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Statistical Theory: One-Way Streets
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Conclusions

Statistical analysis guarantees that your
conclusions generalize to the population



And Yet...
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Statistical Practice: Traffic Circles

Hypothesis
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Data
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Conclusions

Statistical guarantees no longer apply
when the dataset is re-used interactively



Examples of Interaction

* Well specified multi-stage algorithms
* Example: fit a model after selecting features
* Couldtry to analyze explicitly

* Data exploration / “researcher degrees of freedom”
* Example: data science competitions

* Multi-researcher re-use of datasets
* Example: publicationsinvolving publicor standard datasets
e Cannot hopeto analyze explicitly



Possible Approaches

* Hypothesis testing
* Assumes hypotheses are independentof the data
* Multiple-hypothesistesting addresses a different problem

* Explicit post-selection inference
* Tractable for well specified algorithms
 More amenable to analysis than algorithm design

* Holdout sets / data splitting
 Once the holdoutis used, we are back where we started
 Need datalinear in the number of interactiverounds



This Talk

* A general approach to interactive data analysis
* Introducedin [DFHPRR’15, HU’14]
* New general toolsand methodology
* Leads to new algorithms for preventing overfitting

* Key ingredient: algorithmic stability
* Strong notions of stability inspired by differential privacy
* Uses randomizationto improve generalization

* New inherent bottlenecks [HU’14,SU’15]
* Both statistical and computational



Overfitting in Interactive Data Analysis

e Population P of uniformly random labeled examples

» Sample X = (Y1, Y1), ..., (Yn, Zpy) € {£1}* x {1}

e Goal: find h: {+1}% - {+1} maximizing sp(h) = Ep[h(y)z]
* If we use sy (h) as a proxy for sp(h), we can quickly overfit




Overfitting in Interactive Data Analysis

* Freedman’s Paradox:
 Forj =1,...,d considerthe hypothesis h; (y) = y;

Random labels Labels of initial hypotheses
Z e {£+1}" (random and independent)
Z hl h2 e hd

—1
sx(hy) = — sx(hg) = —

sx(hy) = N N
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Overfitting in Interactive Data Analysis

* Freedman’s Paradox:
 Forj =1,...,d considerthe hypothesis h; (y) = y;
* Flip signsas needed so SX(hj) >0forallj=1,..,d

Random labels Labels of initial hypotheses
Z e {£+1}" (random and independent)
Z h’l ]_7,2 ¢ l_ld
+1 _ +1 _ +1
sx(hy) = — Sx(hz) ~ = Sx(hd) ~ =



Overfitting in Interactive Data Analysis

* Freedman’s Paradox:
 Forj =1,...,d considerthe hypothesis h; (y) = y;
* Flip signsas needed so SX(hj) >0forallj=1,..,d

+ Let h*(y) = majority (h1 (3, Ao (), ., () )

Random labels
Z € {£1}"

Labels of majority vote h*

4 )

Z h* Thm: sy (h*) = @( E)

n

. J

A factor of = vd more overfitting
because of dataset re-use!




Overfitting in Interactive Data Analysis

* A Real-World Example: Data Science Competitions [BH’15]

Competing in a data science contest without
reading the data

Mar 9, 2015 - Moritz Hardt

Heritage Health prize experiment
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We see an improvement from 0.462311 (rank 146) to 0.451868 (rank 6).



How to Avoid This Trap?

* What went wrong?

* The scores sy(h;), ...,sx(hg) revealed a lot of
information about the unknown labels

e What do we do about it?

e Minimize the amount of information that is leaked
about the dataset

* How would we do that?
* Use ideas from differential privacy [DMNS’06]
* Private algorithms have strong stability properties



Output Stability

e Stability has been a central concept since the
seventies, e.g. [DW’78, KR’99, BE'02, SSSS’10]

* Typically, some kind of output stability: for all

neighboring samples X, X’,
close inputs map to
close outputs

d(AX),A(X)) <€
* An output-stable A(X) can reveal X entirely, does
not prevent overfitting in interactive settings
* See Freedman’s Paradox




Distributional Stability (aka Privacy)

* Differential Privacy [DMNS’06]: for all neighboring
samples X, X" and all O € Range(4)

PrlA(X) e 0] < e®Prl[A(X') e 0]+ 6

close inputs map to
close distributions

* A private A reveals little about X, prevents
overfitting even after seeing A(X)




Distributional Stability

* Distributional Stability (DS, for short): for all
neighboring samples X, X’

A(X) ~eb A(X,)

close inputs map to
close distributions

* A DS A reveals little about X, prevents overfitting
even after seeing A(X)

* Growing family of distributional stability notions

* [DFHPRR’15, RZ’15, WLF’15, BNSSSU’16, BF'16, DR’16,
BS’16, BDRS'17,...]



A General Framework

* A population P over some universe U
* Asample X = (X4, ...,X,,) fromP

* A class of statistics Q
* For example “What fraction of P has the property g?”




