
Improved Approximation Algorithms for

Non-Preemptive Scheduling Problems via

Time-Indexed LP Relaxations

Shi Li, University at Buffalo

Sep 12, 2017, UC Berkeley

Outline

1 Introduction

2 1.8786-Approximation for R|rj|
∑

j wjCj

3 (2 + 2 ln 2)-Approximation for P |prec|∑j wjCj

Non-Preemptive Scheduling Problems to Minimize

Weighted Completion Time

set J of jobs, set M of machines, wj = weight of job j

schedule J non-preemptively on M to minimize∑
j∈J

wjCj,where Cj = completion time of j.

Machine 1

Machine 2

0 1 2 3 4 5 6 7 8 9 10 11 12

w = 3

w = 1

w = 6

w = 4

w = 2

∑
j∈J

wjCj = 3× 4 + 6× 6 + 2× 11 + 1× 3 + 4× 9 = 109

Non-Preemptive Scheduling Problems to Minimize

Weighted Completion Time

set J of jobs, set M of machines, wj = weight of job j

schedule J non-preemptively on M to minimize∑
j∈J

wjCj,where Cj = completion time of j.

Machine 1

Machine 2

0 1 2 3 4 5 6 7 8 9 10 11 12

w = 3

w = 1

w = 6

w = 4

w = 2

∑
j∈J

wjCj = 3× 4 + 6× 6 + 2× 11 + 1× 3 + 4× 9 = 109

Non-Preemptive Scheduling Problems to Minimize

Weighted Completion Time

set J of jobs, set M of machines, wj = weight of job j

schedule J non-preemptively on M to minimize∑
j∈J

wjCj,where Cj = completion time of j.

Machine 1

Machine 2

0 1 2 3 4 5 6 7 8 9 10 11 12

w = 3

w = 1

w = 6

w = 4

w = 2

∑
j∈J

wjCj = 3× 4 + 6× 6 + 2× 11 + 1× 3 + 4× 9 = 109

α|β|γ-Notation of Graham et al.

α denotes machine model:

P : identical machines, pj = size of j

R: unrelated machines, pi,j = size of j on machine i

Q: related machines, pi,j = pj/si

β denotes additional constraints:

rj: each job j has an arrival time rj

prec: precedence constraints,
j ≺ j′ requires j′ to start after j completes

pj = 1: all jobs have the same size

γ denotes objective:

in this talk it is always
∑

j wjCj

α|β|γ-Notation of Graham et al.

α denotes machine model:

P : identical machines, pj = size of j

R: unrelated machines, pi,j = size of j on machine i

Q: related machines, pi,j = pj/si

β denotes additional constraints:

rj: each job j has an arrival time rj

prec: precedence constraints,
j ≺ j′ requires j′ to start after j completes

pj = 1: all jobs have the same size

γ denotes objective:

in this talk it is always
∑

j wjCj

α|β|γ-Notation of Graham et al.

α denotes machine model:

P : identical machines, pj = size of j

R: unrelated machines, pi,j = size of j on machine i

Q: related machines, pi,j = pj/si

β denotes additional constraints:

rj: each job j has an arrival time rj

prec: precedence constraints,
j ≺ j′ requires j′ to start after j completes

pj = 1: all jobs have the same size

γ denotes objective:

in this talk it is always
∑

j wjCj

α|β|γ-Notation of Graham et al.

α denotes machine model:

P : identical machines, pj = size of j

R: unrelated machines, pi,j = size of j on machine i

Q: related machines, pi,j = pj/si

β denotes additional constraints:

rj: each job j has an arrival time rj

prec: precedence constraints,
j ≺ j′ requires j′ to start after j completes

pj = 1: all jobs have the same size

γ denotes objective:

in this talk it is always
∑

j wjCj

α|β|γ-Notation of Graham et al.

α denotes machine model:

P : identical machines, pj = size of j

R: unrelated machines, pi,j = size of j on machine i

Q: related machines, pi,j = pj/si

β denotes additional constraints:

rj: each job j has an arrival time rj

prec: precedence constraints,
j ≺ j′ requires j′ to start after j completes

pj = 1: all jobs have the same size

γ denotes objective:

in this talk it is always
∑

j wjCj

α|β|γ-Notation of Graham et al.

α denotes machine model:

P : identical machines, pj = size of j

R: unrelated machines, pi,j = size of j on machine i

Q: related machines, pi,j = pj/si

β denotes additional constraints:

rj: each job j has an arrival time rj

prec: precedence constraints,
j ≺ j′ requires j′ to start after j completes

pj = 1: all jobs have the same size

γ denotes objective:

in this talk it is always
∑

j wjCj

α|β|γ-Notation of Graham et al.

