other combinatorial properties:

Sets:
Equality

Distinctness
Strings:

edit distance
compressibility

Codes:
BCH

Reed-Muller

Metric properties;
clusterability
convex hull

embeddability

Membership in 
low complexity 

languages:
regular

context-free
branching programs



• Can we characterize the (constant time) 
testable properties?

What else?



“Classical” approximation

• Output number close to value of the optimal solution (not 
enough time to construct a solution)

• Some examples:

• Minimum spanning tree, 

• vertex cover, 

• max cut, 

• positive linear program, 

• edit distance, …



A very simple example

Deterministic

Approximate answer

And (of course)…. sub-linear time!



Approximate the diameter of a point set
• Given: m points, described by a distance matrix D, 

s.t.

• Dij is the distance from i to j.  

• D satisfies triangle inequality and symmetry.

(note:  input size n= m2)

• Let i, j be indices that maximize Dij then Dij is the 
diameter.

• Output: k,l such that Dkl  Dij /2

2-multiplicative approximation



Algorithm [Indyk]

• Algorithm:
• Pick k arbitrarily

• Pick l to maximize Dkl

• Output Dkl

• Running time?  O(m) = O(n1/2)

• Why does it work?
Dij ≤ Dik + Dkj (triangle inequality)

≤ Dkl + Dkl (choice of l + symmetry of D)

≤ 2Dkl

i

j

k

l

Real 

diameter



• Yes!

• We will see an example, but first, a slightly 
different model…

Are there techniques that work for 
families of problems?



Large inputs

Large outputs



When we don’t need to see all the 
output…

do we need to see all the input?



Locally 
decodable 
codes

Local 
decompression

Local property 
reconstruction

Estimating graph 
parameters: page 
rank, communities, 
dominating set, max 
matching … 

Some examples

Local 
generation of 
random objects



A “unifying” model?



Local Computation Algorithms
[Alon R Tamir Vardi Xie]

Input   x

Output y

LCA

j xj

i1,i2,.. yi1
, yi2

, …

probes

queries



An example:

Maximal Independent Set



Maximal independent set

Input

Queries 
To
Output

Is node u in the maximal independent set?



A fast local computation algorithm for 
bounded degree graphs

• Lazy Greedy  Algorithm:  (initially, MIS is empty)
• Query:   “Is node u in the MIS?”
• Answer:   if neighbors of u not in MIS, then put u into 

it (and remember decision!)

• Probe complexity:   O(d)

• Note:
• O(n) space to remember past choices
• Answer depends on query order
• Can’t allow simultaneous non-interacting copies of 

LCA algorithm!!

Can we avoid
these problems?



A challenge:

Consistency!



Local Computation Algorithms: 
A model 



Local computation algorithms
Input: x (RAM)

LCA
random string

work space

y1

y2

ys

yk

i1

i1i2 iq

i2

iq

yk(i1)

yk(i2)

yk(iq) Time, 
space, 

random bits 
sublinear!



“Swarms” of LCAs

Input   x

Output y

LCA
LCA

LCALCA
LCA

Initially share random string

Afterwards compute 
independently



How do we design good LCAs?



A hope?

Find MIS algorithm  A with nice property:

“any node v’s output depends only on few inputs”

Then simulate A’s behavior for v!

Big Graph
v



Idea 1:
Distributed Algorithms to the rescue!



Distributed algorithms give LCAs
[Parnas Ron]

• If there is a k round distributed 
algorithm for MIS, then:

• v’s output depends only on inputs and 
computations of k-radius ball around v

• Can read/simulate in dk probes!

• But how big is k?

Big Graph

k –radius ball around v

v



In this context:  

Local = Constant rounds 

fantastic progress in local distributed algorithms!!!

Local distributed algorithms



• Lexicographically-first-MIS is P-complete [Cook]

• Randomized O(log n) rounds [Luby]

• Yields dclog n = 2𝑂( 𝑙𝑜𝑔 𝑑 log 𝑛) time LCA 

• With additional ideas/different algorithms, can do a 
lot better and solve several other problems!!  

