Improved Approximation Algorithms for Non-Preemptive Scheduling Problems via Time-Indexed LP Relaxations

> Shi Li, *University at Buffalo* Sep 12, 2017, UC Berkeley

2 1.8786-Approximation for $R|r_j|\sum_j w_j C_j|$

3 $(2+2\ln 2)$ -Approximation for $P|\text{prec}|\sum_j w_j C_j$

Non-Preemptive Scheduling Problems to Minimize Weighted Completion Time

• set J of jobs, set M of machines, w_j = weight of job j

Non-Preemptive Scheduling Problems to Minimize Weighted Completion Time

- set J of jobs, set M of machines, w_j = weight of job j
- schedule J non-preemptively on M to minimize

$$\sum_{j \in J} w_j C_j, \text{ where } C_j = \text{completion time of } j.$$

Non-Preemptive Scheduling Problems to Minimize Weighted Completion Time

- set J of jobs, set M of machines, w_j = weight of job j
- schedule J non-preemptively on M to minimize

$$\sum_{j \in J} w_j C_j, \text{ where } C_j = \text{completion time of } j.$$

 $\sum_{j \in J} w_j C_j = \mathbf{3} \times \mathbf{4} + \mathbf{6} \times \mathbf{6} + 2 \times 11 + 1 \times \mathbf{3} + 4 \times \mathbf{9} = 109$

 α denotes machine model:

 α denotes machine model:

• P: identical machines, $p_j = \text{size of } j$

 α denotes machine model:

- P: identical machines, $p_j = \text{size of } j$
- R: unrelated machines, $p_{i,j} = \text{size of } j$ on machine i

 α denotes machine model:

- P: identical machines, p_j = size of j
- R: unrelated machines, $p_{i,j} = size \text{ of } j$ on machine i
- Q: related machines, $p_{i,j} = p_j/s_i$

 α denotes machine model:

- P: identical machines, p_j = size of j
- R: unrelated machines, $p_{i,j} = \text{size of } j$ on machine i
- Q: related machines, $p_{i,j} = p_j/s_i$

 β denotes additional constraints:

 α denotes machine model:

- P: identical machines, p_j = size of j
- R: unrelated machines, $p_{i,j} = \text{size of } j$ on machine i
- Q: related machines, $p_{i,j} = p_j/s_i$
- β denotes additional constraints:
 - r_j : each job j has an arrival time r_j

 α denotes machine model:

- P: identical machines, p_j = size of j
- R: unrelated machines, $p_{i,j} = \text{size of } j$ on machine i
- Q: related machines, $p_{i,j} = p_j/s_i$
- β denotes additional constraints:
 - r_j : each job j has an arrival time r_j
 - prec: precedence constraints,

 $j \prec j'$ requires j' to start after j completes

 α denotes machine model:

- P: identical machines, p_j = size of j
- R: unrelated machines, $p_{i,j} = \text{size of } j$ on machine i
- Q: related machines, $p_{i,j} = p_j/s_i$
- β denotes additional constraints:
 - r_j : each job j has an arrival time r_j
 - prec: precedence constraints,
 - $j \prec j'$ requires j' to start after j completes
 - $p_j = 1$: all jobs have the same size

 α denotes machine model:

- P: identical machines, $p_j = size of j$
- R: unrelated machines, $p_{i,j}$ = size of j on machine i
- Q: related machines, $p_{i,j} = p_j/s_i$
- β denotes additional constraints:
 - r_j : each job j has an arrival time r_j
 - prec: precedence constraints,
 - $j\prec j'$ requires j' to start after j completes
 - $p_j = 1$: all jobs have the same size

 γ denotes objective:

 α denotes machine model:

- P: identical machines, $p_j = size of j$
- **R**: unrelated machines, $p_{i,j} = \text{size of } j$ on machine i
- Q: related machines, $p_{i,j} = p_j/s_i$
- β denotes additional constraints:
 - r_j : each job j has an arrival time r_j
 - prec: precedence constraints,
 - $j\prec j'$ requires j' to start after j completes
 - $p_j = 1$: all jobs have the same size
- γ denotes objective:
 - in this talk it is always $\sum_{j} w_{j}C_{j}$

