Distirbutional robustness, regularizing variance, and adversaries

John Duchi Based on joint work with Hongseok Namkoong and Aman Sinha

Stanford University

November 2017

Motivation

We do not want machine-learned systems to fail when they get in the real world

Challenge one: Curly fries

WIRED Technology Science Culture Video **Reviews** Magazine **Liking curly fries on Facebook reveals your** high IQ

By PHILIPPA WARR 12 Mar 2015 $f(X \simeq$

What you Like on Facebook could reveal your race, age, IQ, sexuality and other personal data, even if you've set that information to "private".

Challenge one: Curly fries

WIRED Technology Science Culture Video **Reviews** Magazine **Liking curly fries on Facebook reveals your** high IQ

By PHILIPPA WARR 12 Mar 2015 f \mathbb{I} ∞

What you Like on Facebook could reveal your race, age, IQ, sexuality and other personal data, even if you've set that information to "private".

Who doesn't like curly fries?

Challenge two: changes in environment

Learning to drive in California

Challenge two: changes in environment

Learning to drive in California **Driving in Ann Arbor**

Challenge three: adversaries

"panda" 57.7% confidence

[Goodfellow et al. 15]

"gibbon" 99.3% confidence

Challenge three: adversaries

[Goodfellow et al. 15]

Paraphrased Quote:

We could put a transparent film on a stop sign, essentially imperceptible to a human, and a computer would see the stop sign as air (Dan Boneh)

Stochastic optimization problems

minimize
$$
R(\theta) := \mathbb{E}_{P_0}[\ell(\theta; Z)] = \int \ell(\theta; z) dP_0(z)
$$

subject to $\theta \in \Theta$.

 ϵ

Empirical risk minimization: Often, solve

$$
\widehat{\theta}_n = \operatorname*{argmin}_{\theta \in \Theta} \widehat{R}_n(\theta) := \frac{1}{n} \sum_{i=1}^n \ell(\theta; Z_i)
$$

Stochastic optimization problems

$$
\text{minimize } R(\theta) := \mathbb{E}_{P_0}[\ell(\theta; Z)] = \int \ell(\theta; z) dP_0(z)
$$
\n
$$
\text{subject to } \theta \in \Theta.
$$

- \blacktriangleright Data/randomness is Z
- ► Loss function $\theta \mapsto \ell(\theta; z)$
- **Parameter space** Θ **is a nonempty closed (convex) set**

Empirical risk minimization: Often, solve

$$
\widehat{\theta}_n = \operatorname*{argmin}_{\theta \in \Theta} \widehat{R}_n(\theta) := \frac{1}{n} \sum_{i=1}^n \ell(\theta; Z_i)
$$

Stochastic optimization problems

$$
\text{minimize } R(\theta) := \mathbb{E}_{P_0}[\ell(\theta; Z)] = \int \ell(\theta; z) dP_0(z)
$$
\n
$$
\text{subject to } \theta \in \Theta.
$$

- \blacktriangleright Data/randomness is Z
- ► Loss function $\theta \mapsto \ell(\theta; z)$
- **Parameter space** Θ **is a nonempty closed (convex) set**
- ► Observe data $Z_i \stackrel{\text{iid}}{\sim} P_0, \, i=1,\ldots,n$

Empirical risk minimization: Often, solve

$$
\widehat{\theta}_n = \operatorname*{argmin}_{\theta \in \Theta} \widehat{R}_n(\theta) := \frac{1}{n} \sum_{i=1}^n \ell(\theta; Z_i)
$$

$$
R(\theta) = \mathbb{E}_{P_0}[\ell(\theta; Z)]
$$

$$
R(\theta, \mathcal{P}) := \sup_{P \in \mathcal{P}} \mathbb{E}_{P}[\ell(\theta; Z)]
$$

$$
R(\theta, \mathcal{P}) := \sup_{P \in \mathcal{P}} \mathbb{E}_{P}[\ell(\theta; Z)]
$$

- Incertainty set $\mathcal P$ is set of "possible" distributions/worlds
- \triangleright Different choices of uncertainty yield different behaviors
- Some sample-based uncertainty sets $\mathcal P$ certify future performance

$$
R(\theta, \mathcal{P}) := \sup_{P \in \mathcal{P}} \mathbb{E}_{P}[\ell(\theta; Z)]
$$

