Implicit Regularization in
Nonconvex Statistical Estimation

A

Yuxin Chen

Electrical Engineering, Princeton University



Cong Ma Kaizheng Wang Yuejie Chi
Princeton ORFE Princeton ORFE CMU ECE / OSU ECE



Nonconvex estimation problems are everywhere

Empirical risk minimization is usually nonconvex

minimize, {(x;y)

3/ 27
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Empirical risk minimization is usually nonconvex

minimize; {(x;y)

low-rank matrix completion

graph clustering

dictionary learning

e mixture models

deep learning
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Blessing of randomness

statistical models

benign
landscape
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Blessing of randomness
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efficient algorithms
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Optimization-based methods: two-stage approach
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e Start from an appropriate initial point
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basin of attraction basin of attraction

e Start from an appropriate initial point

e Proceed via some iterative optimization algorithms
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Proper regularization is often recommended

Improves computation by stabilizing search directions
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How about unregularized gradient methods?
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How about unregularized gradient methods?
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Phase retrieval / solving quadratic systems
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Recover 2% € R" from m random quadratic measurements
.02
Y = |akcch|, k=1,...,m

Assume w.l.o.g. ||xt||y = 1
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Wirtinger flow (Candes, Li, Soltanolkotabi

'14)

Empirical loss minimization
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Wirtinger flow (Candeés, Li, Soltanolkotabi '14)

Empirical loss minimization
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Gradient descent theory revisited

Two standard conditions that enable linear convergence of GD
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Gradient descent theory revisited

Two standard conditions that enable linear convergence of GD

e (local) restricted strong convexity (or regularity condition)

e (local) smoothness
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Gradient descent theory revisited

f is said to be a-strongly convex and S-smooth if

0 < ol < V3f(x) < BI, Vzx
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Gradient descent theory revisited

f is said to be a-strongly convex and S-smooth if

0 < ol < V3f(x) = BI, Va

5 error contraction: GD with n =1/ obeys

1
||cct+1 _ mh||2 < (1 = B/oz) ||mt _ mh||2

e Attains s-accuracy within O(g log 1) iterations
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What does this optimization theory say about WF?

Gaussian designs: ay, L N, I,), 1<k<m
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What does this optimization theory say about WF?

Gaussian designs: ay, L N, I,), 1<k<m

Population level (infinite samples)

E[V2f(z)] = 0 and is well-conditioned (locally)

Consequence: WF converges within logarithmic iterations if m — 00 |
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What does this optimization theory say about WF?

Gaussian designs: ay, L N, I,), 1<k<m
Finite-sample level (m < nlogn)

V2f(x) =0 but ill-conditioned (even locally)

condition number < n

Consequence (Candes et al '14): WF attains s-accuracy within
O(nlog 1) iterations if m =< nlogn

Too slow ... can we accelerate it?
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One solution: truncated WF (Chen, Candeés ’15)

Regularize / trim gradient components to accelerate convergence
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But wait a minute ...

WF converges in O(n) iterations
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Step size taken to be 1, = O(1/n)
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Step size taken to be 1, = O(1/n)

i}

This choice is suggested by generic optimization theory
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But wait a minute ...

WF converges in O(n) iterations

i}

Step size taken to be 1, = O(1/n)

i}

This choice is suggested by worst-case optimization theory

i}

Does it capture what really happens?
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Numerical surprise with 7, = 0.1
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Vanilla GD (WF) can proceed much more aggressively!

14/ 27



A second look at gradient descent theory

Which region enjoys both strong convexity and smoothness?

e x is not far away from "
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A second look at gradient descent theory

Which region enjoys both strong convexity and smoothness?
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e x is not far away from "

e x is incoherent w.r.t. sampling vectors (incoherence region)
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A second look at gradient descent theory
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A second look at gradient descent theory

region of local strong convexity + smoothness

e Prior theory only ensures that iterates remain in ¢5 ball but not
incoherence region
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A second look at gradient descent theory

region of local strong convexity + smoothness

e Prior theory only ensures that iterates remain in ¢5 ball but not
incoherence region

e Prior works enforce explicit regularization to promote incoherence
16/ 27



Our findings: GD is implicitly regularized

region of local strong convexity + smoothness
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Our findings: GD is implicitly regularized

region of local strong convexity + smoothness
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Our findings: GD is implicitly regularized

region of local strong convexity + smoothness

GD implicitly forces iterates to remain incoherent J
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Theoretical guarantees

