Algorithmic Stability for Interactive Data Analysis: An Overview

Jonathan Ullman, Northeastern University

Based on several (dis)joint works: [HU'14], [DFHPRR'15abc], [SU'15], [BNSSSU'16]

Optimization, Statistics, and Uncertainty Workshop, Berkeley, Nov 30, 2017.

Statistical Theory: One-Way Streets

Statistical analysis guarantees that your conclusions generalize to the population

And Yet...

♠ OPEN ACCESS

ESSAY

1,140,912

1,413

VIEWS CITATIONS

Why Most Published Research Findings Are False

John P. A. Ioannidis

Published: August 30, 2005 • DOI: 10.1371/journal.pmed.0020124

The Statistical Crisis in Science

Data-dependent analysis—a "garden of forking paths"— explains why many statistically significant comparisons don't hold up.

Andrew Gelman and Eric Loken

Statistical Practice: Traffic Circles

Statistical guarantees no longer apply when the dataset is re-used interactively

Examples of Interaction

- Well specified multi-stage algorithms
 - Example: fit a model after selecting features
 - Could try to analyze explicitly
- Data exploration / "researcher degrees of freedom"
 - Example: data science competitions

- Multi-researcher re-use of datasets
 - Example: publications involving public or standard datasets
 - Cannot hope to analyze explicitly

Possible Approaches

- Hypothesis testing
 - Assumes hypotheses are independent of the data
 - Multiple-hypothesis testing addresses a different problem
- Explicit post-selection inference
 - Tractable for well specified algorithms
 - More amenable to analysis than algorithm design
- Holdout sets / data splitting
 - Once the holdout is used, we are back where we started
 - Need data linear in the number of interactive rounds

This Talk

- A general approach to interactive data analysis
 - Introduced in [DFHPRR'15, HU'14]
 - New general tools and methodology
 - Leads to new algorithms for preventing overfitting
- Key ingredient: algorithmic stability
 - Strong notions of stability inspired by differential privacy
 - Uses randomization to improve generalization
- New inherent bottlenecks [HU'14,SU'15]
 - Both statistical and computational

- Population P of uniformly random labeled examples
- Sample $X = (Y_1, Y_1), ..., (Y_n, Z_n) \in \{\pm 1\}^d \times \{\pm 1\}$
- Goal: find $h: \{\pm 1\}^d \to \{\pm 1\}$ maximizing $s_P(h) = \mathbb{E}_P[h(y)z]$
- If we use $s_X(h)$ as a proxy for $s_P(h)$, we can quickly overfit

- Freedman's Paradox:
 - For j=1,...,d consider the hypothesis $h_j(y)=y_j$

Random labels $Z \in \{\pm 1\}^n$

Z

Labels of initial hypotheses (random and independent)

$$s_X(h_1) \approx \frac{+1}{\sqrt{n}} \quad s_X(h_2) \approx \frac{-1}{\sqrt{n}}$$

 h_d

$$s_X(h_d) \approx \frac{-1}{\sqrt{n}}$$

- Freedman's Paradox:
 - For j=1,...,d consider the hypothesis $h_j(y)=y_j$
 - Flip signs as needed so $s_X(h_j) \ge 0$ for all j = 1, ..., d

Random labels $Z \in \{\pm 1\}^n$

Z

Labels of initial hypotheses (random and independent)

 h_1 $ar{h}_2$

$$s_X(h_1) \approx \frac{-1}{\sqrt{n}} \quad s_X(\bar{h}_2) \approx \frac{+1}{\sqrt{n}}$$

 \overline{h}_d

$$s_X(\bar{h}_d) \approx \frac{+1}{\sqrt{n}}$$

- Freedman's Paradox:
 - For j=1,...,d consider the hypothesis $h_j(y)=y_j$
 - Flip signs as needed so $s_X(h_i) \ge 0$ for all j = 1, ..., d
 - Let $h^*(y) = \text{majority}\left(h_1(y), \overline{h}_2(y), \dots, \overline{h}_k(y)\right)$

Random labels $Z \in \{\pm 1\}^n$

Labels of majority vote h^*

Z

 h^*

Thm: $s_X(h^*) = \Theta\left(\sqrt{\frac{d}{n}}\right)$

A factor of $\approx \sqrt{d}$ more overfitting because of dataset re-use!

• A Real-World Example: Data Science Competitions [BH'15]

Competing in a data science contest without reading the data

Mar 9, 2015 · Moritz Hardt

We see an improvement from 0.462311 (rank 146) to 0.451868 (rank 6).

