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« denotes machine model:
@ [°: identical machines, p; = size of j
@ [?: unrelated machines, p; ; = size of j on machine ¢

@ (): related machines, p; ; = p;/si

[ denotes additional constraints:
@ r;: each job j has an arrival time r;
@ prec: precedence constraints,
j < j' requires j' to start after j completes

@ p; = 1: all jobs have the same size

~ denotes objective:
o in this talk it is always ), w;C}
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® 7, 1€ M,je Js>r;: whether job j is scheduled on
1 with starting time s

total height < 1
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machine ' — el
e — C; = average
2T ‘ of right endpoints
machine 7" [ ]« |

@ to capture j < j': Cy > Cj +pjr
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@ for each j € J, independently do:
@ et (i;,s;) = (¢,s) with probability x;
Q@  choose 7; from [s;, s; 4 p;; ;] uniformly at random

© for each 7 € M, schedule jobs assigned to 7 in increasing
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Lemma E[C}] <2 Zi,s Yis(s+pij)

e Fixing j,i; = 7,s; and 7; and condition on them

° ]E[C-|z'j =1i,8;,7] <21+ pij
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E[C;] < 22151175(5“‘1)17)
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j’;ﬁj:ij/zz',ﬂ'j/ <Tj

@ Assuming machine ¢ is “fully packed”

e Bounding (|idle time| before 7;) by 7; too pessimistic?

@ If many rectangles have small length: many jobs are
before 7; with high prob. = some busy intervals

@ The only bad case: most rectangles have length >> 7;
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Improving the Factor of 2

@ Choose each 7; from a different distribution (instead of
uniformly between s; and s; + p;; ;)
e Shift mass from left to center: long jobs are less likely to
delay j
o Shift mass from right to center: not increase E[7;|i;, s;]

Choosing each 7; uniformly from [s; + dp; j, s; + (1 — d)p; 4]
for small 9 > 0 can already improve the ratio 2!
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Analyze Effect of Using Non-Uniform Distributions

@ Let O be distribution over [0, 1] for shifting parameters
@ ie 7, =5;+0;pi;, where 0, ~ ©

C; = Z Dij + (\idle time| before Tj) + Dij

j’;éj:ij/:i,ﬂ'j/ <7j

Bound first two terms by >
Final ratio depends on

(contribution of R)

rectangles R

expected contribution of R

max
rectangles R area of R before T

which depends on of ©

Use computer program to find best ®
Find good fit for the distribution
Purely analytical proof for approximation ratio



Probability Density Function for ©®

05

1(0) = 0.170202 4+ 0.57680 + 0.8746 if 0 < O < 0.85897
o if 85897 < 0 < 1
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Thm There is a 1.8786-approx. for R|r;| >
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@ solve time-indexed LP relaxation to obtain {z; ;,}

]GJ

@ for each j € J, independently do:
@ et (i;,s;) = (¢,s) with probability x; ;
Qo choose 0, from ©, and let 7; = s, + iji].,j

© for each 7 € M, schedule jobs assigned to i in increasing
order of 7;, pretending 7;'s are releasing times
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@ 1z, € |0,1]: j scheduled on interval (s, s+ p;|?
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List Scheduling Algorithm Gives 4-Approximation

© solve LP and let C; be fractional completion time of j
@ for every job j in non-decreasing order of C; — p;/2

(3 ) schedule j as early as possible subject to
machine-capacity constraints and precedence constraints.

[

m=3
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Lemma B < 2C;.

Proof.
e C; —p;j/2: horizontal mass center of rectangles for j

° Zj’ considerred before ij = total area < 2m< pJ/2)
@ length of busy time % < 204

H-mass-center < C; — p;/2 total height < m
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Lemma B < ;C;

v

< -~ ¢ fraction - - > - - - - (1 — 9) fraction------- >

@ Bound can not be tight for every 6 € [0,1/2]!

Lemma E9~3[0,1/2] B < 20]

@ Approximation ratio = 2 + Eg.. 0,1/2] ﬁ =242In2



Summary for P|prec| ) w;C;

Thm There is a (2 4 21n 2)-approximation for
Plprec| >, w;C;.

@ solve LP and let C; be fractional completion time of j

@ choose 6 ~x [0,1/2]

© for every job j in non-decreasing order of C'; — p; + 0p;

Q schedule j as early as possible subject to
machine-capacity constraints and precedence constraints.
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Open Problems

o Better approximation for R|r;|>_;w;C;? (APX-hardness
known)

o (1.5 — c)-approximation for R|[ >_, w;C; with a
reasonable ¢ > 07 (APX-hardness known)

@ 2-approximation for P|prec, p; = 1|3, w;C;7?
(UGC-2-hardness known)

@ Improving our O(logm/loglogm)-approximation for

Qlprec| Y-, w;C;?
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