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Develop tractable and provable models and algorithms for
optimization with uncertain and online data.
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Introduction to DRO

We start from considering a stochastic optimization problem as
follows:

maximizex∈X EFξ
[h(x, ξ)] (1)

where x is the decision variable with feasible region X , ξ represents
random variables satisfying joint distribution Fξ.

Pros: In many cases, the expected value is a good measure of
performance

Cons: One has to know the exact distribution of ξ to perform
the stochastic optimization. Deviant from the assumed
distribution may result in sub-optimal solutions

Ye, Yinyu (Stanford) Distributionally Robust Optimization November 28, 2017 4 / 62
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Robust Optimization

In order to overcome the lack of knowledge on the distribution,
people proposed the following (static) robust optimization approach:

maximizex∈X minξ∈Ξ h(x, ξ) (2)

where Ξ is the support of ξ.

Pros: Robust to any distribution; only the support of the
parameters are needed.

Cons: Too conservative. The decision that maximizes the
worst-case pay-off may perform badly in usual cases; e.g.,
Ben-Tal and Nemirovski [1998, 2000], etc.
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Motivation for a Middle Ground

In practice, although the exact distribution of the random
variables may not be known, people usually know certain
observed samples or training data and other statistical
information.

Thus we could choose an intermediate approach between
stochastic optimization, which has no robustness in the error of
distribution; and the robust optimization, which admits vast
unrealistic single-point distribution on the support set of random
variables.

Ye, Yinyu (Stanford) Distributionally Robust Optimization November 28, 2017 6 / 62
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Distributionally Robust Optimization

A solution to the above-mentioned question is to take the following
Distributionally Robust Optimization (DRO) model:

maximizex∈X minFξ∈D EFξ
[h(x, ξ)] (3)

In DRO, we consider a set of distributions D and choose one to
maximize the expected value for any given x ∈ X .

When choosing D, we need to consider the following:

Tractability

Practical (Statistical) Meanings

Performance (the potential loss comparing to the benchmark
cases)

Ye, Yinyu (Stanford) Distributionally Robust Optimization November 28, 2017 7 / 62
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Sample History of DRO

First introduced by Scarf [1958] in the context of inventory
control problem with a single random demand variable.

Distribution set based on moments: Dupacova [1987], Prekopa
[1995], Bertsimas and Popescu [2005], Delage and Y [2007], etc

Distribution set based on Likelihood/Divergences: Nilim and El
Ghaoui [2005], Iyanger [2005], Wang, Glynn and Y [2012], etc

Distribution set based on Wasserstein ambiguity set: Mohajerin
Esfahani and Kuhn [2015], Blanchet, Kang, Murthy [2016],
Duchi and Namkoong [2016]

Axiomatic motivation for DRO: Delage et al. [2017]; Ambiguous
Joint Chance Constraints Under Mean and Dispersion
Information: Hanasusanto et al. [2017]

Lagoa and Barmish [2002] and Shapiro [2006] simply considers a
set containing unimodal distributions, Kleinberg et al. [1997]
and M’́ohring et al. [1999] considers the product distribution

Ye, Yinyu (Stanford) Distributionally Robust Optimization November 28, 2017 8 / 62



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Table of Contents

1 Introduction to Distributionally Robust Optimization

2 DRO under Moment and Likelihood Bounds

3 Price of Correlation of High-Dimension Uncertainty

4 Online Linear Optimization and Dynamic Learning

Ye, Yinyu (Stanford) Distributionally Robust Optimization November 28, 2017 9 / 62



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

DRO with Moment Bounds

Define

D =

Fξ

∣∣∣∣∣∣
P(ξ ∈ Ξ) = 1
(E[ξ]− µ0)

TΣ−1
0 (E[ξ]− µ0) ≤ γ1

E[(ξ − µ0)(ξ − µ0)
T ] ≼ γ2Σ0


That is, the distribution set is defined based on the support, first and
second order moments constraints.