- Incertainty set $\mathcal P$ is set of "possible" distributions/worlds
- \triangleright Different choices of uncertainty yield different behaviors
- Some sample-based uncertainty sets $\mathcal P$ certify future performance
- \triangleright Much work in optimization literature: [Delage & Ye 10, Ben-Tal et al. 13, Bertsimas et al. 14, Lam & Zhou 15, Gotoh et al. 15]

$$
R(\theta, \mathcal{P}) := \sup_{P \in \mathcal{P}} \mathbb{E}_{P}[\ell(\theta; Z)]
$$

- Incertainty set $\mathcal P$ is set of "possible" distributions/worlds
- \triangleright Different choices of uncertainty yield different behaviors
- Some sample-based uncertainty sets $\mathcal P$ certify future performance
- \triangleright Much work in optimization literature: [Delage & Ye 10, Ben-Tal et al. 13, Bertsimas et al. 14, Lam & Zhou 15, Gotoh et al. 15]

Rest of this talk: Two vignettes showing some aspects of this approach

Any learning algorithm has bias (approximation error) and variance (estimation error)

- Any learning algorithm has bias (approximation error) and variance (estimation error)
- ► From empirical Bernstein's inequality, with probability 1δ

$$
R(\theta) \leq \underbrace{\widehat{R}_n(\theta)}_{\text{bias}} + \underbrace{\sqrt{\frac{2 \text{Var}_{\widehat{P}_n}(\ell(\theta;X))}{n}}}_{\text{variance}} + \frac{C \log \frac{1}{\delta}}{n}
$$

- Any learning algorithm has bias (approximation error) and variance (estimation error)
- ► From empirical Bernstein's inequality, with probability 1δ

$$
R(\theta) \leq \underbrace{\widehat{R}_n(\theta)}_{\text{bias}} + \underbrace{\sqrt{\frac{2 \text{Var}_{\widehat{P}_n}(\ell(\theta;X))}{n}}}_{\text{variance}} + \frac{C \log \frac{1}{\delta}}{n}
$$

Goal: Trade between these automatically and optimally by solving

$$
\widehat{\theta}^{\text{var}} \in \underset{\theta \in \Theta}{\text{argmin}} \left\{ \widehat{R}_n(\theta) + \sqrt{\frac{2 \text{Var}_{\widehat{P}_n}(\ell(\theta;X))}{n}} \right\}
$$

.

Optimizing for bias and variance

Good idea: Directly minimize bias $+$ variance, certify optimality!

Optimizing for bias and variance

Good idea: Directly minimize bias $+$ variance, certify optimality! Minor issue: variance is wildly non-convex

Figure: Variance of $\ell(\theta, X) = |\theta - X|$

Goal:

$$
\underset{\theta \in \Theta}{\text{minimize}} \ R(\theta) = \mathbb{E}_{P_0}[\ell(\theta;X)]
$$

Goal:

$$
\underset{\theta \in \Theta}{\text{minimize}} \ R(\theta) = \mathbb{E}_{P_0}[\ell(\theta;X)]
$$

Solve empirical risk minimization problem

$$
\underset{\theta \in \Theta}{\text{minimize}} \ \ \sum_{i=1}^n \frac{1}{n} \ell(\theta;X_i)
$$

Goal:

$$
\underset{\theta \in \Theta}{\text{minimize}} \ R(\theta) = \mathbb{E}_{P_0}[\ell(\theta;X)]
$$

Solve sample average optimization problem

$$
\underset{\theta \in \Theta}{\text{minimize}} \ \ \sum_{i=1}^n \frac{1}{n} \ell(\theta;X_i)
$$

Goal:

$$
\underset{\theta \in \Theta}{\text{minimize}} \ R(\theta) = \mathbb{E}_{P_0}[\ell(\theta;X)]
$$

