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Plan of talk

Survey	some	known	approxima2on	algorithms	and	open	ques2ons	for	
worst	case	and	random	instances	of:	
• max-3SAT		
• min-bisec2on		
•  3-coloring		
• unique	games		
• dense	k-subgraph	
	

2	



A ques4on to keep in mind

	
Does	the	study	of	algorithms	that	handle	random	
inputs	help	in	designing	approxima2on	algorithms	for	
worst	case	instances?	
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Max 3-SAT

A	3-CNF	formula	with	𝑛	variables	and	𝑚	clauses	
	
(¬𝑥↓1 ⋁ 𝑥↓2 ⋁ 𝑥↓3 )⋀( 𝑥↓1 ⋁¬ 𝑥↓3 ⋁ 𝑥↓4 )∧…	
	
Find	an	assignment	that	maximizes	the	number	of	clauses	sa2sfied.	
	
A	random	assignment	sa2sfies	 7/8 𝑚	clauses	in	expecta2on.			clauses	in	expecta2on.		
Gives	approxima2on	ra2o	 7/8 .	
Achieving	an	approxima2on	ra2o	of	𝜌> 7/8 	is	NP-hard	[Hastad	1997,	2001].	
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Random max-3SAT

Each	literal	in	input	3CNF	formula	chosen	uniformly	at	random.	
Approxima2on	algorithm	with	ra2o	𝜌	for	random	instances:	
•  If	it	outputs	an	assignment,	then	the	number	of	clauses	sa2sfied	by	
the	assignment	is	guaranteed	to	be	at	least	𝜌∗	opt.		
• Allowed	to	say	“don’t	know”	with	probability	at	most	1/2 	(over	
choice	of	random	input).	

No	algorithm	is	known	(or	even	conjectured)	to	achieve	an	
approxima2on	ra2o	be_er	than		 7/8 	on	random	instances	with	𝑚≫𝑛.	
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Random instances appear to be as difficult as 
worst case instances
Max	3-SAT	is	NP-hard	to	approximate	with	a	ra2o	be_er	than	7/8 .	
There	are	distribu2ons	over	random	instances	for	which	we	do	not	
know	how	to	obtain	an	approxima2on	ra2o	be_er	than	 7/8 .	
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Some ques4ons:

Max	3-SAT	is	NP-hard	to	approximate	with	a	ra2o	be_er	than	7/8 .	
There	are	distribu2ons	over	random	instances	for	which	we	do	not	know	how	to	
obtain	an	approxima2on	ra2o	be_er	than	 7/8 .	
	
Can	we	prove	NP-hardness	for	random	instances?	
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Some ques4ons:

Max	3-SAT	is	NP-hard	to	approximate	with	a	ra2o	be_er	than	7/8 .	
There	are	distribu2ons	over	random	instances	for	which	we	do	not	know	how	to	
obtain	an	approxima2on	ra2o	be_er	than	 7/8 .	
	
Can	we	prove	NP-hardness	for	random	instances?	Currently,	no.	
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Some ques4ons:

Max	3-SAT	is	NP-hard	to	approximate	with	a	ra2o	be_er	than	7/8 .	
There	are	distribu2ons	over	random	instances	for	which	we	do	not	know	how	to	
obtain	an	approxima2on	ra2o	be_er	than	 7/8 .	
	
Suppose	that	a	problem	is	NP-hard	to	approximate	within	a	ra2o	be_er	
than	𝜌.	Is	there	a	natural	(sampleable)	distribu2on	over	inputs	on	
which	it	is	hard	to	achieve	an	approxima2on	ra2o	be_er	than	𝜌?	
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Min-bisec4on

Par22on	an	𝑛-vertex	graph	into	two	equal	size	parts,	minimizing	the	
number	of	edges	in	the	cut.	
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Min-bisec4on

Par22on	an	𝑛-vertex	graph	into	two	equal	size	parts,	minimizing	the	
number	of	edges	in	the	cut.	
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Known results