α denotes machine model:

P : identical machines, pj = size of j

R: unrelated machines, pi,j = size of j on machine i

Q: related machines, pi,j = pj/si

β denotes additional constraints:

rj: each job j has an arrival time rj

prec: precedence constraints,
j ≺ j′ requires j′ to start after j completes

pj = 1: all jobs have the same size

γ denotes objective:

in this talk it is always
∑

j wjCj

α|β|γ-Notation of Graham et al.

α denotes machine model:

P : identical machines, pj = size of j

R: unrelated machines, pi,j = size of j on machine i

Q: related machines, pi,j = pj/si

β denotes additional constraints:

rj: each job j has an arrival time rj

prec: precedence constraints,
j ≺ j′ requires j′ to start after j completes

pj = 1: all jobs have the same size

γ denotes objective:

in this talk it is always
∑

j wjCj

α|β|γ-Notation of Graham et al.

α denotes machine model:

P : identical machines, pj = size of j

R: unrelated machines, pi,j = size of j on machine i

Q: related machines, pi,j = pj/si

β denotes additional constraints:

rj: each job j has an arrival time rj

prec: precedence constraints,
j ≺ j′ requires j′ to start after j completes

pj = 1: all jobs have the same size

γ denotes objective:

in this talk it is always
∑

j wjCj

α|β|γ-Notation of Graham et al.

α denotes machine model:

P : identical machines, pj = size of j

R: unrelated machines, pi,j = size of j on machine i

Q: related machines, pi,j = pj/si

β denotes additional constraints:

rj: each job j has an arrival time rj

prec: precedence constraints,
j ≺ j′ requires j′ to start after j completes

pj = 1: all jobs have the same size

γ denotes objective:

in this talk it is always
∑

j wjCj

α|β|γ-Notation of Graham et al.

α denotes machine model:

P : identical machines, pj = size of j

R: unrelated machines, pi,j = size of j on machine i

Q: related machines, pi,j = pj/si

β denotes additional constraints:

rj: each job j has an arrival time rj

prec: precedence constraints,
j ≺ j′ requires j′ to start after j completes

pj = 1: all jobs have the same size

γ denotes objective:

in this talk it is always
∑

j wjCj

List of Our Results

Problems Prev. approx. ratio Our approx. ratio

P |prec|∑j wjCj 4 [1] 2 + 2 ln 2

P |prec, pj = 1|∑j wjCj 3 [1] 1 +
√
2

Q|prec|∑j wjCj O(logm) [2] O(logm
log logm

)

R||∑j wjCj 1.5− ε [3] 1.5− 1
6000

R|rj|
∑

j wjCj 2 [4] 1.8786

1 [Munier-Queyranne-Schulz’ 98]

2 [Chudak-Shmoys’ 97]

3 [Bansal-Srinivasan-Svensson’ 16]

4 [Skutella’ 01], [Schulz and Skutella’ 02]

Based on [Im-Li, FOCS 2016] and [Li, FOCS 2017]

List of Our Results

Problems Prev. approx. ratio Our approx. ratio

P |prec|∑j wjCj 4 [1] 2 + 2 ln 2

P |prec, pj = 1|∑j wjCj 3 [1] 1 +
√
2

Q|prec|∑j wjCj O(logm) [2] O(logm
log logm

)

R||∑j wjCj 1.5− ε [3] 1.5− 1
6000

R|rj|
∑

j wjCj 2 [4] 1.8786

1 [Munier-Queyranne-Schulz’ 98]

2 [Chudak-Shmoys’ 97]

3 [Bansal-Srinivasan-Svensson’ 16]

4 [Skutella’ 01], [Schulz and Skutella’ 02]

Based on [Im-Li, FOCS 2016] and [Li, FOCS 2017]

List of Our Results

Problems Prev. approx. ratio Our approx. ratio

P |prec|∑j wjCj 4 [1] 2 + 2 ln 2

P |prec, pj = 1|∑j wjCj 3 [1] 1 +
√
2

Q|prec|∑j wjCj O(logm) [2] O(logm
log logm

)

R||∑j wjCj 1.5− ε [3] 1.5− 1
6000

R|rj|
∑

j wjCj 2 [4] 1.8786

1 [Munier-Queyranne-Schulz’ 98]

2 [Chudak-Shmoys’ 97]

3 [Bansal-Srinivasan-Svensson’ 16]

4 [Skutella’ 01], [Schulz and Skutella’ 02]

Based on [Im-Li, FOCS 2016] and [Li, FOCS 2017]