Instead, solve distributionally robust optimization (RO) problem

$$
\underset{\theta \in \Theta}{\text{minimize}} \ \underset{p \in \mathcal{P}_{n,\rho}}{\sup} \sum_{i=1}^{n} p_i \ell(\theta;X_i)
$$

where $P_{n,\rho}$ is some appropriately chosen set of vectors

Goal:

$$
\underset{\theta \in \Theta}{\text{minimize}} \ R(\theta) = \mathbb{E}_{P_0}[\ell(\theta;X)]
$$

Instead, solve distributionally robust optimization (RO) problem

$$
\underset{\theta \in \Theta}{\text{minimize}} \ \underset{p \in \mathcal{P}_{n,\rho}}{\sup} \sum_{i=1}^n p_i \ell(\theta;X_i)
$$

where $P_{n,o}$ is some appropriately chosen set of vectors

This bit of talk: Give a principled statistical approach to choosing $\mathcal{P}_{n,o}$ and give stochastic optimality certificates for RO.

Empirical likelihood and robustness

Idea: Optimize over *uncertainty set* of possible distributions,

$$
\mathcal{P}_{n,\rho}:=\Big\{ \text{Distributions } P \text{ such that } D(P\|\widehat{P}_n)\leq \frac{\rho}{n}\Big\}
$$

for some $\rho > 0$, where $D(P\|Q) = \int (p/q-1)^2 q$

Empirical likelihood and robustness

Idea: Optimize over *uncertainty set* of possible distributions,

$$
\mathcal{P}_{n,\rho}:=\Big\{ \text{Distributions } P \text{ such that } D(P\|\widehat{P}_n)\leq \frac{\rho}{n}\Big\}
$$

for some $\rho > 0$, where $D(P\|Q) = \int (p/q-1)^2 q$

Define (and optimize) empirical likelihood upper confidence bound

$$
R_n(\theta, \mathcal{P}_{n,\rho}) := \max_{P \in \mathcal{P}_{n,\rho}} \mathbb{E}_P[\ell(\theta, X)] = \max_{p \in \mathcal{P}_{n,\rho}} \sum_{i=1}^n p_i \ell(\theta, X_i)
$$

Empirical likelihood and robustness

Idea: Optimize over *uncertainty set* of possible distributions,

$$
\mathcal{P}_{n,\rho}:=\Big\{ \text{Distributions } P \text{ such that } D(P\|\widehat{P}_n)\leq \frac{\rho}{n}\Big\}
$$

for some $\rho > 0$, where $D(P\|Q) = \int (p/q-1)^2 q$

Define (and optimize) empirical likelihood upper confidence bound

$$
R_n(\theta, \mathcal{P}_{n,\rho}) := \max_{P \in \mathcal{P}_{n,\rho}} \mathbb{E}_P[\ell(\theta, X)] = \max_{p \in \mathcal{P}_{n,\rho}} \sum_{i=1}^n p_i \ell(\theta, X_i)
$$

Nice properties:

- \triangleright Convex optimization problem
- \triangleright Efficient solution methods [D. & Namkoong NIPS 16]

$Robust$ Optimization $=$ Variance Regularization

Theorem (D. & Namkoong)

Assume that ℓ is bounded over the space of decision vectors θ . Then

$$
R_n(\theta; \mathcal{P}_{n,\rho}) = \widehat{R}_n(\theta) + \sqrt{\frac{2\rho \text{Var}_{\widehat{P}_n}(\ell(\theta;X))}{n}} + O(\rho/n).
$$

$Robust$ Optimization $=$ Variance Regularization

Theorem (D. & Namkoong)

Assume that ℓ is bounded over the space of decision vectors θ . Then

$$
R_n(\theta; \mathcal{P}_{n,\rho}) = \widehat{R}_n(\theta) + \sqrt{\frac{2\rho \text{Var}_{\widehat{P}_n}(\ell(\theta;X))}{n}} + O(\rho/n).
$$

Choose $\widehat{\theta}^{\text{rob}}$ to minimize robust empirical risk

$$
R_n(\theta, \mathcal{P}_{n,\rho}) := \max_{P \in \mathcal{P}_{n,\rho}} \mathbb{E}_{P}[\ell(\theta, X)] = \max_{p \in \mathcal{P}_{n,\rho}} \sum_{i=1}^n p_i \ell(\theta, X_i).
$$