• Approximable	within	𝑂( log 𝑛) 					[Racke	2008]	
•  For	some	𝜌>1,	ETH-hard	to	approximate	[Khot	2004,	2006]	
	
Bi-criteria	approxima2on	(allowed	to	output	a	nearly	balanced	cut):	
• Within	𝑂(√log 𝑛  )		[Arora,	Rao,	Vazirani	2004,	2009]		
•  For	some	𝜌>1,	ETH-hard	to	bi-approximate	[Ambuhl,	Mastorlili,	
Svensson	2007,	2011]	
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Random instances of bisec4on

Random	graph	with	𝑚≫𝑛	edges.		edges.	
Minimum	bisec2on	is	only	slightly	smaller	than	𝑚/2 .	
Can	indeed	cer2fy	this	in	polynomial	2me	using	a	spectral	algorithm:	
•  Random	graph	is	nearly	𝑑-regular	for	𝑑= 2𝑚/𝑛 .	
•  Largest	eigenvalue	of	adjacency	matrix	is	roughly	𝑑.	
•  Second	largest	eigenvalue	of	adjacency	matrix	is	𝑂(√𝑑 )	(w.h.p.).	
•  Had	there	been	a	small	bisec2on,	there	would	have	been	at	least	two	Ω(𝑑)	
eigenvalues.	

Approxima2on	ra2o	nearly	1	on	random	instances.	
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Other distribu4ons of random graphs

For	almost	all	(sufficiently	dense)	graphs	with	a	minimum	bisec2on	
significantly	smaller	than	𝑚/2 ,	can	find	the	minimum	bisec2on	in	
polynomial	2me	and	cer2fy	its	minimality	[Boppana	1987].	Uses	
semidefinite	programming	(SDP),	an	algorithmic	technique	that	
extends	both	linear	programming	and	spectral	algorithms.	
	
Is	there	a	distribu2on	over	graphs	for	which	it	seems	plausible	that	
achieving	a	constant	factor	approxima2on	is	hard?	
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Algorithmic connec4ons

The	current	best	bi-criteria	approxima2on	[Arora,	Rao,	Vazirani]	uses	
SDPs,	which	are	used	also	for	random	instances.	
	
The	previous	best	(true)	approxima2on	[Feige,	Krauthgamer	2000,	
2002]	uses	the	bi-criteria	ones	as	a	blackbox	(at	an	𝑂( log 𝑛) 	
mul2plica2ve	loss	in	the	approxima2on	ra2o).	
	
The	current	best	(true)	approxima2on	[Racke	2008]	does	not	use	SDPs.	
It	is	based	on	randomized	embeddings	into	trees,	where	every	edge	
suffers	an	average	load	of	𝑂( log 𝑛) .	
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The load on edges in a spanning tree 

The	cut	contains:	
•  2	spanning	tree	edges	
•  3	graph	edges	
However,	its	load	is	4.	
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3-coloring
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Min 3-coloring

Given	a	3-colorable	graph,	legally	color	it	with	few	colors.	
NP-hard	to	4-color	[Khanna,	Linial,	Safra	1993,	2000].	
Graphs	of	maximum	degree	𝑑	(that	may	depend	on	𝑛):	
• Greedy	coloring	uses	at	most	𝑑+1	colors.	
•  [Karger,	Motwani,	Sudan	1994,	1998]:	a	polynomial	2me	algorithm	
that	colors	graphs	that	sa2sfy	the	vector	3-coloring	SDP	relaxa2on,	
using	 𝑂↑∗ ( 𝑑↑1/3  )	colors.	
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Vector 3-coloring

𝑣↓𝑖 	-	unit	vector	for	vertex	𝑖		
𝑣↓𝑖 𝑣↓𝑗 ≤− 1/2 	if	(𝑖,𝑗)∈𝐸.	
𝑣↓𝑖 𝑣↓𝑗 ≥− 1/2 	if	(𝑖,𝑗)∉𝐸.	
	