How to Avoid This Trap?

- What went wrong?
 - The scores $s_X(h_1), ..., s_X(h_d)$ revealed a lot of information about the unknown labels
- What do we do about it?
 - Minimize the amount of information that is leaked about the dataset
- How would we do that?
 - Use ideas from differential privacy [DMNS'06]
 - Private algorithms have strong stability properties

Output Stability

- Stability has been a central concept since the seventies, e.g. [DW'78, KR'99, BE'02, SSSS'10]
- Typically, some kind of output stability: for all neighboring samples X, X',

$$d(A(X), A(X')) \le \epsilon$$
close inputs map to close outputs

- An output-stable A(X) can reveal X entirely, does not prevent overfitting in interactive settings
 - See Freedman's Paradox

Distributional Stability (aka Privacy)

• Differential Privacy [DMNS'06]: for all neighboring samples X, X' and all $O \subseteq \text{Range}(A)$

$$\Pr[A(X) \in O] \le e^{\varepsilon} \Pr[A(X') \in O] + \delta$$

close inputs map to close distributions

• A private A reveals little about X, prevents overfitting even after seeing A(X)

Distributional Stability

• Distributional Stability (DS, for short): for all neighboring samples X, X'

$$A(X) \approx_{\varepsilon, \delta} A(X')$$

close inputs map to close distributions

- A DS A reveals little about X, prevents overfitting even after seeing A(X)
- Growing family of distributional stability notions
 - [DFHPRR'15, RZ'15, WLF'15, BNSSS**U**'16, BF'16, DR'16, BS'16, BDRS'17,...]

A General Framework

- A population P over some universe U
- A sample $X = (X_1, ..., X_n)$ from P
- A class of statistics Q
 - For example "What fraction of P has the property q?"

- Goal: design an A that accurately estimates q(P)
 - Accurate depends on Q, typically $|a q(P)| \le \alpha$
 - Challenge: A does not observe P

- Modeling interactive data analysis:
 - Allow an analyst to request a sequence q_1, \dots, q_k
 - Each q_j depends arbitrarily on $q_1, a_1, \dots, q_{j-1}, a_{j-1}$
- Goal: one estimator for every analyst
 - Want to avoid assumptions about the analyst strategy

Example: Statistical Queries (SQs)

Given a bounded function

$$\phi: U \to [\pm 1]$$

• The statistical query $q_{m{\phi}}$ is defined as

$$q_{\phi}(P) = \mathbb{E}\left[\phi(P)\right]$$

• An answer a is α -accurate if $|a - q_{\phi}(P)| \le \alpha$

- Highly useful and general family of queries
 - Mean, variance, covariance
 - Score of a classifier
 - Gradient of the score of a classifier
 - Almost all PAC learning algorithms
 - ...

Captures Freedman's

Paradox

• Empirical estimator: $A_X(q) = q(X)$

The Empirical Estimator A_X q_1, \dots, q_k A_{X} A_{X}

• Empirical estimator: $A_X(q) = q(X)$

Thm: For arbitrary non-interactive SQs,

$$\max_{j=1,\dots,k} |A_X(q_j) - q_j(P)| \lesssim \frac{\sqrt{\log k}}{\sqrt{n}}$$

The Empirical Estimator

• Empirical estimator: $A_X(q) = q(X)$

Thm: For arbitrary **interactive** SQs, $\max_{j=1,...,k} \left| A_X(q_j) - q_j(P) \right| \lesssim \frac{\sqrt{k}}{\sqrt{n}} > 0$

See Freedman's Paradox!

An Improved Estimator

• Noisy empirical estimator: $A_X(q) = q(X) + N(0, \sigma^2)$

Thm [DFHPRR'15, BNSSSU'16]: For arbitrary interactive SQs,

$$\max_{j=1,\dots,k} |A_X(q_j) - q_j(P)| \lesssim \frac{\sqrt[4]{k}}{\sqrt{n}}$$

Adding noise reduces the error!

