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EXCHANGEABLE RANDOM STRUCTURES

Random structures
Sequences, graphs, matrices, d-arrays, trees, partitions, ranked lists, discrete
measures, countable sets, hypergraphs, . . .

General theme

P(X ∈ . ) =

∫
T

p( . , θ)ν(dθ)

exchangeable
random structure

particularly simple
distributions

mixing over simple
distributions

I Characterizes “maximal” observation model and parameter space.

I Explains statistical averaging.

I Yields a law of large numbers.

Exchangeable sequences: de Finetti

X = (X1,X2, . . .) exchangeable ⇔ P(X ∈ . ) =

∫
M(X )

∞∏
i=1

θ(Xi ∈ . )ν(dθ)

Peter Orbanz 2 / 1



EXCHANGEABLE RANDOM GRAPH

Representation theorem (Aldous, Hoover, Kallenberg)
Any exchangeable graph can be sampled as:

I Sample W : [0, 1]2 [0, 1]
(measurable and symmetric)

I Sample U1,U2, . . . ∼iid Uniform[0, 1]

I Sample edge i,j ∼ Bernoulli(W(Ui,Uj))

0
0

1
1

U1 U2

U1

U2

Law of large numbers (Kallenberg ’99)

weakly−−−→

Up to equivalence
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NONPARAMETRIC REGRESSION
WITH LLOYD, GHARAMANI, ROY (2012)

Infinite Relational Model
(Kemp et al, ’06)

Mondrian process
(Roy & Teh, ’08)

Latent feature relational model
(Miller et al, ’09)
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LIFTINGS OF GRAPH LIMITS
with B. Szegedy

≡

G M(G) W

Ŵ

Kallenberg sampling scheme

quotient map

Lovasz-Szegedy

graphs exchangeable laws

sym. functions on [0,1]2

equivalence classes of W

Lifting Theorem (O. & Szegedy, 2011)
There exists a measurable mapping ξ : Ŵ W such that

ξ(ŵ) ∈ [ŵ]≡ for all ŵ ∈ Ŵ .

This result is not constructive.
Peter Orbanz 5 / 1



LIFTINGS OF GRAPH LIMITS
with B. Szegedy

≡

G M(G) W

Ŵ
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WHY ARE GRAPHONS SO COMPLICATED?

limit object randomness

de Finetti unique two layers
Aldous-Hoover not unique three layers

Permutations as constraints

P(X ∈ . ) =

∫
p( . , θ)ν(dθ)

Informally: more constraints → stronger representation result

Exchangeability

Structure index set invariance under

sequences N all permutations of N
graphs N2 product permutations π ⊗ π

π

π
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SPARSE VS DENSE STRUCTURES

Exchangeable graphs are dense (or empty)

p =

∫
W(x, y)dxdy p̂n =

# edges observed in Gn

# edges in complete graph
= p·Θ(n2) = Θ(n2)

This is a consequence of looking at the graph “globally”.

More generally
Exchangeable random structures have a density property.

Exchangeable binary sequence: cond. i.i.d. Bernoulli(P)→ limiting ratio of 1s is P

Can we model network structure (not just edge density)?
Under an exchangeable model, we will never

sample from and see something like this
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BEYOND EXCHANGEABILITY

Probabilistic symmetries

P(X ∈ . ) =

∫
T

p( . , θ)ν(dθ)

random structure with
with symmetry property

particularly simple
distributions

mixing over simple
distributions

In principle, this also works for other symmetries than exchangeability.

Problem
Can we find a type of invariant random graphs that:

1. Can generate network structures?

2. Have useful statistical properties?
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INVARIANT DISTRIBUTIONS ON SPARSE GRAPHS

Involution invariance
A random graph with a marked location (vertex) v is
involution invariant if the distribution of the neighborhood
of v is invariant under moving the location along the graph.

This is a property of a random rooted graph (G, v).

Applicability

I Has a limit theory, but limit object contains much less information than dense
graph limit.

I Much too weak for use in statistics.

I From graph theoretic perspective: Various interesting properties do not carry
over to the limit.

Intuition: Too few constraints (1 shift per shift-length).
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SUMMARY

Under exchangeability assumption

I Aldous-Hoover theorem explains statistical averaging, convergence of
empirical measures and parameter space.

I Resulting graphs are dense, ie models are misspecified.

Sparse graphs

I Various models, but no statistical framework.

I To obtain a de Finetti-like result, we would need an invariance weaker than
exchangeability, but stronger than shift invariance.

I No useful example of such an invariance is known.
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