Main Theme: Time-Indexed LP Relaxation

xi,j,s, i ∈M, j ∈ J, s ≥ rj: whether job j is scheduled on
i with starting time s

s s+ pi,j

xi,j,smachine i

to capture j ≺ j′: Cj′ ≥ Cj + pj′

Main Theme: Time-Indexed LP Relaxation

xi,j,s, i ∈M, j ∈ J, s ≥ rj: whether job j is scheduled on
i with starting time s

s s+ pi,j

xi,j,smachine i

to capture j ≺ j′: Cj′ ≥ Cj + pj′

Main Theme: Time-Indexed LP Relaxation

xi,j,s, i ∈M, j ∈ J, s ≥ rj: whether job j is scheduled on
i with starting time s

s s+ pi,j

xi,j,smachine i

total height ≤ 1

to capture j ≺ j′: Cj′ ≥ Cj + pj′

Main Theme: Time-Indexed LP Relaxation

xi,j,s, i ∈M, j ∈ J, s ≥ rj: whether job j is scheduled on
i with starting time s

s s+ pi,j

xi,j,smachine i

total height ≤ 1

total height = 1
machine i′

machine i′′

to capture j ≺ j′: Cj′ ≥ Cj + pj′

Main Theme: Time-Indexed LP Relaxation

xi,j,s, i ∈M, j ∈ J, s ≥ rj: whether job j is scheduled on
i with starting time s

s s+ pi,j

xi,j,smachine i

total height ≤ 1

total height = 1
machine i′

machine i′′

Cj = average
of right endpoints

to capture j ≺ j′: Cj′ ≥ Cj + pj′

Main Theme: Time-Indexed LP Relaxation

xi,j,s, i ∈M, j ∈ J, s ≥ rj: whether job j is scheduled on
i with starting time s

s s+ pi,j

xi,j,smachine i

total height ≤ 1

total height = 1
machine i′

machine i′′

Cj = average
of right endpoints

to capture j ≺ j′: Cj′ ≥ Cj + pj′

Outline

1 Introduction

2 1.8786-Approximation for R|rj|
∑

j wjCj

3 (2 + 2 ln 2)-Approximation for P |prec|∑j wjCj

Recall the problem R|rj|
∑

j wjCj

R: unrelated machine scheduling

rj: job j has arrival time rj

total height ≤ 1

s s+ pi,j

xi,j,s
machine i

Recall the problem R|rj|
∑

j wjCj

R: unrelated machine scheduling

rj: job j has arrival time rj

total height ≤ 1

s s+ pi,j

xi,j,s
machine i

machine i′

machine i′′

total height = 1

machine i

2-Approx. Algorithm

1 solve time-indexed LP relaxation to obtain {xi,j,s}

2 for each j ∈ J , independently do:

3 let (ij, sj) = (i, s) with probability xi,j,s
4 choose τj from [sj, sj + pij ,j] uniformly at random

5 for each i ∈M , schedule jobs assigned to i in increasing
order of τj, pretending τj’s are arrival times

machine i

2-Approx. Algorithm

1 solve time-indexed LP relaxation to obtain {xi,j,s}
2 for each j ∈ J , independently do:

3 let (ij, sj) = (i, s) with probability xi,j,s
4 choose τj from [sj, sj + pij ,j] uniformly at random

5 for each i ∈M , schedule jobs assigned to i in increasing
order of τj, pretending τj’s are arrival times

sj sj + pi,j

machine i

2-Approx. Algorithm

1 solve time-indexed LP relaxation to obtain {xi,j,s}
2 for each j ∈ J , independently do:

3 let (ij, sj) = (i, s) with probability xi,j,s

4 choose τj from [sj, sj + pij ,j] uniformly at random

5 for each i ∈M , schedule jobs assigned to i in increasing
order of τj, pretending τj’s are arrival times

sj τj sj + pi,j

machine i

2-Approx. Algorithm

1 solve time-indexed LP relaxation to obtain {xi,j,s}
2 for each j ∈ J , independently do:

3 let (ij, sj) = (i, s) with probability xi,j,s
4 choose τj from [sj, sj + pij ,j] uniformly at random

5 for each i ∈M , schedule jobs assigned to i in increasing
order of τj, pretending τj’s are arrival times

sj τj sj + pi,j

machine i

2-Approx. Algorithm

1 solve time-indexed LP relaxation to obtain {xi,j,s}
2 for each j ∈ J , independently do:

3 let (ij, sj) = (i, s) with probability xi,j,s
4 choose τj from [sj, sj + pij ,j] uniformly at random

5 for each i ∈M , schedule jobs assigned to i in increasing
order of τj, pretending τj’s are arrival times

sj τj sj + pi,j

machine i

2-Approx. Algorithm

1 solve time-indexed LP relaxation to obtain {xi,j,s}
2 for each j ∈ J , independently do:

