Finding Best LP Relaxations for Directed Cut Problems

Euiwoong Lee

 $CMU \rightarrow Simons$

People & Papers

Directed Multicut

- Input
 - Directed Graph G=(V, E), k pairs (s₁, t₁), ..., (s_k, t_k)
- Goal
 - Remove minimum # of edges to cut all s_i-t_i path.

Directed Multicut

- Input
 - Directed Graph G=(V, E), k pairs (s₁, t₁), ..., (s_k, t_k)
- Goal
 - Remove minimum # of edges to cut all s_i-t_i path.

Directed Multicut

- Input
 - Directed Graph G=(V, E), k pairs (s₁, t₁), ..., (s_k, t_k)
- Goal
 - Remove minimum # of edges to cut all s_i-t_i path.

Directed Multicut (before 2017)

• In terms of *n*,

• In terms of k,

- [CKR 01] $ilde{O}(n^{1/2})$ -approx.
- [Gupta 03] $O(n^{1/2})$ -approx.
- [AAC 07] $\tilde{O}(n^{11/23})$ -approx.
- [CK 07]
 - $\widetilde{\Omega}(n^{1/7})$ flow-cut gap.
 - $2^{\Omega(\log^{1-\epsilon} n)}$ -(NP) hard.

- Easy *k*-approx.
- [SSZ 00] $k = O(\log n / \log \log n)$,
 - Flow-cut gap is k o(1).
- [CM 16, EVW 13] 1.5-(UG) hard when *k* = 2.
 - From Undir. Node Multiway Cut
 - Best for any constant k?

In 2017

- [CM 17, L 17]
 - Directed Multicut with k pairs is k-(UG) hard.
- [CM 17]
 - Reduction from CSP [EVW 13].
 - Interesting connections between different LP relaxations.
- [L 17]
 - Direct reduction from UG.
 - Easy(?) to adapt to other cut problems.

- Let $H = (V_H, E_H)$ be a fixed demand graph.
- Multicut(H)
 - Input: Supply graph $G = (V_G, E_G)$ and injective map $\pi: V_H \to V_G$.
 - Goal: Remove min # edges from G such that
 - $\forall (u, v) \in E_H$, there is no path from $\pi(u)$ to $\pi(v)$ in G.

- Let $H = (V_H, E_H)$ be a fixed demand graph.
- Multicut(H)
 - Input: Supply graph $G = (V_G, E_G)$ and injective map $\pi: V_H \to V_G$.
 - Goal: Remove min # edges from *G* such that
 - $\forall (u, v) \in E_H$, there is no path from $\pi(u)$ to $\pi(v)$ in G.

- Let $H = (V_H, E_H)$ be a fixed demand graph.
- Multicut(H)
 - Input: Supply graph $G = (V_G, E_G)$ and injective map $\pi: V_H \to V_G$.
 - Goal: Remove min # edges from *G* such that
 - $\forall (u, v) \in E_H$, there is no path from $\pi(u)$ to $\pi(v)$ in G.

- Let $H = (V_H, E_H)$ be a fixed demand graph.
- Multicut(H)
 - Input: Supply graph $G = (V_G, E_G)$ and injective map $\pi: V_H \to V_G$.
 - Goal: Remove min # edges from G such that
 - $\forall (u, v) \in E_H$, there is no path from $\pi(u)$ to $\pi(v)$ in G.
- Multicut(1 edge) = Min s-t cut!

- Let $H = (V_H, E_H)$ be a fixed demand graph.
- Multicut(H)
 - Input: Supply graph $G = (V_G, E_G)$ and injective map $\pi: V_H \to V_G$.
 - Goal: Remove min # edges from *G* such that
 - $\forall (u, v) \in E_H$, there is no path from $\pi(u)$ to $\pi(v)$ in G.
- Multicut(complete DAG) = Linear k-cut ($k = |V_H|$).

- Multicut(*H*):
 - Easy $|E_H|$ -approximation.
 - Tight when *H* has *k* disjoint edges.
- Directed Multiway Cut (H = Complete Bidirected Graph)
 - [NZ97, CM16] 2-approx.
- k-Linear Cut (H = Complete DAG)
 - $O(\log k)$ -approx. (Flow-cut gap open)
 - [BCKM 18?] 3-Linear Cut: $\sqrt{2}$ -approx. (Matches flow-cut gap)

- Much better approximation ratio for some *H*!
 - All algorithms use flow-cut LP.
- Question] For some fixed *H*, will there a better relaxation?