[Barenboim Elkin] [R Tamir Vardi Xie] [Alon R Vardi Xie] 
[Barenboim Elkin Pettie Schneider] [Even Medina Ron][Reingold
Vardi][Chung Pettie Su] [Levi R Yodpinyanee] [Ghaffari]…

How fast can MIS be computed in a 
distributed setting?

Ideas from LCAs also used in improved distributed algorithms!



Idea 2:
LCAs via Simulating GREEDY



Simulating GREEDY 
[Nguyen Onak]… [Alon R. Vardi Xie]

• Simulate sequential GREEDY
• Run through nodes in some order

• Put v in MIS if none of neighbors in MIS yet

• LCA computes: “What would GREEDY do on u?”
• Must simulate results of greedy for all adjacent 

edges/nodes of lower ordering 

• Dependency chains can be long?
• Most nodes ok if order is RANDOM!  [NO]

• We need more than “most”



• Dependency chains are short  [ARVX]

• Galton-Watson branching processes

• Short random seed is enough 

• log n-wise independence

Random order greedy



• Dependence on n?
• [R. Tamir Vardi Xie][Alon R. Vardi Xie] [Reingold Vardi] 

[Levi R. Yodpinyanee] poly log 𝑛

• [Even Medina Ron] log∗ 𝑛

• Dependence on d?
• [R. Tamir Vardi Xie] [Alon R. Vardi Xie] [Even Medina Ron] 

[Reingold Vardi] EXPONENTIAL

• [Levi R. Yodpinyanee]   2clog
3 𝑑 log3 𝑛

• [Ghaffari] 2clog
2 𝑑 log3 𝑛

How fast can LCAs for MIS be?

OPEN QUESTION:
Can we get poly(d) dependence?



• Approximate maximum matching, bipartite weighted vertex 
cover  [Mansour Vardi] [Even Medina Ron] [Feige Mansour Schapire] 

Polynomial in d   [Levi R. Yodpinyanee]

Used in learning setting [Feige Mansour Schapire] 

• Radio network broadcast scheduling [RTVX]

• Graph, Hypergraph coloring [RTVX] [Feige Patt-Shamir Vardi] [Czumaj 
Mansour Vardi]

• k-CNF [RTVX]

• Local computation mechanism design [Hassidim Mansour Vardi] 

• Online algorithms [Mansour Rubinstein Vardi Xie]

• load balancing balls and bins

Some other LCA results:

Polylog query and 
space complexity



Back to sublinear 
approximations ….



• If you have an LCA for approximate maximum 
matching M

• Algorithm to estimate size of M:
• Sample several edges uniformly

• ask LCA which edges in M?

• Output (fraction of edges in M)x(total number of edges)

Example:  Approximate maximum 
matching

General paradigm:  
LCA  sublinear time approximation

[Parnas Ron]



Part II



No samples

What if data only accessible via random 
samples?



Play the lottery?



Is the lottery unfair?

• From Hitlotto.com: Lottery experts agree, 
past number histories can be the key to 
predicting future winners. 



True Story!

• Polish lottery Multilotek

• Choose “uniformly” at random distinct 20 numbers 
out of 1 to 80. 

• Initial machine biased

• e.g., probability of 50-59 too small 

• Past results:  
http://serwis.lotto.pl:8080/archiwum/wyniki_wszystkie.php?id_gra=2



Thanks to Krzysztof Onak (pointer) and Eric Price (graph)



Distributions on BIG domains

• Given samples of a distribution, need to know, e.g.,
• entropy
• number of distinct elements
• “shape” (monotone, bimodal,…)
• closeness to uniform, Gaussian, Zipfian…
• Ability to generate the distribution?

• Do we need assumptions on shape of distribution?
• i.e.,  smoothness, monotonicity,  normal distribution,…

• Considered in statistics, information theory, machine 
learning, databases, algorithms, physics, biology,…



Key Question

• How many samples do you need in terms of 
domain size?

• Do you need to estimate the probabilities of each 
domain item?

-- OR --

• Can sample complexity be sublinear in  size of the 
domain?   



The model



Our usual model:

• p is arbitrary black-box 
distribution over [n],
generates iid samples.