Every	3-colorable	graph	is	vector	3-colorable.	
SDP	finds	a	vector	3-coloring	in	polynomial	2me.	
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An4-geometric graphs

• 𝑛	ver2ces	placed	on	a	𝑑𝑖𝑚-dimensional	sphere.	
•  Edges	connect	ver2ces	that	are	far	
apart	(inner	angle	above	2𝜋/3 ).	

	
Vector	3-colorable.	
Chroma2c	number	roughly	 𝑑↑1/3 	
(if	ver2ces	evenly	spaced).	
	
[Feige,	Langberg,	Schechtman	2002,	2004].	
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Number of colors used expressed as 𝑛↑𝛿  
Wigderson	1982,	1983: 	 	 		0.5	
Blum	1989,	1990,	1994: 	 	 		0.375	
Karger,	Motwani,	Sudan	1994,	1998: 		0.25	
Blum,	Karger	1997: 	 	 		0.214	
Arora,	Chlamtac,	Charikar	2006: 		0.211	
Chlamtac	2007: 	 	 	 		0.207	
Kawarabayashi,	Thorup	2014,	2017: 		0.199	
	
None	of	the	above	improve	over	𝑑↑1/3 	
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Max 3-coloring

Given	a	3-colorable	graph	on	𝑛	ver2ces,	3-color	many	ver2ces	legally.	
• Min	3-coloring	with	𝑘	colors	implies	 3/𝑘 	approxima2on	to		
max	3-coloring.	
• 𝜌	approxima2on	algorithm	for	max	3-coloring	implies	min	3-coloring	
with	𝑂( log 𝑛 /𝜌 )	colors	(and	𝑂( 1/𝜌 )	if	𝜌	improves	as	𝑛	decreases).	

Known	min	3-coloring	approxima2on	algorithms	are	derived	from	max	
3-coloring	algorithms.	
Remark:	for	random	input	instances,	a	good	approxima2on	for	max		
3-coloring	might	not	imply	a	good	approxima2on	for	min	3-coloring.	

22	



The random planted 3-coloring model

The	 𝐺↓𝑛,𝑝,3 	model	of	random	3-colorable	graphs	introduced	by	
Kucera	[1977].		
	
An	alterna2ve	presenta2on:	
•  Start	with	host	graph	𝐻	sampled	from	 𝐺↓𝑛,𝑝 .		
• Plant	a	random	3-coloring	P.		
• Remove	monochroma2c	edges.	
	
𝑑=𝑝(𝑛−1)	is	the	expected	average	degree	(before	plan2ng).	
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Random host graph H

24	



Planted 3-coloring P
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Illegal - monochroma4c edges
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Remove monochroma4c edges
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Remove colors →G
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The algorithmic task

The	input	is	the	graph	G.	
(The	algorithm	never	sees	H	or	P.)	
	
Task:	Find	a	legal	3-coloring.	
G	may	have	several	legal	3-colorings.	There	is	no	requirement	to	
recover	the	planted	3-coloring	P.	
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Random 3-colorable graphs

At	sufficiently	high	edge	density,	a	random	3-colorable	graph	is	
distributed	like	a	random	graph	with	a	planted	random	3-coloring.	
Such	graphs	can	be	3-colored	(w.h.p.)	using	a	spectral	algorithm	[Alon,	
Kahale	1994,	1997],	and	likewise	using	SDP.	
In	fact,	planted	model	can	be	3-colored	even	at	lower	densi2es	(large	
constant	average	degree).	
Random	instances	do	not	seem	to	capture	the	difficul2es	of	worst	case	
instances:	the	known	algorithms	perform	much	be_er	on	random	
instances.		
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A geometric random 3-colorable graph model

The	host	graph	𝐻	is	a	random	high	dimensional	(an2-)	geometric	
graph:	
• 𝑛	ver2ces	are	sca_ered	at	random	
on	a	𝑑𝑖𝑚-dimensional	sphere.	
•  Edges	connect	ver2ces	that	are	far	
apart	(inner	angle	above	2𝜋/3 ).	

