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Motivation

We do not want machine-learned systems to fail
when they get in the real world



Challenge one: Curly fries

Who doesn’t like curly fries?
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Challenge three: adversaries

[Goodfellow et al. 15]

Paraphrased Quote:

We could put a transparent film on a stop sign, essentially imperceptible
to a human, and a computer would see the stop sign as air (Dan Boneh)
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Stochastic optimization problems

minimize R(θ) := EP0 [`(θ;Z)] =

∫
`(θ; z)dP0(z)

subject to θ ∈ Θ.

I Data/randomness is Z

I Loss function θ 7→ `(θ; z)

I Parameter space Θ is a nonempty closed (convex) set

I Observe data Zi
iid∼ P0, i = 1, . . . , n

Empirical risk minimization: Often, solve

θ̂n = argmin
θ∈Θ

R̂n(θ) :=
1

n

n∑
i=1

`(θ;Zi)
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Distributional robustness

R(θ) = EP0 [`(θ;Z)]

I Uncertainty set P is set of “possible” distributions/worlds

I Different choices of uncertainty yield different behaviors

I Some sample-based uncertainty sets P certify future performance

I Much work in optimization literature: [Delage & Ye 10, Ben-Tal et al.
13, Bertsimas et al. 14, Lam & Zhou 15, Gotoh et al. 15]

Rest of this talk: Two vignettes showing some aspects of this approach
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Vignette one: regularization by variance

I Any learning algorithm has bias (approximation error) and variance
(estimation error)

I From empirical Bernstein’s inequality, with probability 1− δ

R(θ) ≤ R̂n(θ)︸ ︷︷ ︸
bias

+

√
2Var

P̂n
(`(θ;X))

n︸ ︷︷ ︸
variance

+
C log 1

δ

n

Goal: Trade between these automatically and optimally by solving

θ̂var ∈ argmin
θ∈Θ

R̂n(θ) +

√
2Var

P̂n
(`(θ;X))

n

 .
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Optimizing for bias and variance

Good idea: Directly minimize bias + variance, certify optimality!

Minor issue: variance is wildly non-convex
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Figure: Variance of `(θ,X) = |θ −X|
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Robust ERM

Goal:
minimize

θ∈Θ
R(θ) = EP0 [`(θ;X)]

This bit of talk: Give a principled statistical approach to choosing Pn,ρ
and give stochastic optimality certificates for RO.
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Empirical likelihood and robustness

Idea: Optimize over uncertainty set of possible distributions,

Pn,ρ :=
{

Distributions P such that D(P ||P̂n) ≤ ρ

n

}
for some ρ > 0, where D(P ||Q) =

∫
(p/q − 1)2q

Define (and optimize) empirical likelihood upper confidence bound

Rn(θ,Pn,ρ) := max
P∈Pn,ρ

EP [`(θ,X)] = max
p∈Pn,ρ

n∑
i=1

pi`(θ,Xi)

Nice properties:

I Convex optimization problem

I Efficient solution methods [D. & Namkoong NIPS 16]
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Robust Optimization = Variance Regularization

Theorem (D. & Namkoong)

Assume that ` is bounded over the space of decision vectors θ. Then

Rn(θ;Pn,ρ) = R̂n(θ) +

√
2ρVar

P̂n
(`(θ;X))

n
+O(ρ/n).

Choose θ̂rob to minimize robust empirical risk

Rn(θ,Pn,ρ) := max
P∈Pn,ρ

EP [`(θ,X)] = max
p∈Pn,ρ

n∑
i=1

pi`(θ,Xi).
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Optimal bias variance tradeoff

Choose θ̂rob to minimize robust empirical risk

Rn(θ̂rob,Pn,ρ) = min
θ∈Θ

max
P�P̂n

{
EP [`(θ;X)] : Dχ2

(
P ||P̂n

)
≤ ρ

n

}
.

Assume that Θ ⊂ Rd compact with radius R and `(θ;X) is M -Lipschitz.

Theorem (D. & Namkoong 17)

Let ρ = log 1
δ + d log n. Then with probability at least 1− δ,
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Experiment: Reuters Corpus (multi-label)

Problem: Classify documents as a subset of the 4 categories:{
Corporate, Economics, Government, Markets

}

I Data: pairs x ∈ Rd represents document, y ∈ {−1, 1}4 where yj = 1
indicating x belongs j-th category.

I Loss `(θj , (x, y)) = log(1 + e−yx
>θj ) for each j = 1, . . . , 4 and

Θ =
{
θ ∈ Rd : ‖θ‖1 ≤ 1000

}
.

I d = 47, 236, n = 804, 414. 10-fold cross-validation.