Theorem
Under mild technical conditions, the DRO model can be solved to any
precision ϵ in time polynomial in log (1/ϵ) and the sizes of x and ξ

Delage and Y [2010]
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Confidence Region on Fξ

Does the construction of D make a statistical sense?

Theorem
Consider

D(γ1, γ2) =

Fξ

∣∣∣∣∣∣
P(ξ ∈ Ξ) = 1
(E[ξ]− µ0)

TΣ−1
0 (E[ξ]− µ0) ≤ γ1

E[(ξ − µ0)(ξ − µ0)
T ] ≼ γ2Σ0


where µ0 and Σ0 are point estimates from the empirical data (of size
m) and Ξ lies in a ball of radius R such that ||ξ||2 ≤ R a.s..

Then for γ1 = O(R
2

m
log (4/δ)) and γ2 = O( R2

√
m

√
log (4/δ)),

P(Fξ ∈ D(γ1, γ2)) ≥ 1− δ
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DRO with Likelihood Bounds

Define the distribution set by the constraint on the likelihood ratio.
With observed Data: ξ1, ξ2, ...ξN , we define

DN =

{
Fξ

∣∣∣∣ P(ξ ∈ Ξ) = 1
L(ξ, Fξ) ≥ γ

}
where γ adjusts the level of robustness and N represents the sample
size.

For example, assume the support of the uncertainty is finite

ξ1, ξ2, ...ξn

and we observed mi samples on ξi . Then, Fξ has a finite discrete
distribution p1, ..., pn and

L(ξ, Fξ) =
n∑

i=1

mi log pi .
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Theory on Likelihood Bounds

The model is a convex optimization problem, and connects to many
statistical theories:

Statistical Divergence theory: provide a bound on KL divergence

Bayesian Statistics with the threshold γ estimated by samples:
confidence level on the true distribution

Non-parametric Empirical Likelihood theory: inference based on
empirical likelihood by Owen

Asymptotic Theory of the likelihood region

Possible extensions to deal with Continuous Case

Wang, Glynn and Y [2012,2016]
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DRO using Wasserstein Ambiguity Set
By the Kantorovich-Rubinstein theorem, the Wasserstein distance
between two distributions can be expressed as the minimum cost of
moving one to the other, which is a semi-infinite transportation LP.

Theorem
When using the Wasserstein ambiguity set

DN := {Fξ | P(ξ ∈ Ξ) = 1 & d(Fξ, F̂N) ≤ εN},

where d(F1, F2) is the Wasserstein distance function and N is the
sample size, the DRO model satisfies the following properties:

Finite sample guarantee : the correctness probability P̄N is high

Asymptotic guarantee : P̄∞(limN→∞ x̂εN = x∗) = 1

Tractability : DRO is in the same complexity class as SAA

Mohajerin Esfahani & Kuhn [15, 17], Blanchet, Kang, Murthy [16], Duchi and Namkoong [16]
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DRO for Logistic Regression

Let {(ξ̂i , λ̂i)}Ni=1 be a feature-label training set i.i.d. from P , and
consider applying logistic regression :

min
x

1

N

N∑
i=1

ℓ(x , ξ̂i , λ̂i) where ℓ(x , ξ, λ) = ln(1 + exp(−λxT ξ))

DRO suggests solving

min
x

sup
F∈DN

EF [ℓ(x , ξi , λi)]

with the Wasserstein ambiguity set.
When labels are considered to be error free, DRO with DN

reduces to regularized logistic regression:

min
x

1

N

N∑
i=1

ℓ(x , ξ̂i , λ̂i) + ε∥x∥∗

Shafieezadeh Abadeh, Mohajerin Esfahani, & Kuhn, NIPS, [2015]
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Summary of DRO under Moment, Likelihood or

Wasserstein Ambiguity Set

Therefore, the DRO models yield a solution with a guaranteed
confidence level to the possible distributions. Specifically, the
confidence region of the distributions can be constructed upon
the historical data and sample distributions.