	
Plant	a	random	3-coloring.	
(Monochroma2c	edges	then	removed.)
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A challenge

The	input	is	a	graph	𝐺	generated	as	above	(given	as	an	adjacency	
matrix,	not	as	an	embedding	on	a	sphere).			
A	legal	3-coloring	can	be	found	in	polynomial	2me,	when	�
𝑑𝑖𝑚<4.9326log 𝑛 	[Roee	David,	MSc	thesis,	2012],	corresponding	to	
∆< 𝑛↑0.3 .	(At	this	dimension,	a	geometric	graph	supports	geometric	
rou2ng.)	
	
Design	an	algorithm	that	works	for	all	dimensions.	
The	difficulty	–	the	host	graph	𝐻	admits	a	vector	3-coloring.	
(Several	candidate	algorithms	exist	–	challenges	in	the	analysis.)	
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A geometric ques4on 

An2-geometric	𝐻	admits	a	vector	3-coloring:	
𝑣↓𝑖 	are	unit	vectors	
𝑣↓𝑖 𝑣↓𝑗 ≤− 1/2 	if	(𝑖,𝑗)∈𝐸.	
𝑣↓𝑖 𝑣↓𝑗 ≥− 1/2 	if	(𝑖,𝑗)∉𝐸.	
Does	it	admit	a	strong	vector	3-coloring:	
𝑣↓𝑖 𝑣↓𝑗 =− 1/2 	if	(𝑖,𝑗)∈𝐸?	
If	not,	may	open	the	way	to	improve	the	𝑑↑1/3 	approxima2on	ra2o	for		
min	3-coloring.		
At	best,	to	𝑑↑𝜀 	[Charikar	2002].	
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Unique games

Graph	𝐺 = (𝑉, 𝐸),	𝑘	colors,	a	set	of	permuta2ons	 𝜋↓𝑢,𝑣 	on	[𝑘].			colors,	a	set	of	permuta2ons	 𝜋↓𝑢,𝑣 	on	[𝑘].		
Color	𝑉	so	as	to	maximize	the	number	of	legally	colored	edges.	
An	edge	(𝑢,𝑣)	is	legally	colored	if	𝑐(𝑣)= 𝜋↓𝑢,𝑣 [𝑐(𝑢)].	
	
UGC	[Khot	2002]:	for	every	𝜀>0	and	𝛿>0,	for	sufficiently	large	𝑘,	it	is	
NP-hard	to	dis2nguish	between	instances	that	are	at	least	1−𝜀		
sa2sfiable	and	instances	that	are	at	most	𝛿	sa2sfiable.	
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Random instances

Extensive	research	on	UGC	and	on	its	implica2ons	(too	much	to	
men2on).	
Random	instances	of	unique	games	are	approximable	be_er	than	UGC.	
In	fact,	a	much	stronger	statement	holds:		
Arora,	Khot,	Kolla,	Steurer,	Tulsiani,	Vishnoi	2008:	Unique	games	on	
expanding	constraint	graphs	are	easy.		
Kolla,	Makarychev,	Makarychev	2011:	How	to	Play	Unique	Games	
Against	a	Semi-random	Adversary:	Study	of	Semi-random	Models	of	
Unique	Games.		
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Four semi-random models for unique games

Generate	a	1−𝜀	sa2sfiable	instance	by	selec2ng:		sa2sfiable	instance	by	selec2ng:	
•  The	graph	𝐺(𝑉,𝐸).	
• Permuta2ons	 𝜋↓𝑢,𝑣 	so	that	the	instance	is	sa2sfiable.	
• A	set	𝐸↓𝜀 	of	edges	to	corrupt.	
•  The	permuta2ons	 𝜋′↓𝑢,𝑣 	for	the	corrupted	edges.	
Theorem:	for	sufficiently	small	𝜀>0,	if	at	least	one	of	the	above	
selec2ons	is	made	at	random		(and	the	other	three	can	be	adversarial),	
then	there	is	a	(randomized)	polynomial	2me	coloring	algorithm	for	
which	most	edges	are	legally	colored.		
(The	algorithm	requires	average	degree	above	log 𝑘 .)	
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Dense k-subgraph