List of Our Results

Problems	Prev. approx. ratio	Our approx. ratio
$P \text{prec} \sum_j w_j C_j$	4 [1]	$2 + 2 \ln 2$
$P \text{prec}, p_j = 1 \sum_j w_j C_j$	3 [1]	$1 + \sqrt{2}$
$Q \text{prec} \sum_j w_j C_j$	$O(\log m)^{[2]}$	$O(\frac{\log m}{\log\log m})$
$R \sum_j w_j C_j$	$1.5 - \epsilon^{[3]}$	$1.5 - \frac{1}{6000}$
$R r_j \sum_j w_j C_j$	2 [4]	1.8786

- 1 [Munier-Queyranne-Schulz' 98]
- 2 [Chudak-Shmoys' 97]
- 3 [Bansal-Srinivasan-Svensson' 16]
- 4 [Skutella' 01], [Schulz and Skutella' 02]

List of Our Results

Problems	Prev. approx. ratio	Our approx. ratio
$P \text{prec} \sum_j w_j C_j$	4 [1]	$2+2\ln 2$
$P \text{prec}, p_j = 1 \sum_j w_j C_j$	3 [1]	$1+\sqrt{2}$
$Q \text{prec} \sum_j w_j C_j$	$O(\log m)^{[2]}$	$O(\frac{\log m}{\log \log m})$
$R \sum_j w_j C_j$	$1.5 - \epsilon^{[3]}$	$1.5 - \frac{1}{6000}$
$\overline{R r_j \sum_j w_j C_j}$	2 [4]	1.8786

- 1 [Munier-Queyranne-Schulz' 98]
- 2 [Chudak-Shmoys' 97]
- 3 [Bansal-Srinivasan-Svensson' 16]
- 4 [Skutella' 01], [Schulz and Skutella' 02]
 - Based on [Im-Li, FOCS 2016] and [Li, FOCS 2017]

List of Our Results

Problems	Prev. approx. ratio	Our approx. ratio
$P ext{prec} \sum_j w_j C_j$	4 [1]	$2+2\ln 2$
$P \text{prec}, p_j = 1 \sum_j w_j C_j$	3 [1]	$1+\sqrt{2}$
$Q \text{prec} \sum_j w_j C_j$	$O(\log m)^{[2]}$	$O(\frac{\log m}{\log \log m})$
$R \sum_{j} w_j C_j$	$1.5 - \epsilon^{[3]}$	$1.5 - \frac{1}{6000}$
$R r_j \sum_j w_j C_j$	2 [4]	1.8786

- 1 [Munier-Queyranne-Schulz' 98]
- 2 [Chudak-Shmoys' 97]
- 3 [Bansal-Srinivasan-Svensson' 16]
- 4 [Skutella' 01], [Schulz and Skutella' 02]
 - Based on [Im-Li, FOCS 2016] and [Li, FOCS 2017]

• $x_{i,j,s}$, $i \in M, j \in J, s \ge r_j$: whether job j is scheduled on i with starting time s

• to capture $j \prec j'$: $C_{j'} \ge C_j + p_{j'}$

1 Introduction

2 1.8786-Approximation for $R|r_j|\sum_j w_j C_j$

3 $(2+2\ln 2)$ -Approximation for $P|\text{prec}|\sum_j w_j C_j$

Recall the problem $R|r_j|\sum_j w_j C_j$

- R: unrelated machine scheduling
- r_j : job j has arrival time r_j

Recall the problem $R|r_j|\sum_j w_j C_j$

- R: unrelated machine scheduling
- r_j : job j has arrival time r_j

• solve time-indexed LP relaxation to obtain $\{x_{i,j,s}\}$

- solve time-indexed LP relaxation to obtain $\{x_{i,j,s}\}$
- **2** for each $j \in J$, independently do:

- solve time-indexed LP relaxation to obtain $\{x_{i,j,s}\}$
- **2** for each $j \in J$, independently do:
- It $(i_j, s_j) = (i, s)$ with probability $x_{i,j,s}$

- solve time-indexed LP relaxation to obtain $\{x_{i,j,s}\}$
- 2 for each $j \in J$, independently do:
- It $(i_j, s_j) = (i, s)$ with probability $x_{i,j,s}$
- choose τ_j from $[s_j, s_j + p_{i_j,j}]$ uniformly at random

- solve time-indexed LP relaxation to obtain $\{x_{i,j,s}\}$
- 2 for each $j \in J$, independently do:

3 let
$$(i_j, s_j) = (i, s)$$
 with probability $x_{i,j,s}$

- choose au_j from $[s_j, s_j + p_{i_j,j}]$ uniformly at random
- for each $i \in M$, schedule jobs assigned to i in increasing order of τ_j , pretending τ_j 's are arrival times

- solve time-indexed LP relaxation to obtain $\{x_{i,j,s}\}$
- 2 for each $j \in J$, independently do:
- Solution let $(i_j, s_j) = (i, s)$ with probability $x_{i,j,s}$
- choose au_j from $[s_j, s_j + p_{i_j,j}]$ uniformly at random
- for each $i \in M$, schedule jobs assigned to i in increasing order of τ_j , pretending τ_j 's are arrival times

Proof of 2-Approximation

Lemma
$$\mathbb{E}[C_j] \leq 2 \sum_{i,s} x_{i,s}(s+p_{i,j})$$

Proof of 2-Approximation

• Fixing $j, i_j = i, s_j$ and τ_j and condition on them

• Fixing $j, i_j = i, s_j$ and τ_j and condition on them • $C_j = \sum_{j' \neq j: i_{j'} = i, \tau_{j'} < \tau_j} p_{i,j'} + (|\text{idle time}| \text{ before } \tau_j) + p_{i,j}$

• Fixing $j, i_j = i, s_j$ and τ_j and condition on them

• $C_j = \sum_{j' \neq j: i_{j'} = i, \tau_{j'} < \tau_j} p_{i,j'} + (|\text{idle time}| \text{ before } \tau_j) + p_{i,j}$

• $\mathbb{E}[\text{first term}|i_j = i, s_j, \tau_j] \le \tau_j$

• Fixing $j, i_j = i, s_j$ and τ_j and condition on them

- $C_j = \sum_{j' \neq j: i_{j'} = i, \tau_{j'} < \tau_j} p_{i,j'} + (|\text{idle time}| \text{ before } \tau_j) + p_{i,j}$
- $\mathbb{E}[\text{first term}|i_j = i, s_j, \tau_j] \le \tau_j$ second term $\le \tau_j$

- Fixing $j, i_j = i, s_j$ and τ_j and condition on them
- $\mathbb{E}[C_j|i_j = i, s_j, \tau_j] \le 2\tau_j + p_{i,j}$

- $\bullet~\mbox{Fixing}~j, i_j = i, s_j ~\mbox{and}~\tau_j$ and condition on them
- $\mathbb{E}[C_j|i_j = i, s_j, \tau_j] \le 2\tau_j + p_{i,j}$
- $\mathbb{E}[\tau_j|i_j=i,s_j]=s_j+p_{i,j}/2$

- $\bullet~\mbox{Fixing}~j, i_j = i, s_j ~\mbox{and}~\tau_j$ and condition on them
- $\mathbb{E}[C_j|i_j = i, s_j, \tau_j] \le 2\tau_j + p_{i,j}$
- $\mathbb{E}[\tau_j|i_j=i,s_j]=s_j+p_{i,j}/2$
- $\mathbb{E}[C_j|i_j = i, s_j] \le 2(s_j + p_{i,j}/2) + p_{i,j} = 2(s_j + p_{i,j})$

- Fixing $j, i_j = i, s_j$ and τ_j and condition on them
- $\mathbb{E}[C_j|i_j = i, s_j, \tau_j] \le 2\tau_j + p_{i,j}$
- $\mathbb{E}[\tau_j|i_j=i,s_j]=s_j+p_{i,j}/2$
- $\mathbb{E}[C_j|i_j = i, s_j] \le 2(s_j + p_{i,j}/2) + p_{i,j} = 2(s_j + p_{i,j})$
- $\mathbb{E}[C_j] \le 2 \sum_{i,s} x_{i,j,s}(s+p_{i,j})$

$$C_j = \sum_{j' \neq j: i_{j'} = i, \tau_{j'} < \tau_j} p_{i,j'} + \left(|\text{idle time}| \text{ before } \tau_j \right) + p_{i,j}$$

• Assuming machine *i* is "fully packed"

$$C_j = \sum_{j' \neq j: i_{j'} = i, \tau_{j'} < \tau_j} p_{i,j'} + \left(|\text{idle time}| \text{ before } \tau_j \right) + p_{i,j}$$