The DRO models are tractable, and sometimes maintain the
same computational complexity as the stochastic optimization
models with known distribution.

This approach can be applied to a wide range of problems,
including inventory problems (e.g., newsvendor problem),
portfolio selection problems, image reconstruction, machine
learning, etc., with reported superior numerical results
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Planning under High-Dimensional Stochastic Data

Portfolio Optimization

Choice among many investment
options with Uncertain returns

Facility Location

Many possible demand locations
with different demand distributions
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Planning under High-Dimensional Stochastic Data

Stochastic optimization approach
minimize

x∈X
Ep[f (x , ξ)]

where ξ is a high-dimensional random vector.

The common solution method is by Sample Average
Approximation (SAA).

However, to sample such a random vector, one suffers from the
“curse of dimensionality”

Dimensionality Required sample size
1 4
2 19
5 786
7 10,700
10 842,000
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Price of Correlations

One can also consider the distributionally robust approach:

minimize
x∈X

maximize
p∈D

Ep[f (x, ξ)]

where D is the set of joint distributions such that the marginal
distribution of ξi is pi for each i .

For simplicity, people are tempted to ignore correlations and assume
independence among random variables (joint probability becomes the
product of marginals). However, what is the risk associated with
assuming independence? Can we analyze this risk in terms of
properties of objective functions?

We precisely quantify this risk as

Price of Correlations (POC)

We provide tight bounds on POC for various cost functions.
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Price of Correlations

Define

x̂ be the optimal solution of stochastic program with
independent distribution p̂(ξ) =

∏
i pi(ξi).

x̂ = argminx∈X Ep̂[f (x, ξ)]

x∗ be the optimal solution for the distributionally robust model.

x∗ = argminx∈X maxp∈D Ep[f (x, ξ)]

Then, Price of Correlations (POC), or Correlation Gap, is
approximation ratio that x̂ achieves for distributionally robust model.

POC =
maxp∈D Ep[f (x̂, ξ)]

maxp∈D Ep[f (x∗, ξ)]
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Price of Correlations

Approximation of robust model
Minimax stochastic program can be replaced by stochastic
program with independent distribution to get approximate
solution.
Often easy to solve either by sampling or by other algorithmic
techniques [e.g., Kleinberg et al. (1997), Möhring et al.(1999)]

Captures “Value of Information”
Small POC means it is not too risky to assume independence.
Large POC suggests the importance of investing more on
information gathering and learning the correlations in the joint
distribution

Question: What function class has large POC? What function class
has small POC?

Submodularity leads to small POC

Supermodularity leads to large POC
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Submodularity Leads to Small POC

For any fixed x , function f (ξ) = f (x , ξ) is submodular in
random variable ξ

Decreasing marginal cost, economies of scale

f (max{ξ, θ}) + f (min{ξ, θ}) ≤ f (ξ) + f (θ)

For continuous functions:
∂f (ξ)

∂ξi∂ξj
≤ 0

Theorem
If f (·, ξ) is monotone and submodular in ξ, then POC ≤ e/(e − 1).

Calinescu, Chekuri, Pál, Vondrák [2007] for binary random variables, Agrawal, Ding, Saberi, Y,

[2010] for general domains
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Supermodularity Leads to Large POC

For any fixed x , function f (ξ) = f (x , ξ) is supermodular in
random variable ξ

Increasing marginal cost

∂f (ξ)

∂ξi∂ξj
≥ 0

e.g., effects of increase in congestion as demand increases.

In worst case distribution large values of one variable will appear
with large values of other variable – highly correlated

We show example of supermodular set function with
POC = Ω(2n).

Agrawal, Ding, Saberi, Y, [2010]
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Applications: Stochastic Bottleneck Matching

minimizex∈X maximizep∈P Ep[maxi ξixi ] ⇒

minimizex∈X Ep̂[maxi ξixi ]

where expected value is under independent distribution p̂.

Monotone submodular function, e/(e − 1) ∼ 1.6 approximation.
Can be sampled efficiently, Chernoff type concentration bounds
hold for monotone submodular functions.
Reduces to a small convex problem

minimizex∈X
∑

s∈S maxi{sixi}

minimizex∈X maximizep∈P Ep[||ξ.∗x||q] ⇒

minimizex∈X Ep̂[||ξ.∗x||q]
where expected value is under independent distribution p̂.

Monotone submodular function, e/(e − 1) ∼ 1.6 approximation.
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Beyond Submodularity?

Monotone Subadditive Functions?

Preserves economy of scale

Example with
POC ≥ Ω(

√
n/ log log(n))

Fractionally Subadditive?

POC ≥ Ω(
√
n/ log log(n))

Subadditive

Subadditive

Fractionally

Submodular e

(e−1)

≥ Ω̃(
√
n)

≥ Ω̃(
√
n)
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Beyond Submodularity?

Monotone Subadditive Functions?

Preserves economy of scale

Example with
POC = Ω(

√
n/ log log(n))

Fractionally Subadditive?

POC ≥ Ω(
√
n/ log log(n))

Cost-sharing to the rescue

Subadditive

Subadditive

Fractionally

Submodular

Cost−sharing
Facility Location,

Spanning tree

Steiner Forest,

e
(e−1)

2β

≥ Ω̃(
√
n)

≥ Ω̃(
√
n)

β-Approximate
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Cross-Monotone Cost-Sharing

A cooperative game theory concept

Can cost f (ξ1, . . . , ξn) be charged to participants 1, . . . , n so
that the share charged to participant i decreases as the demands
of other participants increase?
[introduced by Thomson (1983, 1995) in context of bargaining]

For submodular functions – charge marginal costs.

β-approximate cost-sharing scheme: total cost charged is within
β of the original (expected) function value

Approximate cost-sharing schemes exist for non-submodular functions

3-approximate cost-sharing for facility location cost function
[Pál, Tardos 2003]

2-approximate cost-sharing for Steiner forest cost function
[Könemann, Leonardi, Schäfer 2005]
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Bounding POC via Cost-Sharing

Theorem

If objective function f (·, ξ) is monotone in ξ with β-cost-sharing
scheme, POC ≤ 2β.

POC ≤ 6 for two-stage stochastic facility location

POC ≤ 4 for two-stage stochastic Steiner forest network design
problem.

Agrawal, Ding, Saberi, Y, [2010]
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The Cost-Sharing Condition is (near)-Tight

Theorem
If POC for function f is less than β, there exists a cross-monotone
cost-sharing scheme with expected β-budget balance.

We show examples of

Monotone submodular function with POC ≥ e
e−1

.

Facility location with POC ≥ 3.

Steiner tree network design with POC ≥ 2.

Agrawal, Ding, Saberi, Y, [2010]
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Applications to Deterministic Problems

Partition of goods among K players to maximize utility

Approximation ratio achieved by randomly assigning goods
Approximation ratio achieved by independent rounding of the
LP solution
e/(e − 1) is best known approximation ratio for problem with
monotone submodular utility

d-dimensional matching/transportation problem

Approximation ratio achieved by random combinations
e/(e − 1) when weight matrix satisfies monotonicity and Monge
property.
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Summary of POC

Characterizes the risk associated with assuming independence in
a stochastic optimization problem.

Can be upper bounded using properties of objective function.

Open questions

Further characterizations of value of partial information in
stochastic optimization problems

Given partial information about correlations such as Covariance
matrix

How does worst case distribution compare to maximum entropy
distribution?
Block-wise independent distributions?
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Background

Consider a store that sells a number of goods/products

There is a fixed selling period or number of buyers

There is a fixed inventory of goods

Customers come and require a bundle of goods and bid for
certain prices

Decision: To sell or not to each individual customer?

Objective: Maximize the revenue.
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An Example

Bid 1(t = 1) Bid 2(t = 2) ..... Inventory(b)
Price(πt) $100 $30 ...
Decision x1 x2 ...
Pants 1 0 ... 100
Shoes 1 0 ... 50
T-shirts 0 1 ... 500
Jackets 0 0 ... 200
Hats 1 1 ... 1000
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Online Linear Programming Model

The classical offline version of the above program can be formulated
as a linear (integer) program as all information data would have
arrived: compute xt , t = 1, ..., n and

maximizex
∑n

t=1 πtxt
subject to

∑n
t=1 aitxt ≤ bi , ∀i = 1, ...,m

xt ∈ {0, 1} (0 ≤ xt ≤ 1), ∀t = 1, ..., n.

Now we consider the online or streamline and data-driven version of
this problem:

We only know b and n at the start

the bidder information is revealed sequentially along with the
corresponding objective coefficient.

an irrevocable decision must be made as soon as an order arrives
without observing or knowing the future data.
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Model Assumptions

Main Assumptions

0 ≤ ait ≤ 1, for all (i , t);
πt ≥ 0 for all t
The bids (at , πt) arrive in a random order (rather than from
some iid distribution).

Denote the offline LP maximal value by OPT (A, π). We call an
online algorithm A to be c-competitive if and only if

Eσ

[
n∑

t=1

πtxt(σ,A)

]
≥ c · OPT (A, π) ∀(A, π),

where σ is the permutation of arriving orders.
In what follows, we let

B = min
i
{bi}(> 0).
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Main Results: Necessary and Sufficient Conditions

Theorem
For any fixed 0 < ϵ < 1, there is no online algorithm for solving the
linear program with competitive ratio 1− ϵ if

B <
log(m)

ϵ2
.

Theorem
For any fixed 0 < ϵ < 1, there is a 1− ϵ competitive online algorithm
for solving the linear program if

B ≥ Ω

(
m log (n/ϵ)

ϵ2

)
.

Agrawal, Wang and Y [2010, 2014]
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Ideas to Prove Negative Result

Consider m = 1 and inventory level B , one can construct an
instance where OPT = B , and there will be a loss of

√
B with a

high probability, which give an approximation ratio 1− 1√
B
.

Consider general m and inventory level B for each good. We are
able to construct an instance to decompose the problem into
log(m) separable problems, each of which has an inventory level
B/ log(m) on a composite “single good” and OPT = B/ log(m).

Then, with hight probability each “single good” case has a loss
of

√
B/ log(m) and the total loss of

√
B · log(m). Thus,

approximation ratio is at best 1−
√

log(m)
√
B

.
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Necessary Result I

Multidimensional knapsack  

3 3 3 3 3 3 3 
3 3 3 3 3 3 3 
3 3 3 3 3 3 3 3 
3 3 3 3 3 3 3 
3 3 3 3 3 3 3 
3 3 3 3 3 3 3 
3 3 3 3 3 3 3 
3 3 3 3 3 3 3 

m 
dimensional 

B 

log(m) type of  
MUST-HAVE items 
(profit = 4) 

3 log(m) type of  
NORMAL items 
(profit = 3,2,1) 

B/log(m) 
numbers of 
each 
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Necessary Result II

Multidimensional knapsack  

3 3 3 3 3 3 3 
3 3 3 3 3 3 3 
3 3 3 3 3 3 3 3 
3 3 3 3 3 3 3 
3 3 3 3 3 3 3 
3 3 3 3 3 3 3 
3 3 3 3 3 3 3 
3 3 3 3 3 3 3 

m 
dimensional 

B 

log(m) type of  
MUST-HAVE items 
(profit = 4) 

3 log(m) type of  
NORMAL items 
(profit = 3,2,1) 

B/log(m) 
numbers of 
each 

Once a MUST-HAVE  
item is picked, only the 
corresponding NORMAL 

items can fit in that 
column 

Ye, Yinyu (Stanford) Distributionally Robust Optimization November 28, 2017 41 / 62



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Ideas to Prove Positive Result: Dynamic Learning

The proof of the positive result is constructive and based on a
learning policy.

