
LP Relaxations for Reordering Buffer Management

Yuval Rabani - Hebrew University of Jerusalem

based largely on joint papers with

Noa Avigdor-Elgrabli, Sungjin Im, Benjamin Moseley

1

Reordering Buffer Management [RSW ’02]

Buffer of size k=3

2

input:

output:

• Input: a sequence of n colored items

• Output: the same sequence permuted, using a
buffer of capacity k

• Objective: minimize the number of color
changes in the output sequence

Reordering Buffer Management [RSW ’02]

Buffer of size k=3

2

input:

output:

• Input: a sequence of n colored items

• Output: the same sequence permuted, using a
buffer of capacity k

• Objective: minimize the number of color
changes in the output sequence

Reordering Buffer Management [RSW ’02]

Buffer of size k=3

2

input:

output:

• Input: a sequence of n colored items

• Output: the same sequence permuted, using a
buffer of capacity k

• Objective: minimize the number of color
changes in the output sequence

Reordering Buffer Management [RSW ’02]

cost: 1

Buffer of size k=3

2

input:

output:

• Input: a sequence of n colored items

• Output: the same sequence permuted, using a
buffer of capacity k

• Objective: minimize the number of color
changes in the output sequence

Reordering Buffer Management [RSW ’02]

cost: 2

Buffer of size k=3

2

input:

output:

• Input: a sequence of n colored items

• Output: the same sequence permuted, using a
buffer of capacity k

• Objective: minimize the number of color
changes in the output sequence

Reordering Buffer Management [RSW ’02]

cost: 3

Buffer of size k=3

2

input:

output:

• Input: a sequence of n colored items

• Output: the same sequence permuted, using a
buffer of capacity k

• Objective: minimize the number of color
changes in the output sequence

Reordering Buffer Management [RSW ’02]

cost: 4

Buffer of size k=3

2

input:

output:

• Input: a sequence of n colored items

• Output: the same sequence permuted, using a
buffer of capacity k

• Objective: minimize the number of color
changes in the output sequence

Reordering Buffer Management [RSW ’02]

cost: 4

Buffer of size k=3

2

input:

output:

• Input: a sequence of n colored items

• Output: the same sequence permuted, using a
buffer of capacity k

• Objective: minimize the number of color
changes in the output sequence

Reordering Buffer Management [RSW ’02]

cost: 5

Buffer of size k=3

2

input:

output:

• Input: a sequence of n colored items

• Output: the same sequence permuted, using a
buffer of capacity k

• Objective: minimize the number of color
changes in the output sequence

Reordering Buffer Management [RSW ’02]

cost: 5

Buffer of size k=3

2

input:

output:

• Input: a sequence of n colored items

• Output: the same sequence permuted, using a
buffer of capacity k

• Objective: minimize the number of color
changes in the output sequence

Motivation

• Numerous applications:

- Automotive assembly paint shop

- Graphics rendering processors, storage systems, network

optimization

- Inverted index compression

• Buffers are pervasive in computer  
and production systems

• Simple, elegant, natural,  
non-trivial, and thus appealing  
model

3

What’s Known

• Offline setting:

- NP-hard [AKM ’10, CMSS ’10]

- O(1)-approximation [AR ’13, IM ’14]

• Online setting:

- O(√log k) (det.) [RSW ’02, EW ’05, AR ’10, ACER ’11]

- O(log log k) (rand.) [AR ’13]

- Ω(√log k / log log k) (det.) Ω(log log k) (rand.) [ACER ’11]

• Non-uniform costs (star metric):

- offline: O(log log log ɣk) approximation [IM ’14, IM ’15]

- online (det.): O(log k / log log k) [AR ’10], O(√log ɣk) [ACER ’11]

- online (rand.): O(log2 log ɣk) [AIMR ’15]

4

(ɣ = max costs ratio)

Related Work

• Other metrics:

- line metric: O(log |C|) (discrete) O(log n log log n) (cont.) [GS ’07]

- trees: O(log k) (HSTs) O(log D + log k) (gen.) [ERW ’07, ER ’17]

- general: O(log ɣ + min{log k, log |C|}) [KR ’17]

- output = input always costs at most 2k-1 [EW ’05]

• Other models:

- block devices: O(log log k) (rand.) [ACER ’12]

- k-client problem: lower bound Ω(log k) (det.) [ATUW ’01]

• Other objectives:

- maximize # color “unchanges” [KP ’04, BL ’07] O(1) approx. (offline)

5

(ɣ = aspect ratio)
(D = hop diameter)

Linear Programming Relaxation [AR ’10]

• xi,j- the fraction of item i that is removed at output slot j

• n(i) - the next input item of the same color c(i) as i

6

The LP

s.t.
P

j:j�i xi,j � 1 8i = 1, 2, . . . , n

P
i:ij xi,j 1 8j = k + 1, k + 2, . . . , k + n

xn(i),j � xi,j�1 � 0 8i = 1, 2, . . . , n, 8j � n(i)

x � 0

The Fractional Solution

j=k+1

7

... 1

j=k+n

A blue-batch (I,j) =
a sequence of consecutive blue items I that
are removed starting at output slot j

Feasible LP solution:

 Fractional packing λ of color batches:

- ∑I,j: j ≥ t-|I| λI,j = 1

- ∑I,j: i∈I λI,j = 1

- The cost is ∑I,j λI,j

Feasible RBM solution:

 An integral packing λ

...
j=k+1 j=k+n

1

time: ...