- Assuming machine *i* is "fully packed"
- Bounding (idle time before τ_j) by τ_j too pessimistic?

$$C_j = \sum_{j' \neq j: i_{j'} = i, \tau_{j'} < \tau_j} p_{i,j'} + \left(|\text{idle time}| \text{ before } \tau_j \right) + p_{i,j}$$

- Assuming machine *i* is "fully packed"
- Bounding (idle time before τ_j) by τ_j too pessimistic?
- If many rectangles have small length: many jobs are before τ_j with high prob. ⇒ some busy intervals

$$C_j = \sum_{j' \neq j: i_{j'} = i, \tau_{j'} < \tau_j} p_{i,j'} + \left(|\text{idle time}| \text{ before } \tau_j \right) + p_{i,j}$$

- Assuming machine *i* is "fully packed"
- Bounding (idle time before τ_j) by τ_j too pessimistic?
- If many rectangles have small length: many jobs are before τ_j with high prob. ⇒ some busy intervals
- The only bad case: most rectangles have length $>> \tau_j$

Improving the Factor of 2

- Choose each τ_j from a different distribution (instead of uniformly between s_j and s_j + p_{i_j,j})
 - Shift mass from left to center: long jobs are less likely to delay \boldsymbol{j}

Improving the Factor of 2

- Choose each τ_j from a different distribution (instead of uniformly between s_j and s_j + p_{ij,j})
 - Shift mass from left to center: long jobs are less likely to delay \boldsymbol{j}
 - Shift mass from right to center: not increase $\mathbb{E}[\tau_j|i_j,s_j]$

Improving the Factor of 2

- Choose each τ_j from a different distribution (instead of uniformly between s_j and s_j + p_{ij,j})
 - Shift mass from left to center: long jobs are less likely to delay j
 - Shift mass from right to center: not increase $\mathbb{E}[au_j|i_j,s_j]$

Choosing each τ_j uniformly from $[s_j + \delta p_{i,j}, s_j + (1 - \delta)p_{i,j}]$ for small $\delta > 0$ can already improve the ratio 2!

- Let Θ be distribution over [0,1] for shifting parameters
- i.e, $\tau_j = s_j + \frac{\theta_j}{p_{i,j}}$, where $\theta_j \sim \Theta$

$$C_j = \sum_{j' \neq j: i_{j'} = i, \tau_{j'} < \tau_j} p_{i,j'} + \left(|\text{idle time}| \text{ before } \tau_j \right) + p_{i,j}$$

- Let Θ be distribution over [0,1] for shifting parameters
- i.e, $\tau_j = s_j + \theta_j p_{i,j}$, where $\theta_j \sim \Theta$

$$C_j = \sum_{j' \neq j: i_{j'} = i, \tau_{j'} < \tau_j} p_{i,j'} + \left(|\text{idle time}| \text{ before } \tau_j \right) + p_{i,j}$$

• Bound first two terms by $\sum_{\text{rectangles } R} (\text{contribution of } R)$

- Let Θ be distribution over [0,1] for shifting parameters
- i.e, $\tau_j = s_j + \theta_j p_{i,j}$, where $\theta_j \sim \Theta$

$$C_j = \sum_{j' \neq j: i_{j'} = i, \tau_{j'} < \tau_j} p_{i,j'} + \left(|\text{idle time}| \text{ before } \tau_j \right) + p_{i,j}$$

- Bound first two terms by $\sum_{\text{rectangles } R} (\text{contribution of } R)$
- Final ratio depends on

 $\max_{\text{rectangles } R} \frac{\text{expected contribution of } R}{\text{area of } R \text{ before } \tau_j},$

which depends on of Θ

- Let Θ be distribution over [0,1] for shifting parameters
- i.e, $\tau_j = s_j + \theta_j p_{i,j}$, where $\theta_j \sim \Theta$

$$C_j = \sum_{j' \neq j: i_{j'} = i, \tau_{j'} < \tau_j} p_{i,j'} + \left(|\text{idle time}| \text{ before } \tau_j \right) + p_{i,j}$$

- Bound first two terms by $\sum_{\text{rectangles } R} (\text{contribution of } R)$
- Final ratio depends on