There is no distribution known so that any type of stochastic
optimization models is not applicable.

Unlike dynamic programming, the decision maker does not have
full information/data so that a backward recursion can not be
carried out to find an optimal sequential decision policy.

Thus, the online algorithm needs to be learning-based, in
particular, learning-while-doing.
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Ideas to Prove Positive Result: Dynamic Learning

The proof of the positive result is constructive and based on a
learning policy.

There is no distribution known so that any type of stochastic
optimization models is not applicable.

Unlike dynamic programming, the decision maker does not have
full information/data so that a backward recursion can not be
carried out to find an optimal sequential decision policy.

Thus, the online algorithm needs to be learning-based, in
particular, learning-while-doing.
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Ideas to Prove Positive Result: Dynamic Learning

The proof of the positive result is constructive and based on a
learning policy.

There is no distribution known so that any type of stochastic
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Ideas to Prove Positive Result: Dynamic Learning

The proof of the positive result is constructive and based on a
learning policy.

There is no distribution known so that any type of stochastic
optimization models is not applicable.

Unlike dynamic programming, the decision maker does not have
full information/data so that a backward recursion can not be
carried out to find an optimal sequential decision policy.

Thus, the online algorithm needs to be learning-based, in
particular, learning-while-doing.
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Price Observation of Online Learning I

The problem would be easy if there are ”ideal prices”:

Bid 1(t = 1) Bid 2(t = 2) ..... Inventory(b) p∗

Bid(πt) $100 $30 ...
Decision x1 x2 ...
Pants 1 0 ... 100 $45
Shoes 1 0 ... 50 $45
T-shirts 0 1 ... 500 $10
Jackets 0 0 ... 200 $55
Hats 1 1 ... 1000 $15
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Price Observation of Online Learning II

Pricing the bid: The optimal dual price vector p∗ of the offline
LP problem can play such a role, that is x∗t = 1 if πt > aTt p

∗

and x∗t = 0 otherwise, yields a near-optimal solution.

Based on this observation, our online algorithm works by
learning a threshold price vector p̂ and using p̂ to price the bids.

One-time learning algorithm: learn the price vector once using
the initial ϵn input.

Dynamic learning algorithm: dynamically update the prices at a
carefully chosen pace.
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One-Time Learning Algorithm

We illustrate a simple One-Time Learning Algorithm:

Set xt = 0 for all 1 ≤ t ≤ ϵn;

Solve the ϵ portion of the problem

maximizex
∑ϵn

t=1 πtxt
subject to

∑ϵn
t=1 aitxt ≤ (1− ϵ)ϵbi i = 1, ...,m

0 ≤ xt ≤ 1 t = 1, ..., ϵn

and get the optimal dual solution p̂;

Determine the future allocation xt as:

xt =

{
0 if πt ≤ p̂Tat
1 if πt > p̂Tat

as long as aitxt ≤ bi −
∑t−1

j=1 aijxj for all i ; otherwise, set xt = 0.
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One-Time Learning Algorithm Result

Theorem
For any fixed ϵ > 0, the one-time learning algorithm is (1− ϵ)
competitive for solving the linear program when

B ≥ Ω
(

m log (n/ϵ)
ϵ3

)

This is one ϵ worse than the optimal bound.
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Outline of the Proof

With high probability, we clear the market;

With high probability, the revenue is near-optimal if we include
the initial ϵ portion revenue;

With high probability, the first ϵ portion revenue, a learning cost,
doesn’t contribute too much.

