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Optimization in Machine Learning: New Interfaces?
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Possible Paradigm for Optimization Theory in ML?

> ldentify a family F of tractable functions

F = {f:all (or most) local minma are approximate global minima}

> Decide whether a function belongs to the family F

Analysis techniques: linear algebra + probability, Kac-Rice formula, ...

> Design new models and objective functions that are provably in F

Some recent progress in simplified settings: [Hardt-M.-Recht’16,
Soudry-Carmon’16, Liang-Xie-Song’17, Hardt-M."17, Ge-Lee-M.'17]

NB: we also need to care about generalization error (but not in this talk)



This Talk: New Objective for Learning One-hidden-layer
Neural Networks
> Assume data (x, y) satisfies
y=a"To(B*x) +¢&
> Assume data x from Gaussian distribution

» Goal: learn a function that predicts y given x

y — < X dim=d

> (0 = RelU for all experiments in the talk)



The Straightforward Objective

Our prediction

> Loss function (population)

9y = a'o(Bx)

E[(y —9)?]

Labely = a*Ta(B*x) + ¢




The Straightforward Objective Fails
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Related Work

> Non-overlapping filters (rows of B* have disjoint supports) [Brutzkus-
Globerson’17, Tian’17]

> Initialization is sufficiently close to B* in spectral norm [Li-Yuan’17]

» NB: the bad local min found is very far from B™ in spectral norm but
close in infinity norm

> Kernel-based methods [Zhang et al.”16,'17]

> Tensor decomposition followed by local improvement algorithms
[Janzamin et al.15, Zhong et al.”17]

> Empirical solution: over-parameterization [Livni et al.’14]
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Labely = a*Ta(B*x) + ¢

An Analytic Formula

Loss f(a,B) = E[||y —a'o(Bx)||*]

Theorem 1: suppose the rows of B are unit vectors and x ~ N(0, )
2

f(a,B) = Z&% Z arbr®F — Z a;b®*|| 4+ const.
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f(a,B) =) &2 Z albr®F — Z a;b®*|| 4+ const.
keEN i€[m] i€[m)] F
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Each f;, solves a tensor
decomposition problem

> fo=Qa; —Xa;)?

» Convex, not identifiable

> fr=11Zaib; — Taibi||*

» No spurious local min, not More difficult
identifiable landscape?
Stronger

> f2 = 1Zaibib; " — Xa;bb] |7

: _ identifiability
> No spurious local min? not

identifiable

> fo = 11%a;b{®* = Yaib*|I7
> 3 bad saddle point, identifiable

A sweat spot?
A: yes, to some extent




New Loss Function

fy(a,B) = E[|ly — a'y(Bx)||*]

Labely = a*To(B*x) + ¢
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> Choosing y such that y, = 65,¥4 = 64, and ¥, = 0 for k + 2,4

f,(a,B) = 65 f, + 67 fy + const

> Hope: the landscape of f, is better (and easier to analyze)

> (LY Now empirically it works!

—

> Still we don’t know how to analyze (more or provable alg. later)




Label y = a*Ta(B*x) + &

Loss f,(a, B) = E[||ly — a'y(Bx)||*]
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Provable Non-convex Optimization Algorithms?

> Key lemma for proving Theorem 1

E [y (] )] = o5 3 a3 (05, bi)*

j€ld]
> Extension (informal): for any polynomial p, there exists a function ¢?,

such that

Ely-¢?(bi,x)] = > alp((b],bs))

j€ld]

> for any polynomial g over two variables, 3¢9 s.t.

Ely-¢" (b br,x)] = Y alq((b],bs), (b}, br))
j€Eld]

> Next: find an objective that uses these gadgets, and have no spurious
local minimum



An Objective Function with Guarantees

min G(B Z Z * b —,uz

i€ld]  JFk
st ||bs||? = 1,Vi

Theorem: assume a* = 0, B* is orthogonal
1. G(B) can be estimated via samples: G(B) = E|y - ¢(B, x)]

2. A global minimum of G is equal to B* up to permutation and scaling of
the rows

3. All the local minima of G are global minima

> Inspired by GHJY’15, which proved the case whenu = 0anda; =1
> Can be extended to non-singular B*

> Limitation: B*: R? » R™ withm < d
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> Caveat: need huge batch size and training datasets



Conclusion

> Landscape design: designing new models and objectives with good
landscape properties

> This paper: one first step for simplified neural nets

Open questions:

»>Sample efficiency: killing higher-order term seems to lose information
> Best empirical result: using | - | for training RelLU

> Beyond Gaussian inputs
> Understanding over-parameterization

> More techniques for analyzing optimization landscape

Thank youl!