 $\max_{\text{rectangles } R} \frac{\text{expected contribution of } R}{\text{area of } R \text{ before } \tau_j},$

which depends on of Θ

 \bullet Use computer program to find best Θ

- Let Θ be distribution over [0,1] for shifting parameters
- i.e, $\tau_j = s_j + \theta_j p_{i,j}$, where $\theta_j \sim \Theta$

$$C_j = \sum_{j' \neq j: i_{j'} = i, \tau_{j'} < \tau_j} p_{i,j'} + \left(|\text{idle time}| \text{ before } \tau_j \right) + p_{i,j}$$

- Bound first two terms by $\sum_{\text{rectangles } R} (\text{contribution of } R)$
- Final ratio depends on

 $\max_{\text{rectangles } R} \frac{\text{expected contribution of } R}{\text{area of } R \text{ before } \tau_j},$

which depends on of Θ

- \bullet Use computer program to find best Θ
- Find good fit for the distribution

- $\bullet \ \mbox{Let} \ \Theta$ be distribution over [0,1] for shifting parameters
- i.e, $\tau_j = s_j + \frac{\theta_j p_{i,j}}{p_{i,j}}$, where $\theta_j \sim \Theta$

$$C_j = \sum_{j' \neq j: i_{j'} = i, \tau_{j'} < \tau_j} p_{i,j'} + \left(|\text{idle time}| \text{ before } \tau_j \right) + p_{i,j}$$

- Bound first two terms by $\sum_{\text{rectangles } R} (\text{contribution of } R)$
- Final ratio depends on

 $\max_{\text{rectangles } R} \frac{\text{expected contribution of } R}{\text{area of } R \text{ before } \tau_j},$

which depends on of Θ

- \bullet Use computer program to find best Θ
- Find good fit for the distribution
- Purely analytical proof for approximation ratio

Probability Density Function for Θ

Summary for $R|r_j|\sum_{j\in J} w_j C_j$

Thm There is a 1.8786-approx. for
$$R|r_j|\sum_{j\in J} w_jC_j$$
.

Algorithm for $R|r_j|\sum_{j\in J} w_j C_j$

- solve time-indexed LP relaxation to obtain $\{x_{i,j,s}\}$
- **2** for each $j \in J$, independently do:
- It $(i_j, s_j) = (i, s)$ with probability $x_{i,j,s}$
- choose θ_j from Θ , and let $\tau_j = s_j + \theta_j p_{i_j,j}$
- for each $i \in M$, schedule jobs assigned to i in increasing order of τ_j , pretending τ_j 's are releasing times

1 Introduction

2 1.8786-Approximation for $R|r_j|\sum_j w_j C_j$

3 $(2+2\ln 2)$ -Approximation for $P|\text{prec}|\sum_j w_j C_j$

- P: identical machines (instead of unrelated machines)
- prec: we have precedence constraints

- solve LP and let C_j be fractional completion time of j
- 2 for every job j in non-decreasing order of $C_j-p_j/2$

- solve LP and let C_j be fractional completion time of j
- 2 for every job j in non-decreasing order of $C_j-p_j/2$
- schedule j as early as possible subject to machine-capacity constraints and precedence constraints.

- solve LP and let C_j be fractional completion time of j
- 2 for every job j in non-decreasing order of $C_j-p_j/2$
- schedule j as early as possible subject to machine-capacity constraints and precedence constraints.

- solve LP and let C_j be fractional completion time of j
- 2 for every job j in non-decreasing order of $C_j-p_j/2$
- schedule j as early as possible subject to machine-capacity constraints and precedence constraints.

Analysis of List-Scheduling Algorithm

• \tilde{C}_j : completion time of j given by algorithm

- \tilde{C}_j : completion time of j given by algorithm
- $\tilde{C}_j = I + B$
- I = total idle time before \tilde{C}_j
- $B = \text{total busy time before } \tilde{C}_j$
- \tilde{C}_j : completion time of j given by algorithm
- $\tilde{C}_j = I + B$
- I = total idle time before \tilde{C}_j
- $B = \text{total busy time before } \tilde{C}_j$

Lemma $I \leq 2C_j$.

- \tilde{C}_j : completion time of j given by algorithm
- $\tilde{C}_j = I + B$
- I = total idle time before \tilde{C}_j
- $B = \text{total busy time before } \tilde{C}_j$

Lemma $I \leq 2C_j$.

Lemma $B \leq 2C_j$.

Lemma
$$B \leq 2C_j$$
.

Lemma
$$B \leq 2C_j$$
.

