Lower bounds for matrix factorization ranks
via noncommutative polynomial optimization

Monique Laurent

A CWI .t
Centrum Wiskunde & Informatica Tl LB U RG » % * U N IV E RS ITY

-@I
.

Joint with Sander Gribling (CWI) and David de Laat (MIT)

Hierarchies, Extended Formulations and Matrix-Analytic Techniques Workshop

Simons Institute, 6-9 November 2017



Four matrix factorization ranks

» For a nonnegative m X n matrix A
> nonnegative rank rank. (A): smallest d for which
A= ({x:,y;)) with x1,...,Xm,¥1,...,yn € RY
> positive semidefinite rank psd-rank(A): smallest d for which
A= ((Xi, Y;)) with X1,..., Xm, Y1,..., Ys d x d Hermitian PSD

» Symmetric ranks for a symmetric n X n matrix A
» completely positive rank cp-rank(A): smallest d for which
A= ({x;,x)) with x1,...,x, € R
when A is completely positive (CP)

» completely positive semidefinite rank cpsd-rank(A): smallest d
for which A = ({X;, Xj)) with X1,..., X, d x d Hermitian PSD
when A is completely positive semidefinite (CPSD)

CP" C CPSD" C PSD"

Common approach to lower bound these four matrix factorization ranks
using (noncommutative tracial) polynomial optimization



Motivation for rank and psd-rank

rank . and psd-rank are used in (quantum) communication complexity,
linear/semidefinite extension complexity

[Yannakakis 1991, Gouveia-Parrilo-Thomas 2013]




Motivation for CP and CPSD

» CP is used to model discrete optimization problems
[de Klerk-Pasechnik’02, Burer'09]
» CPSD is used to model quantum graph parameters [L-Piovesan'15]

» CPSD used to model bipartite quantum correlations in Cq(m, k)

p = (p(a, bls, t) :== (V, A2 @ BLV)), with d €N, ¥ € C? ® C¥ unit vector,
A2 BP d x d Hermitian PSD, S_X_ A2 =S5 Bb = [ for s,t € [m]

Smallest such d = entanglement dimension of p

> C,(m, k) is an affine slice of CPSD?*"* [Mancinska-Roberson'14]
[Sikora-Varvitsiotis'15]
» If p is synchronous: p(a, b|s,s) = 0 whenever a # b, then
its entanglement dimension is equal to cpsd-rank(A,),
where (Ap)(a,s),(b,t) = P(a, bls, t) [G-dL-L'17]

» Cy(m, k) is not closed  [Slofstra'17] [Dykema-Paulsen-Prakash'17]
~s CPSD" is not closed for n > 1942, for n > 10




Basic bounds

Upper bounds:
» For Ae RT*™ psd-rank(A) < rank. (A) < min{m, n}
» For Ac CP":  cp-rank(A) < (”;“1)

» For A€ CPSD": No upper bound exists on cpsd-rank in terms of n

Lower bounds:
» rank(A) < rank, (A), cp-rank(A)

» /rank(A) < psd-rank(A), cpsd-rank(A)



More lower bounds on rank, and cp-rank

o Fawzi-Parrilo (2016) define lower bounds 7. (-) and 7¢,(-) based on the
atomic definition of rank and cp-rank:

rank, (A) =min d st. A= vy +...+ugv,] with u;,v; €R]

7 (A)=min a st. LA€conv(R:0< R <A, rank(R) < 1)

cp-rank(A) = min d st. A= uiuf ...+ ugu) with u; € R

Tep(A) =min o st. LA conv(R:0< R< Arank(R) <1,R < A)

e Fawzi-Parrilo (2016) define SDP lower bounds 7:°°(-) and 75°():

cp

75(A) < 74 (A) < ranky (A), rank(A) < TCSES(A) < 7¢5(A) < cp-rank(A)

e Link to the combinatorial ‘rectangle covering’ bound on rank. :
rank, (A) > x(RG(A)) = coloring number of ‘rectangle graph’ RG(A)

rank (A) > 7 (A) > xr(RG(A)), rank;(A) > 75°(A) > J(RG(A))




New approach to bound all four factorization ranks
since no atomic definition exists for psd-rank and cpsd-rank
Commutative polynomial optimization [Lasserre, Parrilo,...]

Noncommutative eigenvalue optimization  [Pironio, Navascués, Acin,...]
Noncommutative tracial optimization

[Burgdorf, Cafuta, Klep, Povh, Schweighofer,...]

¢ = inff(x) st. xeR" g(x)>0(geS) [d =1]

~~
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| inf Tr(f(X))/d st. d €N, X € (H))" g(X)=0(geS)

¢ = inf7(f(X)) s.t. A C*-algebra, 7 trace, X € A", g(X) =0 (g € S)

f‘DI'ICC g f'*nC g f‘*C

> SDP lower bounds: inf L(f) over L € R[x];,, L(1) =1..., L € R(x),
Under Archimedean condition: f — f°, ' — ¢ ast = o0

» Equality: £ = £, £ = f° if order t bound has flat optimal sol.

For lower bounding matrix factorization ranks: use the same framework,
but now minimize L(1) with L not normalized s.t. ...



Polynomial optimization approach for cpsd-rank

Assume A = (Tr(X;X;)) has a factorization by d x d Hermitian PSD
matrices X = (X1, ..., X,) and d = cpsd-rank(A).
Let L € R(x1,...,%,)" be the real part of the trace evaluation Lx at X:

Lx(p) = Tr(p(X)), L(p) =Re(Tr(p(X))) for p € Rixt,...,xn)

(0) L(1) =

(1) L(x,xj) Ajj for all i, j € [n]

(2) Lis symmetric (L(p*) = L(p)), tracial (L(pq) = L(gp))

(3) L is positive (L(p*p) > 0)

(4) L positive on localizing polynomials: L(p*(\/Aixi — x?)p) > 0 Vi

cpsd
SA

L >0 on cone{p*gp:g c {1} U{/Aixi —x*:ic[n]},pcRx}

M(SF)

Get lower bounds by minimizing L(1) over L € R(x)3, satisfying (1)-(4).