- [CM 17] When H is a directed bipartite, Multicut(H) is UG-hard to approximate better than the worst flow-cut gap.
- What about general *H*?
- It is still open whether flow-cut gap is the best.
- [LM ??] There exists another LP relaxation (or estimation algorithm) such that it is UG-hard to do better.

- [CM 17] When H is a directed bipartite, Multicut(H) is UG-hard to approximate better than the worst flow-cut gap.
- What about general *H*?
- It is still open whether flow-cut gap is the best.
- [LM ??] There exists another LP relaxation (or estimation algorithm) such that it is UG-hard to do better.

- [CM 17] When H is a directed bipartite, Multicut(H) is UG-hard to approximate better than the worst flow-cut gap.
 - Another proof based on [L 17]
- What about general *H*?
- It is still open whether flow-cut gap is the best.
- [LM ??] There exists another LP relaxation (or estimation algorithm) such that it is UG-hard to do better.

Flow-Cut (Distance) LP

- Will consider vertex deletion version.
 - Cannot delete terminals $(T \coloneqq \pi(V_H))$.
- Miniminze $\sum_{v \in V \setminus T} x_v$
- Subject to $\sum_{v \in P \setminus T} x_v \ge 1$ for $\forall (u, v) \in E_H$, and $\pi(u) \pi(v)$ path P
- $x \ge 0$

LP Gap

- OPT = 2
- LP = 4/3
 - $x_v = 1/3$ for all $v \in V \setminus T$
 - Every s_1 - t_1 or s_2 - t_2 path involves 3 internal (non-terminal) vertices.

Dictator Test

- Just another instance of Multicut(*H*)
- Replace every internal vertex by a hypercube $[\ell]^R$

Dictator Test

- Just another instance of Multicut(*H*)
- Replace every internal vertex by a hypercube $[\ell]^R$

Dictator Test

- Just another instance of Multicut(*H*)
- Replace every internal vertex by a hypercube $[\ell]^R$

- Put edges
 - If (u, v) ∈ E_G, create some edges between corresponding hypercube "appropriately".

Reduction from UG

- Instance of Unique Games
 - A graph
 - Each edge is some constraint
- Goal: Give a label to each vertex to
 - Maximize # of "satisfied" edges.

- [CM 17] When H is a directed bipartite, Multicut(H) is UG-hard to approximate better than the worst flow-cut gap.
- What is wrong with general *H*?

General H

- $x_v = 1/3$ for all $v \in V \setminus T$
 - Still feasible to LP.
 - Reduction does not work.
- Dist. $(s_1 t_1) = 1$, but
 - Dist. $(s_1 s_2) = \text{Dist.}(s_2 t_1) = 2/3$
- Observation] In order to cut s_1 from t_1 , we need to either
 - Cut s_1 from s_2 OR
 - Cut s_2 from t_1

Best (estimation) Algorithm

- Say F "unambiguous" if for every $(u, v) \in E_F$ and $w \in V_F$
 - Either $(u, w) \in E_F$ or $(w, v) \in E_F$
 - "If you cut (u, v), then you need to cut either (u, w) or (w, v)".
 - (Directed) complement of *F* is transitive.
- Estimation algorithm for Directed Multicut(*H*).
 - Given a supply graph G,
 - Try every "unambiguous" $F = (V_H, E_F)$ s.t. $E_H \subseteq E_F$.
 - Compute Flow-cut relaxation value LP(F, G).
 - Output the $\min_{F} LP(F,G)$.

Best (estimation) Algorithm

- Estimation algorithm for Directed Multicut(*H*).
 - Given a supply graph G,
 - Try every "unambiguous" $F = (V_H, E_F)$ s.t. $E_H \subseteq E_F$.
 - Compute Flow-cut relaxation value LP(F, G).
 - Output the $\min_{F} LP(F, G)$.
- For every $F, LP(H, G) \leq LP(F, G)$.
- There exists F such that $LP(F,G) \leq OPT(F,G) = OPT(H,G)$

Best (estimation) Algorithm

- Estimation algorithm for Directed Multicut(*H*).
 - Given a supply graph G,
 - Try every "unambiguous" $F = (V_H, E_F)$ s.t. $E_H \subseteq E_F$.
 - Compute Flow-cut relaxation value LP(F, G).
 - Output the $\min_{F} LP(F, G)$.
- For every $F, LP(H, G) \leq LP(F, G)$.
- There exists F such that $LP(F,G) \leq OPT(F,G) = OPT(H,G)$
- Therefore, $LP(H,G) \leq ALG(H,G) \leq OPT(H,G)$ for every G,H.
- Can be captured as a single LP (running a flow-cut LP for every F).