Optimal bias variance tradeoff

Choose $\widehat{\theta}^{\mathrm{rob}}$ to minimize robust empirical risk

$$
R_n(\widehat{\theta}^{\text{rob}}, \mathcal{P}_{n,\rho}) = \min_{\theta \in \Theta} \max_{P \ll \widehat{P}_n} \left\{ \mathbb{E}_P[\ell(\theta;X)] : D_{\chi^2}\left(P \| \widehat{P}_n\right) \leq \frac{\rho}{n} \right\}.
$$

Optimal bias variance tradeoff

Choose $\hat{\theta}^{\text{rob}}$ to minimize robust empirical risk

$$
R_n(\widehat{\theta}^{\text{rob}}, \mathcal{P}_{n,\rho}) = \min_{\theta \in \Theta} \max_{P \ll \widehat{P}_n} \left\{ \mathbb{E}_P[\ell(\theta;X)] : D_{\chi^2}\left(P \| \widehat{P}_n\right) \leq \frac{\rho}{n} \right\}.
$$

Assume that $\Theta \subset \mathbb{R}^d$ compact with radius R and $\ell(\theta; X)$ is M -Lipschitz.

Optimal bias variance tradeoff

Choose $\widehat{\theta}^{\text{rob}}$ to minimize robust empirical risk

$$
R_n(\widehat{\theta}^{\text{rob}}, \mathcal{P}_{n,\rho}) = \min_{\theta \in \Theta} \max_{P \ll \widehat{P}_n} \left\{ \mathbb{E}_P[\ell(\theta;X)] : D_{\chi^2}\left(P \| \widehat{P}_n\right) \leq \frac{\rho}{n} \right\}.
$$

Assume that $\Theta \subset \mathbb{R}^d$ compact with radius R and $\ell(\theta; X)$ is M -Lipschitz.

| {z } optimal tradeoff

n

Theorem (D. & Namkoong 17) Let $\rho = \log \frac{1}{\delta} + d \log n$. Then with probability at least $1 - \delta$, $R(\widehat{\theta}^{\rm rob}) \leq \frac{R_n(\widehat{\theta}^{\rm rob}, \mathcal{P}_{n,\rho})}{n} + \frac{cMR}{n}$ optimality certificate $\frac{n}{n}$ ρ ≤ min θ∈Θ $\int R(\theta) + 2\sqrt{\frac{2\rho \text{Var}(\ell(\theta, \xi))}{n}}$ $\Big\} + \frac{cMR}{2}$ $\frac{n}{n}$ ρ

for some universal constant $c > 0$.

Problem: Classify documents as a subset of the 4 categories:

 $\{$ Corporate, Economics, Government, Markets $\}$

Problem: Classify documents as a subset of the 4 categories:

 $\{$ Corporate, Economics, Government, Markets $\}$

► Data: pairs $x\in\mathbb{R}^d$ represents document, $y\in\{-1,1\}^4$ where $y_j=1$ indicating x belongs i -th category.

Problem: Classify documents as a subset of the 4 categories:

 $\{$ Corporate, Economics, Government, Markets $\}$

- ► Data: pairs $x\in\mathbb{R}^d$ represents document, $y\in\{-1,1\}^4$ where $y_j=1$ indicating x belongs i -th category.
- ► Loss $\ell(\theta_j ,(x, y)) = \log(1 + e^{-yx^\top \theta_j})$ for each $j = 1, \ldots, 4$ and $\Theta = \left\{ \theta \in \mathbb{R}^d : ||\theta||_1 \le 1000 \right\}.$

Problem: Classify documents as a **subset** of the 4 categories:

 $\{$ Corporate, Economics, Government, Markets $\}$

- ► Data: pairs $x\in\mathbb{R}^d$ represents document, $y\in\{-1,1\}^4$ where $y_j=1$ indicating x belongs i -th category.
- ► Loss $\ell(\theta_j ,(x, y)) = \log(1 + e^{-yx^\top \theta_j})$ for each $j = 1, \ldots, 4$ and $\Theta = \left\{ \theta \in \mathbb{R}^d : ||\theta||_1 \le 1000 \right\}.$
- $d = 47, 236, n = 804, 414, 10$ -fold cross-validation.

