Finding Best LP Relaxations for Directed Cut Problems

Euiwoong Lee

CMU → *Simons*

People & Papers

Directed Multicut

- Input
	- Directed Graph G=(V, E), k pairs $(s_1, t_1), ..., (s_k, t_k)$
- Goal
	- Remove minimum # of edges to cut all s_i-t_i path.

Directed Multicut

- Input
	- Directed Graph G=(V, E), k pairs $(s_1, t_1), ..., (s_k, t_k)$
- Goal
	- Remove minimum # of edges to cut all s_i-t_i path.

Directed Multicut

- Input
	- Directed Graph G=(V, E), k pairs $(s_1, t_1), ..., (s_k, t_k)$
- Goal
	- Remove minimum # of edges to cut all s_i-t_i path.

Directed Multicut (before 2017)

• In terms of n ,

• In terms of k ,

- [CKR 01] $\tilde{O}(n^{1/2})$ -approx.
- [Gupta 03] $O(n^{1/2})$ -approx.
- [AAC 07] $\tilde{O}(n^{11/23})$ -approx.
- [CK 07]
	- $\widetilde{\Omega}(n^{1/7})$ flow-cut gap.
	- $2^{\Omega(\log^{1-\epsilon} n)}$ -(NP) hard.
- Easy k -approx.
- [SSZ 00] $k = O(\log n / \log \log n)$,
	- Flow-cut gap is $k o(1)$.
- [CM 16, EVW 13] 1.5-(UG) hard when $k = 2$.
	- From Undir. Node Multiway Cut
	- Best for any constant k ?

In 2017

- [CM 17, L 17]
	- Directed Multicut with k pairs is k-(UG) hard.
- [CM 17]
	- Reduction from CSP [EVW 13].
	- Interesting connections between different LP relaxations.
- \bullet [L 17]
	- Direct reduction from UG.
	- Easy(?) to adapt to other cut problems.

- Let $H = (V_H, E_H)$ be a fixed demand graph.
- Multicut (H)
	- Input: Supply graph $G = (V_G, E_G)$ and injective map $\pi: V_H \to V_G$.
	- Goal: Remove min # edges from G such that
		- $\forall (u, v) \in E_H$, there is no path from $\pi(u)$ to $\pi(v)$ in G .

- Let $H = (V_H, E_H)$ be a fixed demand graph.
- Multicut (H)
	- Input: Supply graph $G = (V_G, E_G)$ and injective map $\pi: V_H \to V_G$.
	- Goal: Remove min # edges from G such that
		- $\forall (u, v) \in E_H$, there is no path from $\pi(u)$ to $\pi(v)$ in G .

- Let $H = (V_H, E_H)$ be a fixed demand graph.
- \bullet Multicut(H)
	- Input: Supply graph $G = (V_G, E_G)$ and injective map $\pi: V_H \to V_G$.
	- Goal: Remove min # edges from G such that
		- $\forall (u, v) \in E_H$, there is no path from $\pi(u)$ to $\pi(v)$ in $G.$

- Let $H = (V_H, E_H)$ be a fixed demand graph.
- \bullet Multicut(H)
	- Input: Supply graph $G = (V_G, E_G)$ and injective map $\pi: V_H \to V_G$.
	- Goal: Remove min # edges from G such that
		- $\forall (u, v) \in E_H$, there is no path from $\pi(u)$ to $\pi(v)$ in $G.$
- Multicut(1 edge) = Min s-t cut!

- Let $H = (V_H, E_H)$ be a fixed demand graph.
- \bullet Multicut(H)
	- Input: Supply graph $G = (V_G, E_G)$ and injective map $\pi: V_H \to V_G$.
	- Goal: Remove min # edges from G such that
		- $\forall (u, v) \in E_H$, there is no path from $\pi(u)$ to $\pi(v)$ in $G.$
- Multicut(complete DAG) = Linear k -cut ($k = |V_H|$).

- Multicut (H) :
	- Easy $|E_H|$ -approximation.
	- Tight when H has k disjoint edges.
- Directed Multiway Cut (H = Complete Bidirected Graph)
	- [NZ97, CM16] 2-approx.
- k-Linear Cut (H = Complete DAG)
	- $O(\log k)$ -approx. (Flow-cut gap open)
	- [BCKM 18?] 3-Linear Cut: $\sqrt{2}$ -approx. (Matches flow-cut gap)

- Much better approximation ratio for some $H!$
	- All algorithms use flow-cut LP.
- Question] For some fixed H , will there a better relaxation?