3 let (ij, sj) = (i, s) with probability xi,j,s
4 choose τj from [sj, sj + pij ,j] uniformly at random

5 for each i ∈M , schedule jobs assigned to i in increasing
order of τj, pretending τj’s are arrival times

Proof of 2-Approximation

Lemma E[Cj] ≤ 2
∑

i,s xi,s(s+ pi,j)

mac. i sj τj
j

Fixing j, ij = i, sj and τj and condition on them

Cj =
∑

j′ 6=j:ij′=i,τj′<τj

pi,j′ +
(
|idle time| before τj

)
+ pi,j

E[first term|ij = i, sj, τj] ≤ τj

second term ≤ τj

Proof of 2-Approximation

Lemma E[Cj] ≤ 2
∑

i,s xi,s(s+ pi,j)

mac. i sj τj
j

Fixing j, ij = i, sj and τj and condition on them

Cj =
∑

j′ 6=j:ij′=i,τj′<τj

pi,j′ +
(
|idle time| before τj

)
+ pi,j

E[first term|ij = i, sj, τj] ≤ τj

second term ≤ τj

Proof of 2-Approximation

Lemma E[Cj] ≤ 2
∑

i,s xi,s(s+ pi,j)

mac. i sj τj
j

Fixing j, ij = i, sj and τj and condition on them

Cj =
∑

j′ 6=j:ij′=i,τj′<τj

pi,j′ +
(
|idle time| before τj

)
+ pi,j

E[first term|ij = i, sj, τj] ≤ τj

second term ≤ τj

Proof of 2-Approximation

Lemma E[Cj] ≤ 2
∑

i,s xi,s(s+ pi,j)

mac. i sj τj
j

Fixing j, ij = i, sj and τj and condition on them

Cj =
∑

j′ 6=j:ij′=i,τj′<τj

pi,j′ +
(
|idle time| before τj

)
+ pi,j

E[first term|ij = i, sj, τj] ≤ τj

second term ≤ τj

Proof of 2-Approximation

Lemma E[Cj] ≤ 2
∑

i,s xi,s(s+ pi,j)

mac. i sj τj
j

Fixing j, ij = i, sj and τj and condition on them

Cj =
∑

j′ 6=j:ij′=i,τj′<τj

pi,j′ +
(
|idle time| before τj

)
+ pi,j

E[first term|ij = i, sj, τj] ≤ τj second term ≤ τj

Proof of 2-Approximation

Lemma E[Cj] ≤ 2
∑

i,s yi,s(s+ pi,j)

mac. i sj τj
j

Fixing j, ij = i, sj and τj and condition on them

E[Cj|ij = i, sj, τj] ≤ 2τj + pi,j

E[τj|ij = i, sj] = sj + pi,j/2

E[Cj|ij = i, sj] ≤ 2(sj + pi,j/2) + pi,j = 2(sj + pi,j)

E[Cj] ≤ 2
∑

i,s xi,j,s(s+ pi,j)

Proof of 2-Approximation

Lemma E[Cj] ≤ 2
∑

i,s yi,s(s+ pi,j)

mac. i sj τj
j

Fixing j, ij = i, sj and τj and condition on them

E[Cj|ij = i, sj, τj] ≤ 2τj + pi,j

E[τj|ij = i, sj] = sj + pi,j/2

E[Cj|ij = i, sj] ≤ 2(sj + pi,j/2) + pi,j = 2(sj + pi,j)

E[Cj] ≤ 2
∑

i,s xi,j,s(s+ pi,j)

Proof of 2-Approximation

Lemma E[Cj] ≤ 2
∑

i,s yi,s(s+ pi,j)

mac. i sj τj
j

Fixing j, ij = i, sj and τj and condition on them

E[Cj|ij = i, sj, τj] ≤ 2τj + pi,j

E[τj|ij = i, sj] = sj + pi,j/2

E[Cj|ij = i, sj] ≤ 2(sj + pi,j/2) + pi,j = 2(sj + pi,j)

E[Cj] ≤ 2
∑

i,s xi,j,s(s+ pi,j)

Proof of 2-Approximation

Lemma E[Cj] ≤ 2
∑

i,s yi,s(s+ pi,j)

mac. i sj τj
j

Fixing j, ij = i, sj and τj and condition on them

E[Cj|ij = i, sj, τj] ≤ 2τj + pi,j

E[τj|ij = i, sj] = sj + pi,j/2

E[Cj|ij = i, sj] ≤ 2(sj + pi,j/2) + pi,j = 2(sj + pi,j)

E[Cj] ≤ 2
∑

i,s xi,j,s(s+ pi,j)

Cj =
∑

j′ 6=j:ij′=i,τj′<τj

pi,j′ +
(
|idle time| before τj

)
+ pi,j

Assuming machine i is “fully packed”

Bounding
(
|idle time| before τj

)
by τj too pessimistic?