Then, we prove that the one-time learning algorithm is (1− ϵ)

competitive under condition B ≥ 6m log(n/ϵ)
ϵ3

.

Again, this is one ϵ factor worse than the lower bound...
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Dynamic Learning Algorithm

In the dynamic price learning algorithm, we update the price at time
ϵn, 2ϵn, 4ϵn, ..., till 2kϵ ≥ 1.

At time ℓ ∈ {ϵn, 2ϵn, ...}, the price vector is the optimal dual solution
to the following linear program:

maximizex
∑ℓ

t=1 πtxt
subject to

∑ℓ
t=1 aitxt ≤ (1− hℓ)

ℓ
n
bi i = 1, ...,m

0 ≤ xt ≤ 1 t = 1, ..., ℓ

where

hℓ = ϵ

√
n

ℓ
;

and this price vector is used to determine the allocation for the next
immediate period.
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Geometric Pace/Grid of Price Updating
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Comments on Dynamic Learning Algorithm

In the dynamic algorithm, we update the prices log2 (1/ϵ) times
during the entire time horizon.

The numbers hℓ play an important role in improving the
condition on B in the main theorem. It basically balances the
probability that the inventory ever gets violated and the lost of
revenue due to the factor 1− hℓ.

Choosing large hℓ (more conservative) at the beginning periods
and smaller hℓ (more aggressive) at the later periods, one can
now control the loss of revenue by an ϵ order while the required
size of B can be weakened by an ϵ factor.
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Related Work on Random-Permutation

Sufficient Condition Learning

Kleinberg [2005] B ≥ 1
ϵ2
, for m = 1 Dynamic

Devanur et al [2009] OPT ≥ m2 log(n)
ϵ3

One-time

Feldman et al [2010] B ≥ m log n
ϵ3

and OPT ≥ m log n
ϵ One-time

Agrawal et al [2010] B ≥ m log n
ϵ2

or OPT ≥ m2 log n
ϵ2

Dynamic

Molinaro/Ravi [2013] B ≥ m2 logm
ϵ2

Dynamic

Kesselheim et al [2014] B ≥ logm
ϵ2

Dynamic*

Gupta/Molinaro [2014] B ≥ logm
ϵ2

Dynamic*

Agrawal/Devanur [2014] B ≥ logm
ϵ2

Dynamic*

Table: Comparison of several existing results
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Price-Post Learning

Selling a good in a fixed horizon T , and there is no salvage value
for the remaining quantities after the horizon.

The production lead time is long so that the inventory B is fixed
and can not be replenished during the selling season.

Demand arrives in a Poisson process, where the arrival rate λ(p)
depends only on the instantaneous price posted by the seller.

Objective is to maximize the expected revenue.
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Background: Known Demand Function

Historically, researchers mostly consider the case where the demand
function λ(p) is known.

A dynamic programming formula can be established for this
problem. When the demand function takes certain form, one can
obtain the optimal policy explicitly.

In other cases, approximate dynamic programming method can
be applied to obtain approximate solution. And usually the
results are very close to optimal.

Mostly in Airline Revenue Management, see Gallego and van
Ryzin (1994, 1997), Talluri and van Ryzin (1998, 1999), etc.
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Unknown Demand Function

In this case, the seller has to learn the demand function “on the fly”.

Parametric learning approach is to make the demand function
λ(p) satisfy a parametric family (e.g., λ(p) = b − ap or
λ(p) = e−ap).
In this case, a dynamic programming with Bayesian update is
usually considered.