• pi = Prob[ p outputs i ]

• Sample complexity in terms 
of n?

p

Test

samples

Pass/Fail?



A first set of properties:

Similarity of distributions



Similarities of distributions

• Are p and q close or far?

• q is known to the tester  (“goodness of fit”)

• q is uniform

• q is given via samples



Is p uniform?

Sample complexity of distinguishing
𝑝 = 𝑈

from   | 𝑝 − 𝑈 |1 > 

is (𝑛1/2)

• Nearly same complexity to test if 
p is any known distribution [Btu 
Fischer”

p

Test

samples

Pass/Fail?



An idea:  [Goldreich Ron]

• L2 distance (squared):     𝑝 − 𝑞
2

2
= ∑ 𝑝𝑖 − 𝑞𝑖

2

• ||p-U||2
2 =  S(pi -1/n)2 

= Spi
2 - 2Spi /n +  S1/n2                        

= Spi
2  - 1/n

• Estimate collision probability to estimate  L2

distance from uniform 

Minimized 
for uniform 
distribution



Uniformity Testing History 
• [Goldreich Goldwasser Ron] Ω(𝑛𝛼) lower bound 

• [Goldreich-Ron] (implicit):  𝑂(
𝑛

𝜖4
) upper bound via collision 

probability

• [Batu Fortnow Rubinfeld Smith White]:  Ω( 𝑛 ) lower bound 
(+ explicit upper bound) 

• [Paninski ’03]: upper bound of 𝑂(
𝑛

𝜖2
), assuming 𝜖 = Ω 𝑛−

1

4

via number distinct elements.  Lower bound of Ω(
𝑛

𝜖2
) .

• [Chan Diakonikolas Valiant Valiant] [Diakonikolas Kane 
Nikishkin]  Similar to 𝜒2- based.  Optimal for all settings.

• [Diakonikolas Gouleakis Peebles Price ’16] Collision based 
tester also optimal!

• [Diakonikolas Gouleakis Peebles Price ’17] nontrivial p-values!



Is p uniform?

• Sample complexity of 
distinguishing

𝑝 = 𝑈

from   ||𝑝 − 𝑈||1 >  is (𝑛
1

2)

• Same complexity to test if p is 
any known distribution 

“Testing identity”

p

Test

samples

Pass/Fail?



Identity Testing History:

• [Batu Fischer Fortnow Kumar R. White] 
𝑂 𝑛 𝑝𝑜𝑙𝑦𝑙𝑜𝑔 𝑛 𝜖−4 (collisions) Reduce to uniformity testing 
via grouping similar probability elements in q. 

• [Onak]:  running time matches sample complexity

• [Valiant Valiant, Diakonikolas Kane Nikishkin]: 𝑂 𝑛/𝜖2 (uses chi-
squared like tester)

• [Diakonikolas Kane] Simpler bucket-avoiding reduction. Simpler 
and general lower bound paradigm.

• [Goldreich] Reduction to uniformity testing with same complexity.



Testing closeness

Theorem: Sample complexity of 
distinguishing

𝑝 = 𝑞

from 𝑝 − 𝑞
1
> 𝜖

is (𝑛
2

3)

p

Test

Pass/Fail?

q



Why so different?

• Collision statistics are all that matter

• Collisions on “heavy” elements can hide collision 
statistics of rest of the domain

• Construct pairs of distributions where heavy 
elements are identical, but “light” elements are 
either identical or very different



Closeness between unknown 
distributions

• [Batu Fortnow R. Smith White ]:   𝑂(
𝑛
2
3 log 𝑛

𝜖
8
3

) upper bound 

for testing closeness between two unknown discrete 
distributions.  Candidate lower bound family.

• [P. Valiant]: lower bound of    Ω 𝑛
2

3 for constant error.

• [Chan Diakonikolas Valiant Valiant]: tight upper and lower 

bound of  𝑂(max{
𝑛
2
3

𝜖
4
3

,
𝑛
1
2

𝜖2
)

• [Diakonikolas Kane] simpler lower bound, upper bound.  
Upper bound beats worst case in large class of instances.               



Approximating the distance between two 
distributions?