If many rectangles have small length: many jobs are
before τj with high prob. ⇒ some busy intervals

The only bad case: most rectangles have length >> τj

τjτj

Cj =
∑

j′ 6=j:ij′=i,τj′<τj

pi,j′ +
(
|idle time| before τj

)
+ pi,j

Assuming machine i is “fully packed”

Bounding
(
|idle time| before τj

)
by τj too pessimistic?

If many rectangles have small length: many jobs are
before τj with high prob. ⇒ some busy intervals

The only bad case: most rectangles have length >> τj

τjτj

Cj =
∑

j′ 6=j:ij′=i,τj′<τj

pi,j′ +
(
|idle time| before τj

)
+ pi,j

Assuming machine i is “fully packed”

Bounding
(
|idle time| before τj

)
by τj too pessimistic?

If many rectangles have small length: many jobs are
before τj with high prob. ⇒ some busy intervals

The only bad case: most rectangles have length >> τj

τjτj

Cj =
∑

j′ 6=j:ij′=i,τj′<τj

pi,j′ +
(
|idle time| before τj

)
+ pi,j

Assuming machine i is “fully packed”

Bounding
(
|idle time| before τj

)
by τj too pessimistic?

If many rectangles have small length: many jobs are
before τj with high prob. ⇒ some busy intervals

The only bad case: most rectangles have length >> τj

j

j

Improving the Factor of 2

Choose each τj from a different distribution (instead of
uniformly between sj and sj + pij ,j)

Shift mass from left to center: long jobs are less likely to
delay j
Shift mass from right to center: not increase E[τj |ij , sj]

Choosing each τj uniformly from [sj + δpi,j, sj + (1− δ)pi,j]
for small δ > 0 can already improve the ratio 2!

j

Improving the Factor of 2

Choose each τj from a different distribution (instead of
uniformly between sj and sj + pij ,j)

Shift mass from left to center: long jobs are less likely to
delay j

Shift mass from right to center: not increase E[τj |ij , sj]

Choosing each τj uniformly from [sj + δpi,j, sj + (1− δ)pi,j]
for small δ > 0 can already improve the ratio 2!

j

Improving the Factor of 2

Choose each τj from a different distribution (instead of
uniformly between sj and sj + pij ,j)

Shift mass from left to center: long jobs are less likely to
delay j
Shift mass from right to center: not increase E[τj |ij , sj]

Choosing each τj uniformly from [sj + δpi,j, sj + (1− δ)pi,j]
for small δ > 0 can already improve the ratio 2!

j

Improving the Factor of 2

Choose each τj from a different distribution (instead of
uniformly between sj and sj + pij ,j)

Shift mass from left to center: long jobs are less likely to
delay j
Shift mass from right to center: not increase E[τj |ij , sj]

Choosing each τj uniformly from [sj + δpi,j, sj + (1− δ)pi,j]
for small δ > 0 can already improve the ratio 2!

Analyze Effect of Using Non-Uniform Distributions

Let Θ be distribution over [0, 1] for shifting parameters

i.e, τj = sj + θjpi,j, where θj ∼ Θ

Cj =
∑

j′ 6=j:ij′=i,τj′<τj

pi,j′ +
(
|idle time| before τj

)
+ pi,j

Bound first two terms by
∑

rectangles R(contribution of R)

Final ratio depends on

max
rectangles R

expected contribution of R

area of R before τj
,

which depends on of Θ

Use computer program to find best Θ

Find good fit for the distribution

Purely analytical proof for approximation ratio

Analyze Effect of Using Non-Uniform Distributions

Let Θ be distribution over [0, 1] for shifting parameters

i.e, τj = sj + θjpi,j, where θj ∼ Θ

Cj =
∑

j′ 6=j:ij′=i,τj′<τj

pi,j′ +
(
|idle time| before τj

)
+ pi,j

Bound first two terms by
∑

rectangles R(contribution of R)

Final ratio depends on

max
rectangles R

expected contribution of R

area of R before τj
,

which depends on of Θ

Use computer program to find best Θ

Find good fit for the distribution

Purely analytical proof for approximation ratio

Analyze Effect of Using Non-Uniform Distributions

Let Θ be distribution over [0, 1] for shifting parameters

i.e, τj = sj + θjpi,j, where θj ∼ Θ

Cj =
∑

j′ 6=j:ij′=i,τj′<τj

pi,j′ +
(
|idle time| before τj

)
+ pi,j

Bound first two terms by
∑

rectangles R(contribution of R)

