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Hyperbolic polynomials Spectrahedra

Directional derivatives

d
E, 1(X) = oA det(X + tl)|,_,



Hyperbolic polynomials

A polynomial p homogeneous of degree d in n variables is
hyperbolic with respect to e € R" if

> p(e) #0

» for all x € R”, all roots of t — p(x — te) are real

2 2

4

p(x,y,z) =—x"—y*+z p(x,y,z) = —x* —y*+2*

hyperbolic w.r.t. e = (0,0,1) not hyperbolic



Hyperbolicity cones
If p is hyperbolic w.r.t. e € R" define hyperbolicity cone as

Ai(p,e) = {x € R" : all roots of t — p(x — te) non-negative}

Theorem (Garding 1959)
If pis hyperbolic w.r.t. e then A (p, e) is convex.

Example

p(x,y,z) = —x> —y* + 2°

» hyperbolic w.r.t. e =(0,0,1)

» Hyperbolicity cone is

second-order/Lorentz/ice-cream cone



Key examples

p has definite determinantal representation
» A,...,Ayared x d

p(x) = det (Z Aixi) smietrlc matrices
i=1 » > Ae >0

Hyperbolicity cone is spectrahedron
Ai(p,e) = {x ER” 1 ) Axi = 0}
i=1

Examples:
» Polyhedral cone: p(x) = [];(a] x) with e in interior
» Positive semidefinite cone p(X) = det(X) with e pos def.



Hyperbolic programming

Ax=b

minimize,(c, x) subject to
< > . { X € /\+(p7 e)'

Theorem (Giiler 1997)
—log,(p) is a self-concordant barrier for AL (p, e)

Special cases
» Linear programming
» Second-order cone programming
» Semidefinite programming

Is hyperbolic programming more general than
semidefinite programming?




Derivative relaxations/Renegar derivatives

If p is hyperbolic w.r.t. e then directional derivative

d
Dep(x) = —p(x + te) is hyperbolic w.r.t. e

dt

t=0




Derivative relaxations/Renegar derivatives

If p is hyperbolic w.r.t. e then directional derivative

d
Dep(x) = —p(x + te) is hyperbolic w.r.t. e

dt

t=0

‘\ ; \\ . “‘l‘s /s

Geometrically: the derivative relaxation is bigger!
/\+(p7 e) - /\+(Dep7 e)‘



Examples: elementary symmetric polynomials

If e,(x) = x1x2 - - - x,, then

"0
D en(x) = —X1° " Xp
1,€n(X) ?:1 7

= elementary sym. poly. of degree n — 1 in n variables

= e,,_l(x)

Repeatedly differentiate in
» same direction— all elementary sym. poly.

» different directions— (essentially) permanent




Examples: elementary symmetric polynomials

If e,(x) = x1x2 - - - x,, then

"0
D en(x) = —X1° " Xp
1,€n(X) ?:1 7

= elementary sym. poly. of degree n — 1 in n variables

= e,,_l(x)

Repeatedly differentiate in
» same direction— all elementary sym. poly.

» different directions— (essentially) permanent

D,, det(X) = sum of (n — 1) x (n — 1) principal minors of X
= n—l(X) == en—l(A(X))

Repeat to get all elementary sym. poly. in eigenvalues



Lax conjecture

Lax Conjecture: Every hyperbolic polynomial in 3 variables has
definite determinantal representation.
Helton-Vinnikov Theorem: the Lax Conjecture is true
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Generalized Lax conjecture

Lax Conjecture: Every hyperbolic polynomial in 3 variables has
definite determinantal representation.
Helton-Vinnikov Theorem: the Lax Conjecture is true

Generalized Lax Conjecture:
Every hyperbolicity cone is a spectrahedron.

Algebraic version:
If p is hyperbolic w.r.t. e then there exists g such that

» gp has a definite determinantal representation
» hyp. cone of ¢ O hyp. cone of p.

definite determinantal rep. = cone spectrahedral
= cone projected spectrahedral




Lax-type problems for derivatives

Lax conjecture for derivatives
If Ay(p,e) is a spectrahedron then
A (Dep, €) is a spectrahedron.

Would imply hyperbolicity cones are spectrahedra for
» permanents, mixed discriminants

» elementary symmetric polynomials (in eigenvalues)
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Lax-type problems for derivatives

Lax conjecture for derivatives
If Ay(p,e) is a spectrahedron then

A (Dep, €) is a spectrahedron.