Distinguishing whether  

| 𝑝 − 𝑞 |1 <  or | 𝑝 − 𝑞 |1 > ’

requires 𝜃(
𝑛

log 𝑛
) samples               

[P. Valiant 08, G. Valiant P. Valiant 11, 

Wu Yang 14, Han Jiao Weissman 15]



Independence



Independence of pairs

• 𝑝 is joint distribution on pairs <a,b> from [n] x [m]

(wlog n≥m)

• For marginal distributions 𝑝1, 𝑝2,

𝑝 independent iff 𝑝 = 𝑝1 × 𝑝2

• “Robustness” Lemma  [Sahai Vadhan] 

If ||𝑝 − 𝑝1 × 𝑝2 ||1 > 𝜖 then ∀ 𝐴, 𝐵 ||𝑝 − 𝐴 × 𝐵 ||1 > 𝜖/3



1st try:  “Naïve” Algorithm

• Algorithm:
• Approximate marginal distributions f1≈p1 and f2≈ p2

• Use Identity testing algorithm to test that  p≈ f1x f2

• Number of queries:  O(n+m + (nm)1/2)
• But, if support of p1 is bounded from below by b, then 

can do O(1/ b + m + (nm)1/2)

• (also note: if n=m, then this is very good!)

A difficulty – “tolerant testing” setting



2nd idea: use closeness test 

• Simulate p1 and p2, and check ||𝑝
− 𝑝1 × 𝑝2||1 > 𝜖

• Behavior:

• If 𝑝 = 𝑝1 × 𝑝2 then PASS

• If ||𝑝 − 𝑝1 × 𝑝2||1 > 𝜖 then FAIL

• Sample complexity: O((nm)2/3)

• Better if max probability 
element is bounded from above!

p

Closeness Test

samples

Pass/Fail?

p1 x p2



Independence testing
[Batu Fischer Fortnow Kumar R. White]: 

𝑂(𝑛
2

3𝑚
1

3 ⋅ 𝑝𝑜𝑙𝑦𝑙𝑜𝑔 𝑛 ⋅ 𝑝𝑜𝑙𝑦
1

𝜖
) upper bound.  Candidate lower 

bound family.

[Levi  Ron R.]: 

lower bounds for constant error Ω(𝑚
1

2𝑛
1

2) and Ω(𝑛
2

3𝑚
1

3) for 𝑛
= Ω(𝑚 log𝑚)

[Acharya Daskalakis Kamath]:  upper bound of 𝑂
𝑛

𝜖2
for 𝑛 = 𝑚.           

[Diakonikolas Kane] matching bound of   𝜃(max 𝑛
2

3𝑚
1

3𝜖−
4

3,
𝑚𝑛

1
2

𝜖2
) , 

optimal bounds for all dimensions                         



Information theoretic quantities

Entropy

Support size

Compressibility



Can we get multiplicative 
approximations for entropy?

• In general, no….

• 0 entropy distributions are hard to distinguish

• What if entropy is bigger?

• Can g-multiplicatively approximate the entropy with Õ(n1/g2) 
samples (when entropy >2g/) [Batu Dasgupta R. Kumar]

• requires W(n1/g2) [Valiant]

• better bounds when support size is small [Brautbar
Samorodnitsky]

• Similar bounds for estimating support size [Raskhodikova Ron 
R. Smith] [Raskhodnikova Ron Shpilka Smith]

2-approx. 

in 𝑛
1

4



Additive approximations for entropy 
and support size

need (n/log n)  samples [Raskhodnikova Ron 
Shpilka Smith] [Valiant] [Valiant Valiant][Wu Yang] [Han 

Jiao Weissman]



Properties of high dimensional spaces:

• Limited independence: [Alon Andoni Kaufman Matulef R Xie] [Haviv
Langberg]

• Monotonicity over general posets [Batu Kumar R] [Bhattacharyya 
Fischer R P. Valiant] [Acharya Daskalakis Kamath]

• Junta distributions [Aliakbarpour Blais R]

• Bayesian Networks [Canonne Diakonikolas Kane Stewart] [Daskalakis 
Pan]

• Ising Models [Daskalakis Dikkama Kamath]

• Joint properties of many distributions – similar 
distributions, clustering distributions, similar means [Levi 
Ron R. 2011, Levi Ron R. 2012, Diakonikolas Kane, Aliakbarpour Blais R. 
2016]

AND MORE AND MORE!!!