Final ratio depends on

max
rectangles R

expected contribution of R

area of R before τj
,

which depends on of Θ

Use computer program to find best Θ

Find good fit for the distribution

Purely analytical proof for approximation ratio

Analyze Effect of Using Non-Uniform Distributions

Let Θ be distribution over [0, 1] for shifting parameters

i.e, τj = sj + θjpi,j, where θj ∼ Θ

Cj =
∑

j′ 6=j:ij′=i,τj′<τj

pi,j′ +
(
|idle time| before τj

)
+ pi,j

Bound first two terms by
∑

rectangles R(contribution of R)

Final ratio depends on

max
rectangles R

expected contribution of R

area of R before τj
,

which depends on of Θ

Use computer program to find best Θ

Find good fit for the distribution

Purely analytical proof for approximation ratio

Analyze Effect of Using Non-Uniform Distributions

Let Θ be distribution over [0, 1] for shifting parameters

i.e, τj = sj + θjpi,j, where θj ∼ Θ

Cj =
∑

j′ 6=j:ij′=i,τj′<τj

pi,j′ +
(
|idle time| before τj

)
+ pi,j

Bound first two terms by
∑

rectangles R(contribution of R)

Final ratio depends on

max
rectangles R

expected contribution of R

area of R before τj
,

which depends on of Θ

Use computer program to find best Θ

Find good fit for the distribution

Purely analytical proof for approximation ratio

Analyze Effect of Using Non-Uniform Distributions

Let Θ be distribution over [0, 1] for shifting parameters

i.e, τj = sj + θjpi,j, where θj ∼ Θ

Cj =
∑

j′ 6=j:ij′=i,τj′<τj

pi,j′ +
(
|idle time| before τj

)
+ pi,j

Bound first two terms by
∑

rectangles R(contribution of R)

Final ratio depends on

max
rectangles R

expected contribution of R

area of R before τj
,

which depends on of Θ

Use computer program to find best Θ

Find good fit for the distribution

Purely analytical proof for approximation ratio

Probability Density Function for Θ

f(θ) =

{
0.1702θ2 + 0.5768θ + 0.8746 if 0 ≤ θ ≤ 0.85897

0 if 85897 < θ ≤ 1

Summary for R|rj|
∑

j∈J wjCj

Thm There is a 1.8786-approx. for R|rj|
∑

j∈J wjCj.

Algorithm for R|rj|
∑

j∈J wjCj

1 solve time-indexed LP relaxation to obtain {xi,j,s}
2 for each j ∈ J , independently do:

3 let (ij, sj) = (i, s) with probability xi,j,s
4 choose θj from Θ, and let τj = sj + θjpij ,j
5 for each i ∈M , schedule jobs assigned to i in increasing

order of τj, pretending τj’s are releasing times

Outline

1 Introduction

2 1.8786-Approximation for R|rj|
∑

j wjCj

3 (2 + 2 ln 2)-Approximation for P |prec|∑j wjCj

P |prec|∑j wjCj

P : identical machines (instead of unrelated machines)

prec: we have precedence constraints

Time-Indexed LP Relaxation

xj,s ∈ [0, 1]: j scheduled on interval (s, s+ pj]?

Time-Indexed LP Relaxation

xj,s ∈ [0, 1]: j scheduled on interval (s, s+ pj]?

s
pj

xj,t

Time-Indexed LP Relaxation

xj,s ∈ [0, 1]: j scheduled on interval (s, s+ pj]?

s
pj

xj,t

total height ≤ m

Time-Indexed LP Relaxation

xj,s ∈ [0, 1]: j scheduled on interval (s, s+ pj]?

s
pj

xj,t

total height = 1

List Scheduling Algorithm Gives 4-Approximation

1 solve LP and let Cj be fractional completion time of j

2 for every job j in non-decreasing order of Cj − pj/2
3 schedule j as early as possible subject to

machine-capacity constraints and precedence constraints.

m = 3

≺

List Scheduling Algorithm Gives 4-Approximation

1 solve LP and let Cj be fractional completion time of j

2 for every job j in non-decreasing order of Cj − pj/2

3 schedule j as early as possible subject to
machine-capacity constraints and precedence constraints.

m = 3

≺

List Scheduling Algorithm Gives 4-Approximation

1 solve LP and let Cj be fractional completion time of j

2 for every job j in non-decreasing order of Cj − pj/2
3 schedule j as early as possible subject to

machine-capacity constraints and precedence constraints.