Problem: Classify documents as a **subset** of the 4 categories:

 $\{$ Corporate, Economics, Government, Markets $\}$

- ► Data: pairs $x\in\mathbb{R}^d$ represents document, $y\in\{-1,1\}^4$ where $y_j=1$ indicating x belongs i -th category.
- ► Loss $\ell(\theta_j ,(x, y)) = \log(1 + e^{-yx^\top \theta_j})$ for each $j = 1, \ldots, 4$ and $\Theta = \left\{ \theta \in \mathbb{R}^d : ||\theta||_1 \le 1000 \right\}.$
- $d = 47, 236, n = 804, 414, 10$ -fold cross-validation.

Table: Reuters Number of Examples

Table: Reuters Corpus (%)

	Precision		Recall		Corporate		Economics	
	train	test	train	test	train	test	train	test
erm	92.72		92.7 90.97 90.96 90.2				90.25 67.53 67.56	
10000	94.17		94.16 93.46 93.44		92.65	92.71 76.79 76.78		

Figure: Recall on rare category (Economics)

Figure: Average logistic risk and confidence bound

Vignette two: Wasserstein robustness

We do not want machine-learned systems to fail when they get in the real world

Vignette two: Wasserstein robustness

We do not want machine-learned systems to fail when they get in the real world

It is irresponsible to release systems into the world whose robustness we do not understand

Challenges

"panda"

57.7% confidence

"gibbon"

99.3% confidence

A type of robustess

Robust optimization: instead of ℓ , look at robust loss

$$
\ell_{\epsilon}(\theta; z) := \sup_{\|\Delta\| \le \epsilon} \ell(\theta; z + \Delta)
$$

A type of robustess

Robust optimization: instead of ℓ , look at robust loss

$$
\ell_{\epsilon}(\theta; z) := \sup_{\|\Delta\| \le \epsilon} \ell(\theta; z + \Delta)
$$

 \triangleright Adversarial attacks and defenses with heuristics and more advanced ideas [Goodfellow et al. 15, Jia and Liang 17, Papernot et al. 16, Madry et al. 17]

A type of robustess

Robust optimization: instead of ℓ , look at robust loss

$$
\ell_{\epsilon}(\theta; z) := \sup_{\|\Delta\| \le \epsilon} \ell(\theta; z + \Delta)
$$

 \blacktriangleright Adversarial attacks and defenses with heuristics and more advanced ideas [Goodfellow et al. 15, Jia and Liang 17, Papernot et al. 16, Madry et al. 17]

Minor issue: Usually this is NP-hard Further issue: In neural network,

$$
f_{\theta}(x) = \theta_1^T \sigma_{\text{relu}}(\theta_2^T \sigma_{\text{relu}}(\cdots))
$$

and is is NP-hard to compute $\sup_{\Delta} \ell(f_{\theta}(x + \Delta))$

Question: How can we figure out how to "change" distribution right way to get robustness?

Question: How can we figure out how to "change" distribution right way to get robustness?

Let $c : \mathcal{Z} \times \mathcal{Z} \rightarrow \mathbb{R}_+$ be some cost function, and define *Wasserstein* distance

$$
W_c(P,Q) := \inf_M \int c(z_1, z_2) dM(z_1, z_2)
$$

=
$$
\sup_f \left\{ \int f(z) (dP(z) - dQ(z)) | f(x) - f(z) \le c(x, z) \right\}
$$

where M has P and Q as its marginal distributions

Wasserstein robustness

Look at distributionally robust risk

$$
R(\theta, \mathcal{P}) := \sup_{P} \{ \mathbb{E}_{P} [\ell(\theta; Z)] \mid P \in \mathcal{P} \}
$$

Wasserstein robustness

Look at distributionally robust risk defined for $\rho \geq 0$

$$
R(\theta, \rho) := \sup_{P} \left\{ \mathbb{E}_{P} [\ell(\theta; Z)] \text{ s.t. } W_c(P, P_0) \le \rho \right\}
$$

Wasserstein robustness

Look at distributionally robust risk defined for $\rho \geq 0$

$$
R(\theta, \rho) := \sup_{P} \left\{ \mathbb{E}_{P} [\ell(\theta; Z)] \text{ s.t. } W_c(P, P_0) \le \rho \right\}
$$