Lemma
$$B \leq 2C_j$$
.

Lemma
$$B \leq 2C_j$$
.

Lemma
$$B \leq 2C_j$$
.

Lemma $B \leq 2C_i$.

Proof.

- $C_j p_j/2$: horizontal mass center of rectangles for j
- $\sum_{j' \text{ considerred before } j} p_{j'} = \text{total area} \le 2m(C_j p_j/2)$

Lemma $B \leq 2C_j$.

Proof.

- $C_j p_j/2$: horizontal mass center of rectangles for j
- $\sum_{j' \text{ considerred before } j} p_{j'} = \text{total area} \le 2m(C_j p_j/2)$
- length of busy time $\frac{2m(C_j p_j/2)}{m} \le 2C_j$

- solve LP and let C_j be fractional completion time of j
 choose θ ~_R [0, 1/2]
- for every job j in non-decreasing order of $C_j p_j + \theta p_j$
- schedule j as early as possible subject to machine-capacity constraints and precedence constraints.

- solve LP and let C_j be fractional completion time of j
 choose θ ~_R [0, 1/2]
- for every job j in non-decreasing order of $C_j p_j + \theta p_j$
- schedule j as early as possible subject to machine-capacity constraints and precedence constraints.

Lemma $I \leq \frac{1}{1-\theta}C_j$

- solve LP and let C_j be fractional completion time of j
 choose θ ~_R [0, 1/2]
- for every job j in non-decreasing order of $C_j p_j + \theta p_j$
- schedule j as early as possible subject to machine-capacity constraints and precedence constraints.

Lemma
$$I \leq \frac{1}{1-\theta}C_j$$

Lemma $B \leq \frac{1}{\theta}C_j$

- solve LP and let C_j be fractional completion time of j
 choose θ ∼_R [0, 1/2]
- for every job j in non-decreasing order of $C_j p_j + \theta p_j$
- schedule j as early as possible subject to machine-capacity constraints and precedence constraints.

Lemma
$$I \leq \frac{1}{1-\theta}C_j$$

Lemma
$$B \leq \frac{1}{\theta}C_{\beta}$$

• Bound can not be tight for every $\theta \in [0, 1/2]!$

• Bound can not be tight for every $\theta \in [0, 1/2]!$

Lemma $\mathbb{E}_{\theta \sim_R[0,1/2]} B \leq 2C_j$.

$$C_j - (1 - \theta)p_j \approx C_j$$

• Bound can not be tight for every $\theta \in [0, 1/2]!$

Lemma $\mathbb{E}_{\theta \sim_R[0,1/2]} B \leq 2C_j$.

• Approximation ratio = $2 + \mathbb{E}_{\theta \sim_R[0,1/2]} \frac{1}{1-\theta} = 2 + 2 \ln 2$

Thm There is a $(2 + 2 \ln 2)$ -approximation for $P|\operatorname{prec}|\sum_j w_j C_j$.

- solve LP and let C_j be fractional completion time of j
- \bigcirc choose $\theta \sim_R [0, 1/2]$
- for every job j in non-decreasing order of $C_j p_j + \theta p_j$
- schedule j as early as possible subject to machine-capacity constraints and precedence constraints.

• Better approximation for $R|r_j|\sum_j w_j C_j$? (APX-hardness known)

- Better approximation for $R|r_j|\sum_j w_j C_j$? (APX-hardness known)
- (1.5 c)-approximation for $R||\sum_j w_j C_j$ with a reasonable c > 0? (APX-hardness known)

- Better approximation for $R|r_j|\sum_j w_j C_j$? (APX-hardness known)
- (1.5 c)-approximation for $R||\sum_j w_j C_j$ with a reasonable c > 0? (APX-hardness known)
- 2-approximation for $P|\text{prec}, p_j = 1|\sum_j w_j C_j$? (UGC-2-hardness known)

- Better approximation for $R|r_j|\sum_j w_j C_j$? (APX-hardness known)
- (1.5 c)-approximation for $R||\sum_j w_j C_j$ with a reasonable c > 0? (APX-hardness known)
- 2-approximation for $P|\text{prec}, p_j = 1|\sum_j w_j C_j$? (UGC-2-hardness known)
- Improving our $O(\log m / \log \log m)$ -approximation for $Q|\operatorname{prec}|\sum_j w_j C_j$?