m = 3

≺

List Scheduling Algorithm Gives 4-Approximation

1 solve LP and let Cj be fractional completion time of j

2 for every job j in non-decreasing order of Cj − pj/2
3 schedule j as early as possible subject to

machine-capacity constraints and precedence constraints.

m = 3

≺

List Scheduling Algorithm Gives 4-Approximation

1 solve LP and let Cj be fractional completion time of j

2 for every job j in non-decreasing order of Cj − pj/2
3 schedule j as early as possible subject to

machine-capacity constraints and precedence constraints.

m = 3

≺

Analysis of List-Scheduling Algorithm

C̃j: completion time of j given by algorithm

C̃j = I +B

I = total idle time before C̃j

B = total busy time before C̃j

Lemma I ≤ 2Cj.

Lemma B ≤ 2Cj.

Analysis of List-Scheduling Algorithm

C̃j: completion time of j given by algorithm

C̃j = I +B

I = total idle time before C̃j

B = total busy time before C̃j

Lemma I ≤ 2Cj.

Lemma B ≤ 2Cj.

Analysis of List-Scheduling Algorithm

C̃j: completion time of j given by algorithm

C̃j = I +B

I = total idle time before C̃j

B = total busy time before C̃j

Lemma I ≤ 2Cj.

Lemma B ≤ 2Cj.

Analysis of List-Scheduling Algorithm

C̃j: completion time of j given by algorithm

C̃j = I +B

I = total idle time before C̃j

B = total busy time before C̃j

Lemma I ≤ 2Cj.

Lemma B ≤ 2Cj.

Lemma B ≤ 2Cj.

Proof.

Cj − pj/2: horizontal mass center of rectangles for j∑
j′ considerred before j pj′ = total area ≤ 2m(Cj − pj/2)

length of busy time
2m(Cj−pj/2)

m
≤ 2Cj

Cj − pj/2

Lemma B ≤ 2Cj.

Proof.

Cj − pj/2: horizontal mass center of rectangles for j

∑
j′ considerred before j pj′ = total area ≤ 2m(Cj − pj/2)

length of busy time
2m(Cj−pj/2)

m
≤ 2Cj

Cj − pj/2

Lemma B ≤ 2Cj.

Proof.

Cj − pj/2: horizontal mass center of rectangles for j

∑
j′ considerred before j pj′ = total area ≤ 2m(Cj − pj/2)

length of busy time
2m(Cj−pj/2)

m
≤ 2Cj

Cj − pj/2

Lemma B ≤ 2Cj.

Proof.

Cj − pj/2: horizontal mass center of rectangles for j

∑
j′ considerred before j pj′ = total area ≤ 2m(Cj − pj/2)

length of busy time
2m(Cj−pj/2)

m
≤ 2Cj

Cj − pj/2

H-mass-center ≤ Cj − pj/2

Lemma B ≤ 2Cj.

Proof.

Cj − pj/2: horizontal mass center of rectangles for j

∑
j′ considerred before j pj′ = total area ≤ 2m(Cj − pj/2)

length of busy time
2m(Cj−pj/2)

m
≤ 2Cj

Cj − pj/2

H-mass-center ≤ Cj − pj/2 total height ≤ m

Lemma B ≤ 2Cj.

Proof.

Cj − pj/2: horizontal mass center of rectangles for j∑
j′ considerred before j pj′ = total area ≤ 2m(Cj − pj/2)

length of busy time
2m(Cj−pj/2)

m
≤ 2Cj

Cj − pj/2

H-mass-center ≤ Cj − pj/2 total height ≤ m

Lemma B ≤ 2Cj.

Proof.

Cj − pj/2: horizontal mass center of rectangles for j∑
j′ considerred before j pj′ = total area ≤ 2m(Cj − pj/2)

length of busy time
2m(Cj−pj/2)

m
≤ 2Cj

Cj − pj/2

H-mass-center ≤ Cj − pj/2 total height ≤ m

Our Algorithm

1 solve LP and let Cj be fractional completion time of j
2 choose θ ∼R [0, 1/2]
3 for every job j in non-decreasing order of Cj − pj + θpj
4 schedule j as early as possible subject to

machine-capacity constraints and precedence constraints.

Lemma I ≤ 1
1−θCj

Lemma B ≤ 1
θ
Cj

Cj − (1− θ)pj ≈ Cj

θ fraction (1− θ) fraction

Our Algorithm

1 solve LP and let Cj be fractional completion time of j
2 choose θ ∼R [0, 1/2]
3 for every job j in non-decreasing order of Cj − pj + θpj
4 schedule j as early as possible subject to

machine-capacity constraints and precedence constraints.