Sometimes the demand function doesn’t belong to any function
form (or one doesn’t know which form it belongs to), so that
considering a wrong demand family may be costly.
Non-parametric approach only poses few requirements on the
demand function thus is very robust to model uncertainty.
In a non-parametric learning algorithm, more price
experimentations have to be made and the question is how to
reduce the learning cost.
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Evaluation of the Learning Algorithm: Asymptotic

Regret I

For any pricing policy/algorithm π, denote its expected revenue by
Jπ(B ,T ;λ). Also denote the optimal expected revenue as
J∗(B ,T ;λ). Then, we consider the regret

Rπ(B ,T ;λ) = 1− Jπ(B ,T ;λ)

J∗(B ,T ;λ)

Since no one knows which λ is realized, so we consider the worst
regret

sup
λ∈Γ

Rπ(B ,T ;λ)

where Γ is a general family of functions which we will define later.
The smaller of the regret, the better of the learning algorithm.
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Evaluation of the Learning Algorithm: Asymptotic

Regret II

However it is still very hard to evaluate the regret for a low
volume.

Therefore we consider a high-volume regime where the inventory
B , together with the demand rate λ, grows proportionally
(multiplied in an positive integer n) and consider the asymptotic
behavior of Rπ(n · B ,T ; n · λ).
This type of evaluation criterion is widely adopted.
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Regret II

However it is still very hard to evaluate the regret for a low
volume.

Therefore we consider a high-volume regime where the inventory
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Prior Best Results of Learning Algorithms

For the parametric case, the best algorithm achieves a regret of
O(n−1/3), while for the non-parametric case, it achieves a regret
of O(n−1/4) (By Besbes and Zeevi, 2009).

There is a lower bound showing that no algorithm can do better
than O(n−1/2), for both parametric and non-parametric case.

The algorithms for both cases use one-time learning, that is,
learning first and doing second. In the learning period, a number
of prices are tested and the best one is selected to be
implemented in the doing period.

As presented earlier, under the auction model, the best learning
algorithm can achieve an asymptotic regret of O(n−1/2).

Could we close the gaps?
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Assumptions on the Demand Function

λ(p) is bounded

λ(p) (and r(p) = pλ(p)) is Lipschitz continuous. Also there
exists an inverse demand function γ(λ) that is also Lipschitz
continuous.

r(λ) = λγ(λ) is (strictly) concave

r ′′(λ) exists and r ′′(λ) ≤ −α < 0 for a fixed positive number α.
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Positive and Negative Results

Theorem
Let the above assumptions hold. Then, there exists an admissible
pricing policy π, such that for all n ≥ 1,

sup
λ∈Γ

Rπδ
n (n · B ,T ; n · λ) ≤ C (log n)4.5 · n−1/2.

On the other hand, there exists a set of demand function Γ
parameterized by a single parameter satisfying the above assumption,
such that for any admissible pricing policy π, for all n ≥ 1

sup
λ∈Γ

Rπ
n (n · B ,T ; n · λ) ≥ C√

n

for some constant C that only depends on Γ, B and T .

Wang, Deng and Y [2014]
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Description of the Algorithm

The algorithm is a dynamic pricing algorithm, where we integrate the
“learning” and “doing” periods. Specifically, we

Divide the time into geometric intervals

Keep a shrinking admissible price range

Perform and apply price experimentation in each time interval
within the current price range

Find the optimal price, update the price range for the next time
interval

The key is to balance and interplay demand learning (exploration)
and near-optimal pricing (exploitation).
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Geometric Pace of Price Testing
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Summary and Future Questions on Online

Optimization

B = logm
ϵ2

is now a necessary and sufficient condition (differing
by a constant factor).

Thus, they are optimal online algorithms for a very general class
of online linear programs.

The algorithms are distribution-free and/or non-parametric,
thereby robust to distribution/data uncertainty.

The dynamic learning has the feature of “learning-while-doing”,
and is provably better than one-time learning by one factor.

Buy-and-sell or double market?

Multi-item price-posting market?

More general online optimization?
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thereby robust to distribution/data uncertainty.

The dynamic learning has the feature of “learning-while-doing”,
and is provably better than one-time learning by one factor.

Buy-and-sell or double market?

Multi-item price-posting market?

More general online optimization?
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