- [CM 17] When H is a directed bipartite, Multicut(H) is UG-hard to approximate better than the worst flow-cut gap.
- What about general H ?
- It is still open whether flow-cut gap is the best.
- [LM ??] There exists another LP relaxation (or estimation algorithm) such that it is UG-hard to do better.

- **[CM 17] When H** is a directed bipartite, Multicut(*H*) is UG-hard to **approximate better than the worst flow-cut gap.**
- What about general H ?
- It is still open whether flow-cut gap is the best.
- **[LM ??] There exists another LP relaxation (or estimation algorithm) such that it is UG-hard to do better.**

- **[CM 17] When H** is a directed bipartite, Multicut(*H*) is UG-hard to **approximate better than the worst flow-cut gap.**
	- **Another proof based on [L 17]**
- What about general H ?
- It is still open whether flow-cut gap is the best.
- [LM ??] There exists another LP relaxation (or estimation algorithm) such that it is UG-hard to do better.

Flow-Cut (Distance) LP

- Will consider vertex deletion version.
	- Cannot delete terminals $(T \coloneqq \pi(V_H))$.
- Miniminze $\sum_{v\in V\setminus T} x_v$
- Subject to $\sum_{v \in P \setminus T} x_v \geq 1$ for $\forall (u, v) \in E_H$, and $\pi(u)$ $\pi(v)$ path P
- $x \geq 0$

LP Gap

- $OPT = 2$
- $LP = 4/3$
	- $x_v = 1/3$ for all $v \in V \setminus T$
	- Every s_1 - t_1 or s_2 - t_2 path involves 3 internal (non -terminal) vertices.

Dictator Test

- Just another instance of Multicut (H)
- Replace every internal vertex by a hypercube $[\ell]^R$

Dictator Test

- Just another instance of Multicut (H)
- Replace every internal vertex by a hypercube $[\ell]^R$

Dictator Test

- Just another instance of $Multicut(H)$
- Replace every internal vertex by a hypercube $[\ell]^R$

- Put edges
	- If $(u, v) \in E_G$, create some edges between corresponding hypercube "appropriately".

Reduction from UG

- Instance of Unique Games
	- A graph
	- Each edge is some constraint
- Goal: Give a label to each vertex to
	- Maximize # of "satisfied" edges.

- [CM 17] When H is a directed bipartite, Multicut(*H*) is UG-hard to **approximate better than the worst flow-cut gap.**
- What is wrong with general *H*?

General H

- $x_v = 1/3$ for all $v \in V \setminus T$
	- Still feasible to LP.
	- Reduction does not work.
- Dist. $(s_1 t_1) = 1$, but
	- Dist. (s_1-s_2) = Dist. (s_2-t_1) = 2/3
- **Observation] In order to cut from , we need to either**
	- Cut s_1 from s_2 OR
	- \cdot Cut s_2 from t_1

Best (estimation) Algorithm

- Say F "unambiguous" if for every $(u, v) \in E_F$ and $w \in V_F$
	- Either $(u, w) \in E_F$ or $(w, v) \in E_F$
	- "If you cut (u, v) , then you need to cut either (u, w) or (w, v) ".
	- (Directed) complement of F is transitive.
- Estimation algorithm for Directed Multicut(H).
	- Given a supply graph G ,
	- Try every "unambiguous" $F = (V_H, E_F)$ s.t. $E_H \subseteq E_F$.
		- Compute Flow-cut relaxation value $LP(F, G)$.
	- Output the min \overline{F} $LP(F, G)$.

Best (estimation) Algorithm

- Estimation algorithm for Directed Multicut(H).
	- Given a supply graph G ,
	- Try every "unambiguous" $F = (V_H, E_F)$ s.t. $E_H \subseteq E_F$.
		- Compute Flow-cut relaxation value $LP(F, G)$.
	- Output the min \overline{F} $LP(F, G)$.
- For every F, $LP(H, G) \le LP(F, G)$.
- There exists F such that $LP(F, G) \le OPT(F, G) = OPT(H, G)$

Best (estimation) Algorithm

- Estimation algorithm for Directed Multicut(H).
	- Given a supply graph G ,
	- Try every "unambiguous" $F = (V_H, E_F)$ s.t. $E_H \subseteq E_F$.
		- Compute Flow-cut relaxation value $LP(F, G)$.
	- Output the min \overline{F} $LP(F, G)$.
- For every F, $LP(H, G) \le LP(F, G)$.
- There exists F such that $LP(F, G) \le OPT(F, G) = OPT(H, G)$
- Therefore, $LP(H, G) \leq ALG(H, G) \leq OPT(H, G)$ for every G, H.
- Can be captured as a single LP (running a flow-cut LP for every F).