Linear Programming Relaxation [AR ’10]

8

1

k+1 k+n
time:

...

xI,j = fraction of I that is removed
 starting at time j

minimize
P

(I,j) xI,j

s.t.
P

(I,j):i2I xI,j � 1 8i = 1, 2, . . . , n

P
(I,t):tj<t+|I| xI,t 1 8j = k + 1, k + 2, . . . , k + n

x � 0

maximize

Pn
i=1 yi �

Pk+n
j=k+1 zj

s.t.

P
i2I yi �

Pj+|I|�1
t=j zt 1 8(I, j)

y, z � 0

primal

dual

Warmup

• Consider the following rounding procedure:

- If there is an item in the buffer with LP weight ≤ ½, evict this item’s color

- Otherwise, keep accumulating items in the buffer

• The cost increases by a factor of at most 2

A buffer of size 2k is sufficient to accommodate the non-evicted items

• OPT(k) = O(log k)∙OPT(4k) [EW ’05]

There’s an instance for which LP(k) = Ω(log k)∙OPT(4k) [Aboud ’08]

• Integrality gap upper bound: O(1) [AR ’13, IM ’14]

(for non-uniform costs: min{log k / log log k, log log ɣk} [AR ’10, IM ’14])

9

Simple Online Algorithm

The algorithm:

• increase the “penalty” of each item in the buffer continuously

• if a color’s total penalty reaches 1— remove this color

Theorem [AR ’10]:

The algorithm is O(log k / log log k)-competitive (for non-uniform costs).

Proof: dual fitting: zj = penalty per item up to slot j

 yi - zj(i) = i’s accumulated penalty / O(log k / log log k)

Let s be the size of the smallest removed color block.

Theorem:

The algorithm is O(log (k/s))-competitive.

10

Primal-Dual Schema (a la [BN ’06])

11

The primal program:

The dual program:

The algorithm:

while slot t is not full:

- raise yi for all i not removed completely

- raise zj for all j ≥ t

pseudo primal solution:

primal increment (J = color block in buffer)

• The LP has both covering and packing constraints.

• Raising xI,j consumes space beyond slot j.

Primal Solution Construction (sort of)

12

 k+n
output slot:

tj1 j2 ... jr

...

J = The green color block currently in our buffer

 Pseudo primal variables:

xJ,t increases @ rate =
the maximum pseudo rate

(I1,j1)
(I2,j2)

(Ir,jr)

J,t

Analysis (bluffing a bit)

B = set of items still present (fractionally) in the buffer

• Dual increase rate: |B| - k’

• |B| might be k, so we compete against a dual that uses k’ = k - 2k / ln k

• OPT(k’) = O(1)∙OPT(k) [ERW ’09, ACER ’12]

13

 k’+nt

output slots:

↑

↑
nk’+1

items in B future items

• Primal increase rate: proportional to the scheduled volume
so we need color blocks of size ≤ O(k - k’) = O(k / log k)

Putting It All Together

14

Input:
Online Computation

of an LP solution

primal dual
schema

dual fitting

Fractional
Small
blocks

May defrost as
large or small

Large
blocks

Buffer:

Frozen
Online Rounding

Random

bits

Output:

similar to offline
rounding

O(1)

O(loglog k)

Integral

Open Problems

• Uniform costs:

- Small constant offline approximation guarantees? PTAS?

- Limited extra memory?

• Non-uniform costs:

- O(log log log ɣk)-approx. alg. [IM ’15] (uses knapsack constraints)

- O(log2 log ɣk)-competitive rand. online alg. [AIMR ’15]

• Other metrics:

- o(k) guarantees? (independent of other parameters)

- LP relaxations? LP-based algorithms?

- Better offline approximation algorithms?

15

Thank you!

16

Rounding

17

tqtq-1

current target:
LP cost reaches δ·qprevious target

j

current location

Rounding

17

tqtq-1

current target:
LP cost reaches δ·qprevious target

j

current location

tq - j

Rounding

18

⇒ remove and charge ...

If the difference between our buffer and fractional buffer (Δj) is large

cr+1 cr+2 cs-1 cscr
Volume:

Cost:
|cs|

ALG’s
buffer:

