Implicit Regularization in Nonconvex Statistical Estimation

Yuxin Chen

Electrical Engineering, Princeton University

Cong Ma Princeton ORFE

Kaizheng Wang Princeton ORFE

Yuejie Chi CMU ECE / OSU ECE

Nonconvex estimation problems are everywhere

Empirical risk minimization is usually nonconvex

 $\mathsf{minimize}_{\boldsymbol{x}} \quad \ell(\boldsymbol{x};\boldsymbol{y})$

Nonconvex estimation problems are everywhere

Empirical risk minimization is usually nonconvex

$$\mathsf{minimize}_{m{x}} \quad \ell(m{x}; m{y})$$

- low-rank matrix completion
- graph clustering
- dictionary learning
- mixture models
- deep learning
- ...

Blessing of randomness

Blessing of randomness

Optimization-based methods: two-stage approach

• Start from an appropriate initial point

Optimization-based methods: two-stage approach

- Start from an appropriate initial point
- Proceed via some iterative optimization algorithms

Proper regularization is often recommended

Improves computation by stabilizing search directions

Proper regularization is often recommended

Improves computation by stabilizing search directions

How about unregularized gradient methods?

Improves computation by stabilizing search directions

How about unregularized gradient methods?

Improves computation by stabilizing search directions

Are unregularized methods suboptimal for nonconvex estimation?

How about unregularized gradient methods?

Improves computation by stabilizing search directions

Are unregularized methods suboptimal for nonconvex estimation?

Phase retrieval / solving quadratic systems

Recover $oldsymbol{x}^{
atural} \in \mathbb{R}^n$ from m random quadratic measurements

$$y_k = |\boldsymbol{a}_k^{\top} \boldsymbol{x}^{\natural}|^2, \qquad k = 1, \dots, m$$

Assume w.l.o.g. $\|oldsymbol{x}^{
atural}\|_2=1$

Wirtinger flow (Candès, Li, Soltanolkotabi '14)

Empirical loss minimization

$$\mathsf{minimize}_{\boldsymbol{x}} \quad f(\boldsymbol{x}) = \frac{1}{m} \sum_{k=1}^{m} \left[\left(\boldsymbol{a}_k^\top \boldsymbol{x} \right)^2 - y_k \right]^2$$

Wirtinger flow (Candès, Li, Soltanolkotabi '14)

Empirical loss minimization

$$\mathsf{minimize}_{\boldsymbol{x}} \quad f(\boldsymbol{x}) = \frac{1}{m} \sum_{k=1}^m \left[\left(\boldsymbol{a}_k^\top \boldsymbol{x} \right)^2 - y_k \right]^2$$

• Initialization by spectral method

• Gradient iterations: for t = 0, 1, ...

$$\boldsymbol{x}^{t+1} = \boldsymbol{x}^t - \eta_t \, \nabla f(\boldsymbol{x}^t)$$

Two standard conditions that enable linear convergence of GD

Two standard conditions that enable linear convergence of GD

• (local) restricted strong convexity (or regularity condition)

Two standard conditions that enable linear convergence of GD

- (local) restricted strong convexity (or regularity condition)
- (local) smoothness

f is said to be α -strongly convex and β -smooth if

$$\mathbf{0} \ \leq \ \alpha \mathbf{I} \ \leq \ \nabla^2 f(\mathbf{x}) \ \leq \ \beta \mathbf{I}, \qquad \forall \mathbf{x}$$

 ℓ_2 error contraction: GD with $\eta=1/\beta$ obeys

$$\|oldsymbol{x}^{t+1} - oldsymbol{x}^{
atural}\|_2 \le \left(1 - rac{1}{eta/lpha}
ight) \|oldsymbol{x}^t - oldsymbol{x}^{
atural}\|_2$$

f is said to be lpha-strongly convex and eta-smooth if

$$\mathbf{0} \ \preceq \ \alpha \mathbf{I} \ \preceq \ \nabla^2 f(\mathbf{x}) \ \preceq \ \beta \mathbf{I}, \qquad \forall \mathbf{x}$$

 ℓ_2 error contraction: GD with $\eta=1/\beta$ obeys

$$\|oldsymbol{x}^{t+1} - oldsymbol{x}^{
atural}\|_2 \leq \left(1 - rac{1}{oldsymbol{eta/lpha}}
ight) \|oldsymbol{x}^t - oldsymbol{x}^{
atural}\|_2$$

• Attains ε -accuracy within $O(\frac{\beta}{\alpha}\log\frac{1}{\varepsilon})$ iterations

Gaussian designs: $a_k \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, I_n), \quad 1 \leq k \leq m$

Gaussian designs:
$$a_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_n), \quad 1 \leq k \leq m$$

Population level (infinite samples)

$$\mathbb{E}igl[
abla^2 f(oldsymbol{x})igr]\succ oldsymbol{0}$$
 and is well-conditioned (locally)

Consequence: WF converges within logarithmic iterations if $m \to \infty$

Gaussian designs:
$$a_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_n), \quad 1 \leq k \leq m$$

Finite-sample level $(m \approx n \log n)$

$$\nabla^2 f(\boldsymbol{x}) \succ \mathbf{0}$$

Gaussian designs:
$$a_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_n), \quad 1 \leq k \leq m$$

Finite-sample level $(m \approx n \log n)$

$$\nabla^2 f(\boldsymbol{x}) \succ \mathbf{0}$$
 but ill-conditioned (even locally)

Gaussian designs:
$$a_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_n), \quad 1 \leq k \leq m$$

Finite-sample level $(m \approx n \log n)$

$$\nabla^2 f(x) \succ \mathbf{0}$$
 but ill-conditioned (even locally)

Consequence (Candès et al '14): WF attains ε -accuracy within $O(n\log\frac{1}{\varepsilon})$ iterations if $m\asymp n\log n$

Gaussian designs:
$$a_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_n), \quad 1 \leq k \leq m$$

Finite-sample level $(m \approx n \log n)$

$$\nabla^2 f(x) \succ \mathbf{0}$$
 but ill-conditioned (even locally)

Consequence (Candès et al '14): WF attains ε -accuracy within $O(n\log\frac{1}{\varepsilon})$ iterations if $m\asymp n\log n$

Too slow ... can we accelerate it?

One solution: truncated WF (Chen, Candès '15)

Regularize / trim gradient components to accelerate convergence

WF converges in O(n) iterations

WF converges in O(n) iterations

Step size taken to be $\eta_t = O(1/n)$

WF converges in O(n) iterations

Step size taken to be $\eta_t = O(1/n)$

This choice is suggested by generic optimization theory

WF converges in O(n) iterations

Step size taken to be $\eta_t = O(1/n)$

This choice is suggested by worst-case optimization theory

WF converges in O(n) iterations

Step size taken to be $\eta_t = O(1/n)$

This choice is suggested by worst-case optimization theory

Does it capture what really happens?

Numerical surprise with $\eta_t = 0.1$

Vanilla GD (WF) can proceed much more aggressively!

A second look at gradient descent theory

Which region enjoys both strong convexity and smoothness?

ullet x is not far away from $x^{
atural}$

A second look at gradient descent theory

Which region enjoys both strong convexity and smoothness?

- ullet x is not far away from $x^{
 atural}$
- x is incoherent w.r.t. sampling vectors (incoherence region)

Which region enjoys both strong convexity and smoothness?

- ullet x is not far away from $x^{
 atural}$
- x is incoherent w.r.t. sampling vectors (incoherence region)

- \bullet Prior theory only ensures that iterates remain in ℓ_2 ball but not incoherence region
- Prior works enforce explicit regularization to promote incoherence

region of local strong convexity + smoothness

GD implicitly forces iterates to remain incoherent

Theorem 1 (Phase retrieval)

Under i.i.d. Gaussian design, WF achieves

 $ullet \max_k |oldsymbol{a}_k^ op (oldsymbol{x}^t - oldsymbol{x}^
atural})| \lesssim \sqrt{\log n} \, \|oldsymbol{x}^
atural} \|_2 \quad ext{(incoherence)}$

Theorem 1 (Phase retrieval)

Under i.i.d. Gaussian design, WF achieves

- $ullet \max_k |oldsymbol{a}_k^ op (oldsymbol{x}^t oldsymbol{x}^{
 atural})| \lesssim \sqrt{\log n} \, \|oldsymbol{x}^{
 atural}\|_2 \quad ext{(incoherence)}$
- $\|x^t x^{\natural}\|_2 \lesssim (1 \frac{\eta}{2})^t \|x^{\natural}\|_2$ (near-linear convergence) provided that step size $\eta \approx \frac{1}{\log n}$ and sample size $m \gtrsim n \log n$.

Theorem 1 (Phase retrieval)

Under i.i.d. Gaussian design, WF achieves

- $ullet \max_k |oldsymbol{a}_k^ op (oldsymbol{x}^t oldsymbol{x}^
 atural})| \lesssim \sqrt{\log n} \, \|oldsymbol{x}^
 atural} \|_2 \quad ext{(incoherence)}$
- $\|x^t x^{\natural}\|_2 \lesssim (1 \frac{\eta}{2})^t \|x^{\natural}\|_2$ (near-linear convergence) provided that step size $\eta \asymp \frac{1}{\log n}$ and sample size $m \gtrsim n \log n$.

• Much more aggressive step size: $\frac{1}{\log n}$ (vs. $\frac{1}{n}$)

Theorem 1 (Phase retrieval)

Under i.i.d. Gaussian design, WF achieves

- $ullet \max_k |oldsymbol{a}_k^ op (oldsymbol{x}^t oldsymbol{x}^{
 atural})| \lesssim \sqrt{\log n} \, \|oldsymbol{x}^{
 atural}\|_2 \quad ext{(incoherence)}$
- $\|x^t x^{\natural}\|_2 \lesssim (1 \frac{\eta}{2})^t \|x^{\natural}\|_2$ (near-linear convergence) provided that step size $\eta \approx \frac{1}{\log n}$ and sample size $m \gtrsim n \log n$.