Testing via shape



Some distribution families defined by 
shape:

Monotone Poisson Binomial (PBD)

t-modal Log-concave



Another one:  
k-flat (k-histogram, k-piecewise 

constant) distributions

1 n

𝑞𝑖



Use k-histograms to approximate?



Example:  Monotone (nonincreasing) 
distributions

Monotone distributions over totally 
ordered domains [1..n]:   

i<j implies pi ≥ pj

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Rate



Lower bound [Batu Kumar R.]

Lemma: Testing 
monotonicity requires 
W( 𝑛) samples

Proof:         

p close to uniform 

iff

p, pR = “reversal” of p, are both 
close to monotone

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Rate

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Rate p

pR



O( 𝑛 log(n)) samples
[Batu Kumar R][Daskalakis Diakonikolas Servedio]

Upper bounds for monotonicity 
testing?



Partition of domain into buckets (segments) of size 1 + 𝜖 𝑖

(𝑂(
1

𝜖
log 𝑛) buckets total)

For distribution 𝑝, let Ƹ𝑝 be such that uniform on each bucket, but 
same conditional probability in each bucket

Then  𝑝 − Ƹ𝑝 ≤ 𝜖

Birge Buckets for Monotone 
Distributions [Birge][Daskalakis Diakonikolas Servedio]

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8P
ro

b
ab

ili
ti

es
 p

, p
h

at

Domain element

Birge approximation
Enough to learn 
the weights of 
each bucket

oblivious



• Approximate distribution by (log n)-flat 
distribution:

• Questions:

• Is each bucket close to uniform?

• Total weights of each bucket?

• Check if (log n)-flat distribution close to 
monotone

• Solve linear program

Test Monotonicity



Generic algorithm idea:

• Approximate distribution by k-flat 
distribution:

• Questions:

• Does it exist for small k?

• How do you find interval boundaries?

• Check if k-flat distribution close to class

• Solve linear program?

Can’t 
assume the 
distribution 

has the 
property



Monotone, k-modal, log-concave, Monotone Hazard Rate, 
Binomial, Poisson Binomial, k-histograms, k-piecewise 
degree d polys, k-Sums of independent integer random 
values  

• [Batu Kumar R.] [Daskalakis Diakonikolas Servedio] 
[Daskalakis Diakonikolas Servedio Valiant Valiant] 
monotonicity, k-modal

• [Chan Diakonikolas Servedio Sun] piecewise poly learning
• [Levi Indyk R.] [Acharya Diakonikolas Hegde Li Schmidt] k-

histogram
• [Acharya Daskalakis] Discrete Gaussians 
• [Daskalakis Diakonikolas O’Donnell Servedio 

Tan][Diakonikolas Kane Stewart] optimal SIIRV learning
• [Canonne] more testing improvements

General testing paradigm 
[Canonne Diakonikolas Gouleakis R.]



[Acharya Daskalakis Kamath] (different paradigm, same 
classes)

See also



Many other properties to consider!

• Higher dimensional flat distributions

• Mixtures of k Gaussians

• Generated by a small Markovian process

• … 



• o(n)

• But usually 𝑛𝛼 for some 0 < 𝛼 < 1

Dependence on n

Is this good or bad?



Getting past the lower bounds

• Restricted classes of distributions
• Structured distributions [Batu Dasgupta Kumar R] [Batu 

Kumar R] [Servedio R] [Daskalakis Diakonikolas Servedio 
Valiant Valiant] [Diakonikolas Kane Nikishkin]

• Competitive closeness testing  [Acharya Das Jafarpour
Orlitsky Pan Suresh] [Valiant Valiant 14] [Diakonikolas Kane 
16]

• Other distance measures
• More powerful query models  (see survey  

[Canonne])



• Distribution testing problems are everywhere

• For many problems, we need a lot fewer samples 
than one might think!

• Many COOL ideas and techniques have been 
developed

• Lots more to do!

Conclusion:



Thank you