- \blacktriangleright Allows *changing support* to harder distributions
- \triangleright Studied in robust optimization literature Shafieezadeh-Abadeh et al. 15, Esfahani & Kuhn 15, Blanchet and Murthy 16]

Minor issue: Often still NP-hard

A first idea

(Simple) insight: If $\ell(\theta, z)$ is smooth in θ and z , then life gets a bit easier

A first idea

(Simple) insight: If $\ell(\theta, z)$ is smooth in θ and z , then life gets a bit easier

The function

$$
\ell_\lambda(\theta;z):=\sup_{\Delta}\left\{\ell(\theta;z+\Delta)-\frac{\lambda}{2}\left\lVert{\Delta}\right\rVert_2^2\right\}
$$

is efficient to compute (and differentiable, etc.) for large enough λ

Duality and robustness

Theorem (D., Namkoong, Sinha)

Let P_0 be any distribution on Z and $c : \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}_+$ be any function. Then

$$
\sup_{W_c(P,P_0)\leq \rho} \mathbb{E}_P[\ell(\theta;Z)] = \inf_{\lambda \geq 0} \left\{ \int \sup_{z'} \left\{ \ell(\theta;z') - \lambda c(z',z) \right\} dP_0(z) + \lambda \rho \right\}
$$

$$
= \inf_{\lambda \geq 0} \left\{ \mathbb{E}_{P_0} [\ell_\lambda(\theta;Z)] + \lambda \rho \right\}.
$$

Duality and robustness

Theorem (D., Namkoong, Sinha)

Let P_0 be any distribution on Z and $c : \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}_+$ be any function. Then

$$
\sup_{W_c(P,P_0)\leq \rho} \mathbb{E}_P[\ell(\theta;Z)] = \inf_{\lambda \geq 0} \left\{ \int \sup_{z'} \left\{ \ell(\theta;z') - \lambda c(z',z) \right\} dP_0(z) + \lambda \rho \right\}
$$

$$
= \inf_{\lambda \geq 0} \left\{ \mathbb{E}_{P_0} [\ell_\lambda(\theta;Z)] + \lambda \rho \right\}.
$$

Idea: Ignore that infimum, pick a large enough λ , and "solve"

minimize \mathbb{E}_{P_0} $[\ell_\lambda(\theta; Z)]$ θ

Stochastic gradient algorithm

$$
\underset{\theta}{\text{minimize}} \ \mathbb{E}_{P_0}[\ell_\lambda(\theta; Z)] = \mathbb{E}_{P_0} \left[\underset{\Delta}{\sup} \left\{ \ell(\theta; Z + \Delta) - \frac{\lambda}{2} \, \|\Delta\|_2^2 \right\} \right]
$$

Repeat:

- 1. Draw $Z_k \stackrel{\text{iid}}{\sim} P$
- 2. Compute (approximate) maximizer

$$
\widehat{Z}_k \approx \underset{z}{\operatorname{argmax}} \left\{ \ell(\theta; z) - \frac{\lambda}{2} ||z - Z_k||_2^2 \right\}
$$

3. Update

$$
\theta_{k+1} := \theta_k - \alpha_k \nabla_{\theta} \ell(\theta_k; \widehat{Z}_k)
$$

where α_k is a stepsize

Stochastic gradient algorithm

$$
\underset{\theta}{\text{minimize}} \ \mathbb{E}_{P_0}[\ell_\lambda(\theta; Z)] = \mathbb{E}_{P_0}\left[\underset{\Delta}{\sup} \left\{\ell(\theta; Z + \Delta) - \frac{\lambda}{2} \left\|\Delta\right\|_2^2\right\}\right]
$$

Repeat:

- 1. Draw $Z_k \stackrel{\text{iid}}{\sim} P$
- 2. Compute (approximate) maximizer

$$
\widehat{Z}_k \approx \underset{z}{\operatorname{argmax}} \left\{ \ell(\theta; z) - \frac{\lambda}{2} ||z - Z_k||_2^2 \right\}
$$