Theorem 1 (Phase retrieval)
Under i.i.d. Gaussian design, WF achieves
o maxy |a] (z! — 2%)| < Vlogn||zf|2 (incoherence)
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Theoretical guarantees

Theorem 1 (Phase retrieval)
Under i.i.d. Gaussian design, WF achieves
o maxy |a] (z! — 2%)| < Vlogn||zf|2 (incoherence)

o ||zt — 2o S (1— 1) ||2¥||2 (near-linear convergence)

provided that step size n =< and sample size m 2 nlogn.

1
logn

- | 1
e Much more aggressive step size: e (vs. )

e Computational complexity: n/logn times faster than existing
theory for WF
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Key ingredient: leave-one-out analysis

For each 1 <1 < m, introduce leave-one-out iterates z* (%)
by dropping Ith measurement
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Key ingredient: leave-one-out analysis

{1
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incoherence region
w.r.t. a;
e Leave-one-out iterates z%() are independent of a;, and are hence

incoherent w.r.t. a; with high prob.
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Key ingredient: leave-one-out analysis
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incoherence region
w.r.t. a;

e Leave-one-out iterates z%() are independent of a;, and are hence
incoherent w.r.t. a; with high prob.

e Leave-one-out iterates z©() ~~ true iterates x'

20/ 27



This recipe is quite general



Low-rank matrix completion
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Fig. credit: Candés

Given partial samples €2 of a low-rank matrix M, fill in missing entries
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Prior art

minimizex f(X) = Z (GJTXXTek—MJ’,k)Q

(J,k)€Q

Existing theory on gradient descent requires
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minimizex f(X) = Z (GJTXXTek—MJ’,k)Q
(4.k)eQ

Existing theory on gradient descent requires

e regularized loss (solve minx f(X)+ R(X) instead)
o Keshavan, Montanari, Oh '10, Sun, Luo '14, Ge, Lee, Ma '16
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Prior art

minimizex f(X) = Z (GJTXXTek—MJ’,k)Q
(4.k)eQ

Existing theory on gradient descent requires

e regularized loss (solve minx f(X)+ R(X) instead)
o Keshavan, Montanari, Oh '10, Sun, Luo '14, Ge, Lee, Ma '16

e projection onto set of incoherent matrices
o Chen, Wainwright '15, Zheng, Lafferty '16
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Theoretical guarantees

Theorem 2 (Matrix completion)

Suppose M is rank-r, incoherent and well-conditioned. Vanilla
gradient descent (with spectral initialization) achieves ¢ accuracy

e in O(log?) iterations

if step size N < 1/0max(M) and sample size > nr3log®n
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Theoretical guarantees

Theorem 2 (Matrix completion)
Suppose M is rank-r, incoherent and well-conditioned. Vanilla
gradient descent (with spectral initialization) achieves ¢ accuracy

e in O(log?) iterations w.r.t. || - | ,and || -

F ‘2,00

incoherence

if step size n < 1/0max(M) and sample size > nr3log® n
77 ~Y ~Y

e Byproduct: vanilla GD controls entrywise error — errors are
spread out across all entries
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Blind deconvolution

image deblurring multipath in wireless comm

Fig. credit:

EngineeringsALL

Fig. credit: Romberg

Reconstruct two signals from their convolution

Vanilla GD attains e-accuracy within O(log %) iterations
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Incoherence region in high dimensions
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2-dimensional high-dimensional (mental representation)

incoherence region is vanishingly small
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Summary

o Implict regularization: vanilla gradient descent automatically
foces iterates to stay incoherent
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Summary

o Implict regularization: vanilla gradient descent automatically
foces iterates to stay incoherent

e Enable error controls in a much stronger sense (e.g. entrywise
error control)

Paper:

“Implicit regularization in nonconvex statistical estimation: Gradient descent
converges linearly for phase retrieval, matrix completion, and blind deconvolution”,
Cong Ma, Kaizheng Wang, Yuejie Chi, Yuxin Chen, arXiv:1711.10467
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