Best (estimation) Algorithm

- Estimation algorithm for Directed Multicut(*H*).
 - Given a supply graph G,
 - Try every "unambiguous" $F = (V_H, E_F)$ s.t. $E_H \subseteq E_F$.
 - Compute Flow-cut relaxation value LP(F, G).
 - Output the $\min_{F} LP(F, G)$.
- What does a gap of this algorithm mean (for fixed *H*)?

• An unambiguous $F \supseteq H$ and G s.t. $LP(F,G) \ll OPT(H,G)$.

• [LM ??] For fixed *H*, a gap of this algorithm implies the matching UG-hardness.

Undirected Analog

- Running time $2^{O(k^2)}n^{O(1)}$ when $k = |V_H|$.
- Undirected Multicut(*H*).
 - "Unambiguous" *F*: complete *p*-partite graph (complement = disjoint cliques).
 - Guess which terminals belong together, and run Multiway Cut
 - Already gives 1.3-approx. [SV13, BSW16] for every H in time $2^{O(k \log k)} n^{O(1)}$.
- Gap instance]
 - Unambiguous $F \supseteq H$ and G s.t. $EarthmoverLP(F,G) \ll OPT(H,G)$.
 - EarthmoverLP is already proved to be optimal for Multiway Cut [MNRS 08]
 - Their proof already proves that the above is best estimation algorithm for Undirected Multicut(*H*)?

Undirected Analog

- Running time $2^{O(k^2)}n^{O(1)}$ when $k = |V_H|$.
- Reman

- Undirected Multicut(*H*).
 - "Unambiguous" *F*: complete *p*-partite graph (complement = disjoint cliques).
 - Guess which terminals belong together, and run Multiway Cut
 - Already gives 1.3-approx. [SV13, BSW16] for every H in time $2^{O(k \log k)} n^{O(1)}$.
- Gap instance]
 - Unambiguous $F \supseteq H$ and G s.t. $EarthmoverLP(F,G) \ll OPT(H,G)$.
 - EarthmoverLP is already proved to be optimal for Multiway Cut [MNRS 08]
 - Their proof already proves that the above is best estimation algorithm for Undirected Multicut(*H*)?

Global Cut Problems

- [BCKLX 17] Global versions
 - *s*-*t* Bicut: Given G and *s*, *t*, remove min # arcs s.t. $s \nleftrightarrow t$ and $t \nleftrightarrow s$.
 - Global Bicut: Given G, remove min # arcs s.t. $\exists s, t$ with $s \rightarrow t$ and $t \rightarrow s$.
- Undirected Analog
 - 3-way cut: Given G and *s*, *t*, *u*, remove min # edges s.t. they are separated.
 - 3-cut : Given G, remove min # edges s.t. $\exists s, t, u$ separated.
- 3-way cut: NP-hard. 3-cut: P
- s-t Bicut: 2-hard [CM 17, L 17]. Global Bicut: 1.998-approximation.

Hardness Framework

- [L 17] First $\omega(1)$ -hardness for
 - Length-Bounded Cut
 - Shortest Path Interdiction
 - Firefighter (RMFC)
- Length-Control Dictatorship Test
 - Take (some) LP gap instances to UG-hardness.
- More cut problems?
 - General theorem that unifies current results?
 - How to formally unify various cut problems?

Open Problems

- Flow-Cut LP may be still optimal (save $2^{O(k^2)}$ time)!
 - $\exists G, H \text{ s.t. } LP(H, G) < ALG(H, G)$
 - But maybe $\max_{G} \frac{LP(H,G)}{OPT(H,G)} = \max_{G} \frac{ALG(H,G)}{OPT(H,G)}$??
- "Interesting H" where we can do much better than $|E_H|$ -approx.?
 - Multiway Cut, Linear-k-Cut, ???
 - Using the new LP?
- Optimal rounding algorithms?
 - Undirected Multiway Cut [MNRS 08], Min CSP [EVW 13]

Thank you!