• Graph	𝐺	on	𝑛	ver2ces,	and	parameter	𝑘.	
•  Find	subgraph	induced	on	𝑘	ver2ces,	of	highest	average	degree.	
	
NP-hard	(generalizes	𝑘-clique).		
• Best	approxima2on	ra2os	of	the	form	 𝑛↑𝛿 .	
• Currently,	approxima2on	within	a	ra2o	of	2	in	quasi-polynomial	2me	
is	not	ruled	out.	
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Random model

𝐻=𝐺↓𝑘,𝑞 	planted	in	𝐺=𝐺↓𝑛,𝑝 .	
𝐻	is	densest	𝑘-subgraph	if	𝑞>𝑝.	
	
	
	
	

H	
G	
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Log-density

Genera2ve	model:	𝐻=𝐺↓𝑘,𝑞 	planted	in	𝐺=𝐺↓𝑛,𝑝 .	 	 	𝑞>𝑝.	
If	average	degree	in	𝐻	is	larger	than	𝑘↑1/3 	and	average	degree	in	𝐺	is	
smaller	than	 𝑛↑1/3 ,	then	𝐻	will	have	cliques	of	size	4,	but	𝐺	will	not.	
Can	detect	existence	of	𝐻	if	 𝑙𝑜𝑔↓𝑘 (𝑞𝑘)> 𝑙𝑜𝑔↓𝑛 (𝑝𝑛)	because	𝐻	will	
have	small	induced	subgraphs	that	𝐺	does	not.		
E.g.,	 𝐾↓4 	at	log-density	> 1/3 .	
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Bhaskara, Charikar, Chlamtac, Feige, Vijayaraghavan: Detec4ng high log-

densi4es: an 𝑂( 𝑛↑1/4 ) approxima4on for densest k-subgraph. 

2010 

Genera2ve	model:	𝐻=𝐺↓𝑘,𝑞 	planted	in	𝐺=𝐺↓𝑛,𝑝 .														𝑞>𝑝.	
Can	detect	existence	of	𝐻	if	 𝑙𝑜𝑔↓𝑘 (𝑞𝑘)> 𝑙𝑜𝑔↓𝑛 (𝑝𝑛)	because	𝐻	will	have	
small	induced	subgraphs	that	𝐺	does	not.	(E.g.,	 𝐾↓4 	at	log-density	> 1/3 .)	
	
The	use	of	log	density	was	a	key	insight	that	led	to	improved	(worst	
case)	~𝑂( 𝑛↑1/4 )	approxima2on	ra2o	for	dense	𝑘-subgraph.	
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Open ques4on

𝐻=𝐺↓𝑘,𝑞 	planted	in	𝐺=𝐺↓𝑛,𝑝 .
𝑝𝑛= 𝑛↑0.49 							𝑘= 𝑛↑0.5 							𝑞𝑘= 𝑘↑0.48 	
	
	

H	
G	
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Summary

• Max	3-SAT:	random	instances	appear	to	be	as	hard	as	worst	case.	
• Min	bisec2on:	random	instances	are	easy.		
• Min	3-coloring:	random	instances	are	easy.	There	are	interes2ng	
research	direc2ons	concerning	random	an2-geometric	graphs.	
• Unique	games:	even	semi-random	(and	quarter-random)	instances	
are	easy.	
• Dense	𝑘-subgraph:	previous	progress	inspired	by	random	instances.	-subgraph:	previous	progress	inspired	by	random	instances.	
Current	obstacle	for	further	progress	manifested	by	random	
instances.	
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