A General Framework

Ax
S
S

* Goal: design an A that accurately estimates q(P)
* Accurate dependson Q, typically|la — q(P)| < «
* Challenge: A does not observe P




* Modeling interactive data analysis:
* Allow an analyst to request a sequence q4, ..., qx
* Each q; depends arbitrarilyonqy, a4, ..., qj-1,aj_1

* Goal: one estimator for every analyst
* Want to avoid assumptions about the analyst strategy



Example: Statistical Queries (SQs)

* Given a bounded function
¢:U — [£1]

* The statistical query qg is defined as
qp(P) = E [¢(P)]

e An answer a is a-accurate if ‘a — Q¢ (P)‘ <«

* Highly useful and general family of queries
* Mean, variance, covariance

e Score of a classifier
* Gradient ofthe score of a classifier Captures Freedman’s
* Almostall PAC learningalgorithms Paradox




The Empirical Estimator
W

* Empirical estimator: Ay (q) = q(X)



The Empirical Estimator

* Empirical estimator: Ay (q) = q(X)

-

Thm: For arbitrary non-interactive SQs,

J91ogk
max JAx(a;) —a;(P)| 5=




The Empirical Estimator

* Empirical estimator: Ay (q) = q(X)

“ Thm: For arbitrary interactive SQs, ]

Vk
Ax(qi)—q;(P)| s —
;max, [Ax(q;) —q;(P)| = 2= Y ]

Paradox!




An Improved Estimator

* Noisy empirical estimator: Ay (q) = qg(X) + N(0, %)

(Thm [DFHPRR’15, BNSSSU’16]: For arbitrary interactive SQSW

Vk
Jmax |Ax(q;) —q;(P)] = ﬁ\f

reduces the error!

Addingnoise ]




Proof Overview

* Claim 1: If gq, a4, ..., g, Qy, is @ sequence of SQs
and noisy empirical means, then (g, a) is DS
 Stability parameters &, § willdependonn, k, o

* Inthisexample,d = Vk/\/n
* Intuitively, the noise masks the influence of any
1
one sample X; on the mean q(X) = ;Zi b (X;)

q(X) + N(0,0%)
g(X') + N(0,02)




Proof Overview

* Claim 2 [DFHPRR’15,BNSSSU’16]: If M is a DS
algorithm mapping samples to SQs, then whp

v o) (X) = gy (P)

* Intuitively: no DS algorithm can output a query such
that X and P are different (even though they exist).

* Why is Claim 2 useful?

* Each query g; is the outputof some DS algorithm
M;(X), so the queries satisfy q;(X) = q;(P)

* The noisy answers q; satisfy a; = q;(X)

* Thereforea; ~ q;(P)



Proof Overview

* Claim 2’ [DFHPRR’15,BNSSSU’16]: If M is a DS
algorithm mapping samples to SQs, then

[Ex p [qM(X) (X)] ~ Ey oy [qM(X) (P)]
e Proof Sketch:

. Consider(i, X;, qM(X)) and (i,Z, qM(X)) where i ~ [n],
X ~ P", Z ~ Pindependently,and M is randomized

(6.0 amen)
~ed (i» Xi:QM(Z,X_i)) Distributional Stability
~ (4,2, CIM(Xi,X_i)) Symmetry

~ (L,Z,qu))



Summary of Results

(Theorem [DFHPRR’15, BNSSSU’16]: There is an estimator )
Ay that answers any k interactive SQs with error

_(Vk
“‘O(ﬁ
\_ J

* Addingindependent Gaussian noise to the answers
improves stability and reduces total error!

e Can extend to other types of queries
e Lipschitzqueries:|q(X) — q(X")] S% [BNSSSU’16]
e ERM queries: g(X) = argmin£(0; X) [BNSSSU’16]
6€0

* Jointly Gaussian queries:q(X) ~ N(u, X) [RZ’15, WLF'15, BF'16]



Summary of Results
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(Theorem [DFHPRR’15, BNSSSU’16]: There is an estimator )
Ay that answers any k interactive SQs with error

J

 When the data dimensionalityis bounded (i.e. U = {il}d),

we can use more powerful DS algorithms from privacy

e Cananswer

* Two issues with this approach:

 Statistical: Onlyimproves when d is sufficiently small

e Computational: Runningtimeis exponentialind



Summary of Results

4 )
Theorem [HU’14,SU’15]: If k = n?, and d > k, then there

is @ malicious analyst that forces every estimator to have
error at least 1/3.

Theorem [HU’14,SU’15]: If k = n?, and d = log(n), then
there is a malicious analyst that forces every polynomial-

. time estimator to have error at least 1/3. y

* Borrows techniques from differential privacy lower bounds
[BUV’14,DSSUV’15], namely fingerprinting codes [BS’95,T’03]




Summary of Results

* Thereis a malicious analyst such that for any
accurate estimator Ay, the analyst can learn the
dataset X after k = 0(n?) queries

* Requiresthat Ay works for all P
* Analyst must know P



Summary of Results

(Theorem [DFHPRR’15]: If the k queries are issued inr < k )
rounds then there is an estimator Ay with error

~| |rlogk

a=20
NERL
1\ )
* Does not require knowing the timing of the rounds
* Application:re-usable holdoutsets [DFHPRR'15]

* Keep a holdout set, only use it to verify your conclusions
* Each of ther rounds corresponds to one of your conclusions failing
* “Only payproportional tothe number of times you truly overfit.”




This Talk

* A general approach to interactive data analysis
* Introducedin [DFHPRR’15, HU’14]
* New general toolsand methodology
* Leads to new algorithms for preventing overfitting

* Key ingredient: algorithmic stability
* Strong notions of stability inspired by differential privacy
* Uses randomizationto improve generalization

* New inherent bottlenecks [HU’14,SU’15]
* Both statistical and computational



Thank you!