- Much more aggressive step size: $\frac{1}{\log n}$ (vs. $\frac{1}{n}$)
- \bullet Computational complexity: $n/\log n$ times faster than existing theory for WF

Key ingredient: leave-one-out analysis

For each $1 \leq l \leq m$, introduce leave-one-out iterates $\boldsymbol{x}^{t,(l)}$ by dropping lth measurement

Key ingredient: leave-one-out analysis

• Leave-one-out iterates $x^{t,(l)}$ are independent of a_l , and are hence **incoherent** w.r.t. a_l with high prob.

Key ingredient: leave-one-out analysis

- Leave-one-out iterates $x^{t,(l)}$ are independent of a_l , and are hence **incoherent** w.r.t. a_l with high prob.
- ullet Leave-one-out iterates $oldsymbol{x}^{t,(l)} pprox ext{true}$ iterates $oldsymbol{x}^t$

This recipe is quite general

Low-rank matrix completion

Fig. credit: Candès

Given partial samples Ω of a *low-rank* matrix M, fill in missing entries

Prior art

$$\mathsf{minimize}_{\boldsymbol{X}} \quad f(\boldsymbol{X}) = \sum_{(j,k) \in \Omega} \left(\boldsymbol{e}_j^\top \boldsymbol{X} \boldsymbol{X}^\top \boldsymbol{e}_k - M_{j,k}\right)^2$$

Existing theory on gradient descent requires

Prior art

$$\mathsf{minimize}_{\boldsymbol{X}} \quad f(\boldsymbol{X}) = \sum_{(j,k) \in \Omega} \left(\boldsymbol{e}_j^\top \boldsymbol{X} \boldsymbol{X}^\top \boldsymbol{e}_k - M_{j,k}\right)^2$$

Existing theory on gradient descent requires

- regularized loss (solve $\min_{\boldsymbol{X}} f(\boldsymbol{X}) + R(\boldsymbol{X})$ instead)
 - o Keshavan, Montanari, Oh '10, Sun, Luo '14, Ge, Lee, Ma '16

Prior art

$$\mathsf{minimize}_{\boldsymbol{X}} \quad f(\boldsymbol{X}) = \sum_{(j,k) \in \Omega} \left(\boldsymbol{e}_j^\top \boldsymbol{X} \boldsymbol{X}^\top \boldsymbol{e}_k - M_{j,k}\right)^2$$

Existing theory on gradient descent requires

- regularized loss (solve $\min_{\boldsymbol{X}} f(\boldsymbol{X}) + R(\boldsymbol{X})$ instead)
 - o Keshavan, Montanari, Oh '10, Sun, Luo '14, Ge, Lee, Ma '16
- projection onto set of incoherent matrices
 - Chen, Wainwright '15, Zheng, Lafferty '16

Theorem 2 (Matrix completion)

Suppose M is rank-r, incoherent and well-conditioned. Vanilla gradient descent (with spectral initialization) achieves ε accuracy

• in $O(\log \frac{1}{\varepsilon})$ iterations

if step size $\eta \lesssim 1/\sigma_{\rm max}(\boldsymbol{M})$ and sample size $\gtrsim nr^3\log^3 n$

Theorem 2 (Matrix completion)

Suppose M is rank-r, incoherent and well-conditioned. Vanilla gradient descent (with spectral initialization) achieves ε accuracy

• in $O(\log \frac{1}{\varepsilon})$ iterations w.r.t. $\|\cdot\|_{\mathrm{F}}$, $\|\cdot\|_{\mathrm{,and}}$ incoherence

if step size $\eta \lesssim 1/\sigma_{\max}({m M})$ and sample size $\gtrsim nr^3\log^3 n$

Theorem 2 (Matrix completion)

Suppose M is rank-r, incoherent and well-conditioned. Vanilla gradient descent (with spectral initialization) achieves ε accuracy

ullet in $O(\log rac{1}{arepsilon})$ iterations w.r.t. $\|\cdot\|_{\mathrm{F}}$, $\|\cdot\|_{\mathrm{,}}$ and $\underbrace{\|\cdot\|_{2,\infty}}_{\mathrm{incoherence}}$

if step size $\eta \lesssim 1/\sigma_{\max}({\bf M})$ and sample size $\gtrsim nr^3\log^3 n$

 Byproduct: vanilla GD controls entrywise error — errors are spread out across all entries

Blind deconvolution

image deblurring

Fig. credit: Romberg

multipath in wireless comm

Fig. credit: EngineeringsALL

Reconstruct two signals from their convolution

Vanilla GD attains ε -accuracy within $O(\log \frac{1}{\varepsilon})$ iterations

Incoherence region in high dimensions

Summary

• Implict regularization: vanilla gradient descent automatically foces iterates to stay *incoherent*

Summary

- Implict regularization: vanilla gradient descent automatically foces iterates to stay *incoherent*
- Enable error controls in a much stronger sense (e.g. entrywise error control)

Paper:

"Implicit regularization in nonconvex statistical estimation: Gradient descent converges linearly for phase retrieval, matrix completion, and blind deconvolution", Cong Ma, Kaizheng Wang, Yuejie Chi, Yuxin Chen, arXiv:1711.10467