Proof Overview

- Claim 1: If $q_1, a_1, ..., q_k, a_k$ is a sequence of SQs and noisy empirical means, then (\vec{q}, \vec{a}) is DS
 - Stability parameters ε , δ will depend on n, k, σ
 - In this example, $\sigma \approx \sqrt[4]{k}/\sqrt{n}$
- Intuitively, the noise masks the influence of any one sample X_i on the mean $q(X) = \frac{1}{n} \sum_i \phi(X_i)$

$$q(X) + N(0, \sigma^2)$$
$$q(X') + N(0, \sigma^2)$$

Proof Overview

- Claim 2 [DFHPRR'15,BNSSS**U**'16]: If M is a DS algorithm mapping samples to SQs, then whp $q_{M(X)}(X) \approx q_{M(X)}(P)$
 - Intuitively: no DS algorithm can output a query such that *X* and *P* are different (even though they exist).
- Why is Claim 2 useful?
 - Each query q_j is the output of some DS algorithm $M_j(X)$, so the queries satisfy $q_j(X) \approx q_j(P)$
 - The noisy answers a_i satisfy $a_i \approx q_i(X)$
 - Therefore $a_j \approx q_j(P)$

Proof Overview

• Claim 2' [DFHPRR'15,BNSSS \mathbf{U} '16]: If M is a DS algorithm mapping samples to SQs, then

$$\mathbb{E}_{X,M}[q_{M(X)}(X)] \approx \mathbb{E}_{X,M}[q_{M(X)}(P)]$$

- Proof Sketch:
 - Consider $(i, X_i, q_{M(X)})$ and $(i, Z, q_{M(X)})$ where $i \sim [n]$, $X \sim P^n, Z \sim P$ independently, and M is randomized

$$(i, X_i, q_{M(X)})$$
 $\approx_{\varepsilon, \delta} (i, X_i, q_{M(Z, X_{-i})})$ Distributional Stability
 $\approx (i, Z, q_{M(X_i, X_{-i})})$ Symmetry
 $\approx (i, Z, q_{M(X)})$

Theorem [DFHPRR'15, BNSSSU'16]: There is an estimator A_X that answers any k interactive SQs with error

$$\alpha = \tilde{O}\left(\frac{\sqrt[4]{k}}{\sqrt{n}}\right)$$

- Adding independent Gaussian noise to the answers improves stability and reduces total error!
- Can extend to other types of queries
 - Lipschitz queries: $|q(X) q(X')| \le \frac{1}{n}$ [BNSSS**U**'16]
 - ERM queries: $q(X) = \underset{\theta \in \Theta}{\operatorname{argmin}} \ell(\theta; X)$ [BNSSS**U**'16]
 - Jointly Gaussian queries: $q(X) \sim N(\mu, \Sigma)$ [RZ'15, WLF'15, BF'16]

Theorem [DFHPRR'15, BNSSSU'16]: There is an estimator A_X that answers any k interactive SQs with error

$$\alpha = \tilde{O}\left(\min\left\{\frac{\sqrt[4]{k}}{\sqrt{n}}, \frac{\sqrt[6]{d}\sqrt[3]{\log k}}{\sqrt[3]{n}}\right\}\right)$$

- When the data dimensionality is bounded (i.e. $U = \{\pm 1\}^d$), we can use more powerful DS algorithms from privacy
 - Can answer
- Two issues with this approach:
 - Statistical: Only improves when d is sufficiently small
 - Computational: Running time is exponential in d

Theorem [HU'14,SU'15]: If $k \ge n^2$, and $d \ge k$, then there is a malicious analyst that forces **every estimator** to have error at least 1/3.

Theorem [HU'14,SU'15]: If $k \ge n^2$, and $d \ge \log(n)$, then there is a malicious analyst that forces **every polynomial-time estimator** to have error at least 1/3.

 Borrows techniques from differential privacy lower bounds [BUV'14,DSSUV'15], namely fingerprinting codes [BS'95,T'03]

- There is a malicious analyst such that for any accurate estimator A_X , the analyst can learn the dataset X after $k = O(n^2)$ queries
 - Requires that A_X works for all P
 - Analyst must know P

Theorem [DFHPRR'15]: If the k queries are issued in $r \ll k$ rounds then there is an estimator A_X with error

$$\alpha = \tilde{O}\left(\sqrt{\frac{r\log k}{n}}\right)$$

- Does not require knowing the timing of the rounds
- Application: re-usable holdout sets [DFHPRR'15]
 - Keep a holdout set, only use it to verify your conclusions
 - ullet Each of the r rounds corresponds to one of your conclusions failing
 - "Only pay proportional to the number of times you truly overfit."

This Talk

- A general approach to interactive data analysis
 - Introduced in [DFHPRR'15, HU'14]
 - New general tools and methodology
 - Leads to new algorithms for preventing overfitting
- Key ingredient: algorithmic stability
 - Strong notions of stability inspired by differential privacy
 - Uses randomization to improve generalization
- New inherent bottlenecks [HU'14,SU'15]
 - Both statistical and computational

Thank you!