Lower bounds for cpsd-rank

For an integer t € NU {00}

P9 (A) =min L(1) s.t. L € R(x)j, symmetric, tracial, A= (L(x;x;))
L>0on MZt(Sf\de)

PIAY is €59 A) with extra constraint rank(M(L) = (L(u*v))) < oo

EPI(A) <. < EPY(A) <L < EP(A) < £P°(A) < cpsd-rank(A)

> Asymptotic convergence: £5P°(A) — £P59(A) as t — oo
P9(A) =min ast. LA=(r(XiX;)), where A C*-algebra with
trace 7, X € A" s.t. /A;X; — X? =0 for i € [n]

» £P9(A) = min a st. ... A finite dimensional ...

= min L(1) s.t. L conic combination of trace evaluations ...

> EPI(A) = £P(A) if £P%(A) has a flat optimal solution




Strengthening and extending the bounds

One can strengthen the basic bounds by adding constraints on L:

L L(p*(vTAv — (3>, vix)*)p) >0 forall v € R" [v-constraints]

2. L(p*gpg’) >0 for g, g’ localizing for A [Berta et al.'16]
3. L(pxix)) =0 if Aj =0 [zeros propagate]
4. L(p(>;vix))) =0 forall v € ker A [kernel vectors propagate]

One can extend the bounds:

» Asymmetric setting (for rank. and psd-rank): use two sets of
variables x1, ..., Xm, V1, .-+, Yn

» Commutative setting (for rank, and cp-rank): use polynomials in
commutative variables, after viewing nonnegative vectors as diagonal
PSD matrices



Small example

1 1/2 0 0 1/2
12 1 1/2 0 0
Consider A=| 0 1/2 1 1/2 0
0 0o 1/2 1 1/2
1/2 0 0o 1/2 1

» cpsd-rank(A) < 5
because if X = Diag(1,1,0,0,0) and its cyclic shifts
then X/v/2 is a factorization of A

» L =1Ly is feasible for £P*(A), with value L(1) = 5/2
Hence ¢7°/(A) < 5/2, in fact £5P%(A) = cP*(A) =5/2

> {Cde( ) = 5 = cpsd-rank(A)
with the v-constraints for v = (1,—1,1,—1,1) and its cyclic shifts



Lower bounds for cp-rank

(A) =min L(1) st. LeR[x]5, A= (L(xix)), L >0 on Ma(

where S3P = {V/Aixi — x? :i € [n]} U{A; — xix; = i,j € [n]}

Sa’)

+7(A) has the additional constraints:
(P) L(ug) >0 for g € {1} US,” and monomials u with deg(ug) < 2t
(T) A®" — (L(u*V))uwep, =0 for2< /<t
Comparison to the bounds 7:5° and 7, of Fawzi-Parrilo (2016):
> EP(A) < E2(A) = €7(A) < mo(A)
> 757 (A) G5 (A) < €2 1(A) < EF(A) = 7(A)
> 7p(A) is aIso reached as asymptotic limit when using the
v-constraints for a dense subset of S"~! instead of (P)-(T)
Example: A, ), = ((q +Ja)lp (p +Jb)lq> € SPT9 for a,b € [0, 1]
> &7 (Asp) > pg
> &7 (Asp) = 6 = cp-rank(A, ) is tight for (p, q) = (2,3)
5 < 759° < 6 for all nonzero (a, b) € [0,1]?, equal to 5 on subregion




Lower bounds for rank, and psd-rank

Same approach: as no a priori bound on the eigenvalues of the factors
. rescale the factors to get such bounds and thus localizing constraints

Get now 7 (A) = £ (A) directly as asymptotic limit of the SDP bounds

Example for rank : [Fawzi-Parrilo'16]

1—a
1+a
1-b
1+b

Sa,b =

l1+a 14a 1—a
l1-a 1—a 1+a
1-b 1+b 1+0b
1+4b 1—b 1-—5b

for a, b € [0,1]

slack matrix of nested rectangles: R = [—a,a] x [~b,b] C P =[-1,1]

3 triangle T s.t. RC T C P <= rank;(S.) =3



Extension complexity: Nested rectangle problem

White region: rank,(S,5) =3 <= (1 +a)(1+b) <2
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Three top right regions: §ZT >3 1-b 1—b 14+b 1+b

Four top right regions: &5, >3 1+b 1+b 1—b 1-0b



Small example for psd-rank

1 b ¢
[Fawzi et al.'15] For Mp.=|c 1 b
b ¢ 1
White region: psd-rankp <2 <= b>+c?+1<2(b+ c+ bc)

Colored region: psd-ranky = 3

Yellow region: £5°9 > 2
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Concluding remarks

Bounds via (tracial nc) polynomial optimization: arXiv:1708.01573

commutative tracial noncommutative
completely positive cone | completely positive semidefinite cone
cp” CPSD”
cp-rank, rank cpsd-rank, psd-rank

‘Minimizing L(1)' was used by [Tang-Sha'l5, Nie'16] to get bounds
converging to the tensor nuclear norm (commutative setting)

The approach extends to the nonnegative tensor rank, also
considered by Fawzi-Parrilo (2016) (commutative setting)

The bounds apply to the complex ranks (using Hermitian factors).
How to tailor the bounds for real ranks?

Extension to lower bound the entanglement dimension of a
(non-synchronous) quantum correlation in arXiv:1708.09696