Would imply hyperbolicity cones are spectrahedra for
» permanents, mixed discriminants

» elementary symmetric polynomials (in eigenvalues)

Theorem (S. 2017)
If p has a definite determinantal representation then

A (Dep, €) is a spectrahedron.
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Spectrahedral descriptions

Hyperbolicity cones known to be spectrahedra
» Sanyal (2013): Ai(es—1,1,) of size n —1
» Brandén (2014): A, (e, 1,) of size O(n*1)
» Amini (2016):
hyp. cones assoc. with multivariate matching polynomials

» Kummer (2016):
hyperbolicity cone of specialized Vamos polynomial
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(Projected) spectrahedral descriptions

Hyperbolicity cones known to be spectrahedra

Sanyal (2013): Ay (e,—1,1,) of size n — 1

Brandén (2014): A, (ex,1,) of size O(n* 1)

Amini (2016):

hyp. cones assoc. with multivariate matching polynomials

Kummer (2016):
hyperbolicity cone of specialized Vamos polynomial

v

v

v

v

Hyperbolicity cones known to be projected spectrahedra
» Zinchenko (2008): Ay(e;-1,1,)
» Parrilo, S. (2015): A, (Ex, I,) of size O(n* min{k,n — k})
» Netzer, Sanyal (2015): Smooth hyperbolicity cones
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Example: Sanyal's representation

X4

X1

X3

X2

Spanning tree polynomial:

X1X2X3 + X1 XoX4 + X1X3Xg + X2X3X4
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Example: Sanyal's representation

X1
X4

X3

X2

Spanning tree polynomial:

X1X2X3 + X1 XoX4 + X1X3Xg + X2X3X4

Definite determinantal representation:
Let Lc,(x) be edge-weighted reduced Laplacian of n-cycle

det(Lc,(x)) =

n (spanning tree polynomial of C,)

ne,—1(x)

12



Example: Sanyal's representation

X1 Spanning tree polynomial:

Xa X2
X1X2X3 + X1 XoX4 + X1X3Xg + X2X3X4
X3

Definite determinantal representation:
Let Lc,(x) be edge-weighted reduced Laplacian of n-cycle

det(L¢,(x)) = n(spanning tree polynomial of C,)
= ne,_1(x)
Spectrahedral representation

Ai(en-1,1,) = {x € R" : VT diag(x)V = 0}

where columns of V are a basis for 1= = cycle space™
12



Main result

Theorem (S. 2017)

A4 (En-1,I,) has a spectrahedral rep. of size ("}') — 1.

If By, B, ..., B(n+1)71 is a basis for n x n symmetric ma-
2

trices with trace zero and [B(X)]; = tr(B;XB;) then

Ai(En1, 1)) = {X €8" : B(X) = 0}

Corollaries
» If p has a definite determinantal representation then
derivative relaxation is a spectrahedron.

» Spectrahedral rep. of A, (e, »,1,) of size (g) —1.
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Sketch of proof: “geometric”

Sanyal’s representation of A, (e,_1,1,)

Ai(en-1,1,) = {x €R" : yT diag(x)y >0 forall y € 1+}
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Sketch of proof: “geometric”

Sanyal’s representation of A, (e,_1,1,)

Ai(en-1,1,) = {x €R" : yT diag(x)y >0 forall y € 1+}

New representation of A (E,_1,/,)

A (En1,1,) ={X€S8" tr(YXY)>0 forall Y € [}

Establish this by showing
Ai(en1,1,) ={x € R" : tr(Ydiag(x)Y) >0 forall Y € I}

(diagonal of symmetric matrix is majorized by its eigenvalues)
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Sketch of proof: algebraic
Polynomial identity
a(x)

CH X) + Ai(X)) en-1(A(X)) = det(B(X))

i<j

(constant ¢ > 0 depends on choice of basis in definition of B)
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a(x)

CH X) + Ai(X)) en-1(A(X)) = det(B(X))

i<j
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Consequence:
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Sketch of proof: algebraic
Polynomial identity
a(x)

CH X) + Ai(X)) en-1(A(X)) = det(B(X))

i<j

(constant ¢ > 0 depends on choice of basis in definition of B)
Consequence:

A+(qal)m/\+(En 1 ) {X B( )>_O}

Separate argument:
A+(q7 I) ) /\+(En717 /n)

(Use description of Ay(p, e) from Kummer et al. 2015)
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Some open questions

» Are A (Ex, I,) spectrahedra for k =3,4,... n—27

» Lower bounds on size of spectrahedral representations?
(Quadratic cones: Kummer (2016))

Spectral spectrahedra
Let C be a permutation invariant spectrahedron. Is

AHCl = {X : \(X) € C}

a spectrahedron?

Special case of Lax conjecture since A™}[C] a hyp. cone
(Bauschke, Giiler, Lewis, Sendov 2001)
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Summary

» What is the relationship between hyperbolic and
semidefinite programming?

» Are hyperbolicity cones (projected) spectrahedra?

» Main result: showed explicit family of hyperbolicity cones
that are spectrahedra

Preprint:

» ‘A spectrahedral representation of the first derivative
relaxation of the positive semidefinite cone’
https://arxiv.org/abs/1707.09150

THANK YOU!
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