Lemma I ≤ 1
1−θCj

Lemma B ≤ 1
θ
Cj

Cj − (1− θ)pj ≈ Cj

θ fraction (1− θ) fraction

Our Algorithm

1 solve LP and let Cj be fractional completion time of j
2 choose θ ∼R [0, 1/2]
3 for every job j in non-decreasing order of Cj − pj + θpj
4 schedule j as early as possible subject to

machine-capacity constraints and precedence constraints.

Lemma I ≤ 1
1−θCj

Lemma B ≤ 1
θ
Cj

Cj − (1− θ)pj ≈ Cj

θ fraction (1− θ) fraction

Our Algorithm

1 solve LP and let Cj be fractional completion time of j
2 choose θ ∼R [0, 1/2]
3 for every job j in non-decreasing order of Cj − pj + θpj
4 schedule j as early as possible subject to

machine-capacity constraints and precedence constraints.

Lemma I ≤ 1
1−θCj

Lemma B ≤ 1
θ
Cj

Cj − (1− θ)pj ≈ Cj

θ fraction (1− θ) fraction

Lemma B ≤ 1
θ
Cj

Cj − (1− θ)pj ≈ Cj

θ fraction (1− θ) fraction

Bound can not be tight for every θ ∈ [0, 1/2]!

Lemma Eθ∼R[0,1/2]B ≤ 2Cj.

Approximation ratio = 2 + Eθ∼R[0,1/2]
1

1−θ = 2 + 2 ln 2

Lemma B ≤ 1
θ
Cj

Cj − (1− θ)pj ≈ Cj

θ fraction (1− θ) fraction

Bound can not be tight for every θ ∈ [0, 1/2]!

Lemma Eθ∼R[0,1/2]B ≤ 2Cj.

Approximation ratio = 2 + Eθ∼R[0,1/2]
1

1−θ = 2 + 2 ln 2

Lemma B ≤ 1
θ
Cj

Cj − (1− θ)pj ≈ Cj

θ fraction (1− θ) fraction

Bound can not be tight for every θ ∈ [0, 1/2]!

Lemma Eθ∼R[0,1/2]B ≤ 2Cj.

Approximation ratio = 2 + Eθ∼R[0,1/2]
1

1−θ = 2 + 2 ln 2

Lemma B ≤ 1
θ
Cj

Cj − (1− θ)pj ≈ Cj

θ fraction (1− θ) fraction

Bound can not be tight for every θ ∈ [0, 1/2]!

Lemma Eθ∼R[0,1/2]B ≤ 2Cj.

Approximation ratio = 2 + Eθ∼R[0,1/2]
1

1−θ = 2 + 2 ln 2

Summary for P |prec|∑j wjCj

Thm There is a (2 + 2 ln 2)-approximation for
P |prec|∑j wjCj.

1 solve LP and let Cj be fractional completion time of j

2 choose θ ∼R [0, 1/2]

3 for every job j in non-decreasing order of Cj − pj + θpj
4 schedule j as early as possible subject to

machine-capacity constraints and precedence constraints.

Open Problems

Better approximation for R|rj|
∑

j wjCj? (APX-hardness
known)

(1.5− c)-approximation for R||∑j wjCj with a
reasonable c > 0? (APX-hardness known)

2-approximation for P |prec, pj = 1|∑j wjCj?
(UGC-2-hardness known)

Improving our O(logm/ log logm)-approximation for
Q|prec|∑j wjCj?

Open Problems

Better approximation for R|rj|
∑

j wjCj? (APX-hardness
known)

(1.5− c)-approximation for R||∑j wjCj with a
reasonable c > 0? (APX-hardness known)

2-approximation for P |prec, pj = 1|∑j wjCj?
(UGC-2-hardness known)

Improving our O(logm/ log logm)-approximation for
Q|prec|∑j wjCj?

Open Problems

Better approximation for R|rj|
∑

j wjCj? (APX-hardness
known)

(1.5− c)-approximation for R||∑j wjCj with a
reasonable c > 0? (APX-hardness known)

2-approximation for P |prec, pj = 1|∑j wjCj?
(UGC-2-hardness known)

Improving our O(logm/ log logm)-approximation for
Q|prec|∑j wjCj?

Open Problems

Better approximation for R|rj|
∑

j wjCj? (APX-hardness
known)

(1.5− c)-approximation for R||∑j wjCj with a
reasonable c > 0? (APX-hardness known)

2-approximation for P |prec, pj = 1|∑j wjCj?
(UGC-2-hardness known)

Improving our O(logm/ log logm)-approximation for
Q|prec|∑j wjCj?

	Introduction
	1.8786-Approximation for R|rj|jwjCj
	(2+2ln2)-Approximation for P|prec|j wjCj