Table: Reuters Number of Examples

Corporate Economics Government Markets
381,327 119,920 239,267 204,820
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Experiment: Reuters Corpus (multi-label)

Table: Reuters Corpus (%)

Precision Recall Corporate Economics
ρ train test train test train test train test

erm 92.72 92.7 90.97 90.96 90.2 90.25 67.53 67.56
10000 94.17 94.16 93.46 93.44 92.65 92.71 76.79 76.78



Experiment: Reuters Corpus (multi-label)

Figure: Recall on rare category (Economics)
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Experiment: Reuters Corpus (multi-label)

Figure: Average logistic risk and confidence bound
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Vignette two: Wasserstein robustness

We do not want machine-learned systems to fail
when they get in the real world

It is irresponsible to release systems into the world whose robustness
we do not understand
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Challenges



A type of robustess

Robust optimization: instead of `, look at robust loss

`ε(θ; z) := sup
‖∆‖≤ε

`(θ; z + ∆)

I Adversarial attacks and defenses with heuristics and more advanced
ideas [Goodfellow et al. 15, Jia and Liang 17, Papernot et al. 16,
Madry et al. 17]

Minor issue: Usually this is NP-hard
Further issue: In neural network,

fθ(x) = θT1 σrelu(θT2 σrelu(· · · ))

and is is NP-hard to compute sup∆ `(fθ(x+ ∆))
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Distributional robustness

Question: How can we figure out how to “change” distribution right way
to get robustness?

Let c : Z × Z → R+ be some cost function, and define Wasserstein
distance

Wc(P,Q) := inf
M

∫
c(z1, z2)dM(z1, z2)

= sup
f

{∫
f(z)(dP (z)− dQ(z)) | f(x)− f(z) ≤ c(x, z)

}
where M has P and Q as its marginal distributions
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Wasserstein robustness

Look at distributionally robust risk

R(θ,P) := sup
P
{EP [`(θ;Z)] | P ∈ P}

I Allows changing support to harder distributions

I Studied in robust optimization literature [Shafieezadeh-Abadeh et al.
15, Esfahani & Kuhn 15, Blanchet and Murthy 16]

Minor issue: Often still NP-hard
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A first idea

(Simple) insight: If `(θ, z) is smooth in θ and z, then life gets a bit easier

The function

`λ(θ; z) := sup
∆

{
`(θ; z + ∆)− λ

2
‖∆‖22

}
is efficient to compute (and differentiable, etc.) for large enough λ
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Duality and robustness

Theorem (D., Namkoong, Sinha)

Let P0 be any distribution on Z and c : Z × Z → R+ be any function.
Then

sup
Wc(P ,P0)≤ρ

EP [`(θ;Z)] = inf
λ≥0

{∫
sup
z′

{
`(θ; z′)− λc(z′, z)

}
dP0(z) + λρ

}
= inf

λ≥0
{EP0 [`λ(θ;Z)] + λρ} .

Idea: Ignore that infimum, pick a large enough λ, and “solve”

minimize
θ

EP0 [`λ(θ;Z)]



Duality and robustness

Theorem (D., Namkoong, Sinha)

Let P0 be any distribution on Z and c : Z × Z → R+ be any function.
Then

sup
Wc(P ,P0)≤ρ

EP [`(θ;Z)] = inf
λ≥0

{∫
sup
z′

{
`(θ; z′)− λc(z′, z)

}
dP0(z) + λρ

}
= inf

λ≥0
{EP0 [`λ(θ;Z)] + λρ} .

Idea: Ignore that infimum, pick a large enough λ, and “solve”

minimize
θ

EP0 [`λ(θ;Z)]



Stochastic gradient algorithm

minimize
θ

EP0 [`λ(θ;Z)] = EP0

[
sup
∆

{
`(θ;Z + ∆)− λ

2
‖∆‖22

}]
Repeat:

1. Draw Zk
iid∼ P

2. Compute (approximate) maximizer

Ẑk ≈ argmax
z

{
`(θ; z)− λ

2
‖z − Zk‖22

}
3. Update

θk+1 := θk − αk∇θ`(θk; Ẑk)

where αk is a stepsize

Theorem(ish): This converges with all the typical convergence properties
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A certificate of robustness

A desiderata: We would like to certify that any learned θ has robustness
properties

Empirical estimate: get an approximate divergence

Ŵ (θ) :=
1

2n

n∑
i=1

∥∥∥Ẑi(θ)− Zi(θ)∥∥∥2

2

where Ẑi = argmaxz{`(θ; z)− λ
2 ‖z − Zi‖

2
2}
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Digging into neural networks

I Typically predict with

fθ(x) = θ>1 σrelu(θ>2 σrelu(· · · ))

where
σrelu(t) = min{1, (t)+}

I Replace σrelu with

σsmooth(t) =


(t)+
2ε

2
if t ≤ ε

t+ ε
2 if ε ≤ t ≤ 1− ε

− (1−t)2+
2ε + 1 if t ≥ t− ε
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Simple Visualization

y = sign(‖x‖2 −
√

2)



Experimental results: adversarial classification

I MNIST dataset with 3 convolutional layers, fully connected softmax
top layer
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Reading tea leaves



Reinforcement learning?
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