Best (estimation) Algorithm

- Estimation algorithm for Directed Multicut(H).
	- Given a supply graph G ,
	- Try every "unambiguous" $F = (V_H, E_F)$ s.t. $E_H \subseteq E_F$.
		- Compute Flow-cut relaxation value $LP(F, G)$.
	- Output the min \overline{F} $LP(F, G)$.
- What does a gap of this algorithm mean (for fixed H)?

• An unambiguous $F \supseteq H$ and G s.t. $LP(F, G) \ll OPT(H, G)$.

• **[LM ??] For fixed , a gap of this algorithm implies the matching UG-hardness.**

Undirected Analog

- Running time $2^{O(k^2)}n^{O(1)}$ when $k = |V_H|$.
- Undirected Multicut (H) .
	- "Unambiguous" F : complete p -partite graph (complement = disjoint cliques).
	- Guess which terminals belong together, and run Multiway Cut
		- Already gives 1.3-approx. [SV13, BSW16] for every H in time $2^{O(k \log k)} n^{O(1)}$.
- Gap instance]
	- Unambiguous $F \supseteq H$ and G s.t. $Earth move rLP(F, G) \ll OPT(H, G)$.
	- EarthmoverLP is already proved to be optimal for Multiway Cut [MNRS 08]
	- Their proof already proves that the above is best estimation algorithm for Undirected Multicut (H) ?

Undirected Analog

- Running time $2^{O(k^2)}n^{O(1)}$ when $k = |V_H|$.
- RONAN
- \bullet Undirected Multicut(H).
	- "Unambiguous" F : complete p -partite graph (complement = disjoint cliques).
	- Guess which terminals belong together, and run Multiway Cut
		- Already gives 1.3-approx. [SV13, BSW16] for every H in time $2^{O(k \log k)} n^{O(1)}$.
- Gap instance]
	- Unambiguous $F \supseteq H$ and G s.t. $Earth move rLP(F, G) \ll OPT(H, G)$.
	- EarthmoverLP is already proved to be optimal for Multiway Cut [MNRS 08]
	- Their proof already proves that the above is best estimation algorithm for Undirected Multicut (H) ?

Global Cut Problems

- [BCKLX 17] Global versions
	- s -t Bicut: Given G and s , t , remove min # arcs s.t. $s \nrightarrow t$ and $t \nrightarrow s$.
	- Global Bicut: Given G, remove min # arcs s.t. $\exists s, t$ with $s \nrightarrow t$ and $t \nrightarrow s$.
- Undirected Analog
	- 3-way cut: Given G and s, t, u , remove min # edges s.t. they are separated.
	- 3-cut : Given G, remove min # edges s.t. $\exists s, t, u$ separated.
- 3-way cut: NP-hard. 3-cut: P
- s-t Bicut: 2-hard [CM 17, L 17]. Global Bicut: 1.998-approximation.

Hardness Framework

- [L 17] First $\omega(1)$ -hardness for
	- Length-Bounded Cut
	- Shortest Path Interdiction
	- Firefighter (RMFC)
- Length-Control Dictatorship Test
	- Take (some) LP gap instances to UG-hardness.
- More cut problems?
	- General theorem that unifies current results?
	- How to formally unify various cut problems?

Open Problems

- Flow-Cut LP may be still optimal (save $2^{O(k^2)}$ time)!
	- $\exists G, H \text{ s.t. } LP(H, G) < ALG(H, G)$
	- But maybe max \overline{G} $LP(H,G)$ $OPT(H,G$ $=$ max \overline{G} $ALG(H,G)$ $OPT(H,G$? ?
- "Interesting H" where we can do much better than $|E_H|$ -approx.?
	- Multiway Cut, Linear-k-Cut, ???
	- Using the new LP?
- Optimal rounding algorithms?
	- Undirected Multiway Cut [MNRS 08], Min CSP [EVW 13]

Thank you!