3. Update

$$
\theta_{k+1} := \theta_k - \alpha_k \nabla_{\theta} \ell(\theta_k; \widehat{Z}_k)
$$

where α_k is a stepsize

Theorem(ish): This converges with all the typical convergence properties

A certificate of robustness

A desiderata: We would like to certify that any learned θ has robustness properties

A certificate of robustness

A desiderata: We would like to certify that any learned θ has robustness properties

Theorem (D., Namkoong, Sinha 17)

With high probability, for all $\theta \in \Theta$ and uniformly in ρ ,

$$
\frac{1}{n} \sum_{i=1}^{n} \sup_{\Delta} \left\{ \ell(\theta; Z_i + \Delta) - \frac{\lambda}{2} \left\| \Delta \right\|_2^2 \right\} + \lambda \rho
$$

$$
\geq \sup_{P: W(P, P_0) \leq \rho} \left\{ \mathbb{E}_P \left[\ell(\theta; Z) \right] \right\} - \frac{O(1)}{\sqrt{n}}
$$

A certificate of robustness

A desiderata: We would like to certify that any learned θ has robustness properties

Theorem (D., Namkoong, Sinha 17) With high probability, for all $\theta \in \Theta$

$$
\frac{1}{n} \sum_{i=1}^{n} \sup_{\Delta} \left\{ \ell(\theta; Z_i + \Delta) - \frac{\lambda}{2} ||\Delta||_2^2 \right\} + \lambda \widehat{W}(\theta)
$$

\n
$$
\geq \sup_{P: W(P, P_0) \leq \widehat{W}(\theta)} \left\{ \mathbb{E}_P \left[\ell(\theta; Z) \right] \right\} - \frac{O(1)}{\sqrt{n}}
$$

Empirical estimate: get an approximate divergence

$$
\widehat{W}(\theta) := \frac{1}{2n} \sum_{i=1}^{n} \left\| \widehat{Z}_i(\theta) - Z_i(\theta) \right\|_2^2
$$

where $\widehat{Z}_i = \mathrm{argmax}_z \{ \ell(\theta; z) - \frac{\lambda}{2} \}$ $\frac{\lambda}{2} \| z - Z_i \|_2^2$ $\begin{matrix} 2 \\ 2 \end{matrix}$

Digging into neural networks

 \blacktriangleright Typically predict with

$$
f_{\theta}(x) = \theta_1^{\top} \sigma_{\text{relu}}(\theta_2^{\top} \sigma_{\text{relu}}(\cdots))
$$

where

$$
\sigma_{\text{relu}}(t) = \min\{1, (t)_+\}
$$

Digging into neural networks

 \blacktriangleright Typically predict with

$$
f_{\theta}(x) = \theta_1^{\top} \sigma_{\text{relu}}(\theta_2^{\top} \sigma_{\text{relu}}(\cdots))
$$

where

$$
\sigma_{\text{relu}}(t) = \min\{1, (t)_+\}
$$

 \blacktriangleright Replace σ_{relu} with

$$
\sigma_{\text{smooth}}(t) = \begin{cases} \frac{(t)_{+}}{2\epsilon}^2 & \text{if } t \leq \epsilon \\ t + \frac{\epsilon}{2} & \text{if } \epsilon \leq t \leq 1 - \epsilon \\ -\frac{(1-t)_{+}^2}{2\epsilon} + 1 & \text{if } t \geq t - \epsilon \end{cases}
$$

Simple Visualization

Experimental results: adversarial classification

 \triangleright MNIST dataset with 3 convolutional layers, fully connected softmax top layer

Experimental results: adversarial classification

 \triangleright MNIST dataset with 3 convolutional layers, fully connected softmax top layer

Reading tea leaves

Original

 ERM

 FGM

IFGM

 PGM

WRM

Reinforcement learning?

References

- ► H. Namkoong and J. C. Duchi. Stochastic gradient methods for distributionally robust optimization with f -divergences. In Advances in Neural Information Processing Systems 29, 2016
- \triangleright H. Namkoong and J. C. Duchi. Variance regularization with convex objectives.

In Advances in Neural Information Processing Systems 30, 2017

 \triangleright A. Sinha, H. Namkoong, and J. C. Duchi. Certifiable distributional robustness with principled adversarial training. arXiv:1710.10571 [stat.ML], 2017