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Travelling salesman problem 

• One of the best known NP-hard optimization problems 

• Studied since the 19th century 

• Symmetric TSP:  

 ݀ ݅ , ݆ = ݀ ݆ , ݅       ∀ ݅ , ݆   
• Asymmetric TSP: 

 ݀ ݅ , ݆ ≠ ݀ ሺ ݆ , ݅ ሻ is possible 

 
UK pub tour 

[Cook et al., 2015] 

Given n cities and their pairwise distances, 

find a shortest tour visiting all n cities. 

Triangle inequality:  ݀ ݅ , ݆  ݀ ݅ , ݇ + ݀ ݇ , ݆     ∀ ݅ , ݆ , ݇ 



Symmetric vs Asymmetric TSP 

Symmetric TSP 

• 1.5-approximation algorithm [Christofides ’76] 

• Graphic TSP: unweighted graph shortest path metric 

• Current best 1.4 following  

 

 

 



Symmetric vs Asymmetric TSP 

Asymmetric TSP 

•
 log ଶ ݊-approximation algorithm [Frieze, Galbiati & Maffioli ’82] 

• 0.99 

 log ଶ ݊ 

• 0.84 

 log ଶ ݊ [Kaplan, Lewenstein, Shafrir & Sviridenko ’03] 

• 0.67 

 log ଶ ݊ [Feige & Singh ’07] 

 

•
 ܱ lo g  lo g lo g   [Asadpour, Goemans, M dry, Oveis Gharan & Saberi ’10] 

   via thin trees. 

 

 



Asymmetric TSP – recent developements 

•
 ܱ ሺ ݕ݈ log log ݊ ሻ bound on integrality gap of LP  

[Anari & Oveis Gharan ’15] 
    

Constant-factor approximations: 

• Bounded genus graphs [Oveis Gharan & Saberi ’11] 

• Node-weighted graphs [Svensson ’15] 

• Graphs with 2 edge weights [Svensson, Tarnawski & V. ’16] 

Our result: constant-factor approximation for general ATSP 

with respect to the Held-Karp relaxation. 



ATSP – Graphic formulation 

• Tour = closed walk visiting every vertex at least once =  
   = Eulerian and connected edge multiset  

• Eulerian: 

ݒ ி ௨௧ ߜ = ݒ ி � ߜ   

 � א ݒ ∀ 

• Subtour = closed walk (not necessarily connected) 

Input: directed graph 
 ሻ, edge weights ܧ , � ሺ = ܩ 
 + ℝ → ܧ : ݓ 

Find a minimum weight tour 
 .ܨ 
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Held-Karp relaxation 

• Input: 
ܧ , � = ܩ  , edge weights 
 .+ ℝ → ܧ : ݓ 

• Variables 

 E → ℝ + : multiplicity of selecting edge : � ݔ 

 ݁ . 
 

minimize  

 ݔ ⊤ ݓ 

subject to   

  Ͳ ݔ  ∅ ≠ ܵ , � ⊋ ܵ ∀                               ʹ  ܵ ߜ ݔ     � א ݒ ∀         ݒ ௨௧ ߜ ݔ = ݒ � ߜ ݔ 

Eulerian degree 

constraints 

Subtour elimination 

constraints 

Undirected degree:  ߜ = ܵ ߜ � ܵ + ߜ ௨௧ ሺ ܵ ሻ 



Held-Karp relaxation 

• Input: 
ܧ , � = ܩ  , edge weights 
 .+ ℝ → ܧ : ݓ 

• Variables 

 E → ℝ + : multiplicity of selecting edge : � ݔ 

 ݁ . 
 

minimize  

 ݔ ⊤ ݓ 

subject to   

  Ͳ ݔ  ∅ ≠ ܵ , � ⊋ ܵ ∀                               ʹ  ܵ ߜ ݔ     � א ݒ ∀         ݒ ௨௧ ߜ ݔ = ݒ � ߜ ݔ 

• Can be solved in 

polynomial time 

• Integrality gap 
  ʹ 

[Charikar, Goemans 

& Karloff ’06] 
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Repeated cycle cover algorithm  
[Frieze, Galbiati & Maffioli ’82] 

Relaxing connectivity: 

1. Find minimum weight cycle cover  

2. Contract and repeat 

 

• Each cycle cover has cost 

  ܱܲܶ 

• Overall 

 log ଶ ݊ rounds 

•
 log ଶ ݊ approximation 

 



Node-weighted case [Svensson’15] 

Directed graph 
 node weights  , ܧ , � = ܩ 
 ℎ : � → ℝ +  ݒ , ݑ ݓ = ℎ ݑ + ℎ ܧ א ݒ , ݑ ∀           ݒ 

Local-Connectivity ATSP: relaxing connectivity constraints to ͞local͟ 

 

 

 �-light algorithm for 

Local-Connectivity ATSP 

 ͻ + ߝ �-approximation 

for ATSP 

Theorem [Svensson’15]  

There exists a polytime 
 ሺ ʹ + ߝ)-

approximation for node-weighted ATSP. 



Roadmap General ATSP 

Laminarly 

weighted ATSP 
Irreducible 

instances 

Vertebrate pairs 

LP duality + 

uncrossing 

Graph theory: 

contractions 

Node weighted algorithm 

+ contractions 

Local-connectivity 

ATSP 
[Svensson ’15] 

O(1)-light  lcATSP 

algorithm in 

vertebrate pairs 



Roadmap General ATSP 

Laminarly 

weighted ATSP 
Irreducible 

instances 

Vertebrate pairs 

LP duality + 

uncrossing 

Graph theory: 

contractions 

Node weighted algorithm 

+ contractions 

Local-connectivity 

ATSP 
[Svensson ’15] 

O(1)-light  lcATSP 

algorithm in 

vertebrate pairs 



Dual of the Held-Karp relaxation 

minimize  
 ݔ ⊤ ݓ 

subject to   

 

       � א ݒ ∀         ݒ ௨௧ ߜ ݔ = ݒ � ߜ ݔ 

 
  Ͳ ݔ  � ⊋ ܵ ≠ ∅ ∀             ʹ  ܵ ߜ ݔ 

maximize 
      � ⊋ ௌ ∅ ≠ ௌ ݕ  ʹ 
subject to     ݕ ௌ ௌ : ௨ , ௩ א � ሺ ௌ ሻ   + � ௨ − � ௩  ݒ , ݑ ݓ       ∀ ሺ ݒ , ݑ ሻ ݕ     ܧ א  Ͳ 

• Dual can be solved in polynomial 
time. 

• One can efficiently find an optimal  � , ݕ  such that the support of 
 is ݕ 

a laminar family of sets. 
Efficient uncrossing [Karzanov’96] 



Laminarly weighted ATSP: 
 ℐ = ሺ ܩ , ℒ , ݕ , ݔ ሻ 

minimize  
 ݔ ⊤ ݓ 

subject to   

 

       � א ݒ ∀         ݒ ௨௧ ߜ ݔ = ݒ � ߜ ݔ 

 
  Ͳ ݔ  � ⊋ ܵ ≠ ∅ ∀             ʹ  ܵ ߜ ݔ 

•
 directed graph : ܩ 

•
 ℒ: laminar family of sets 

•
 feasible Held-Karp solution :ݔ 

tight on every set in 
 ℒ: 
 א ܵ ∀   ʹ = ܵ ߜ ݔ 
 ℒ 

•
 :ݕ 

 ℒ → ℝ + 
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subject to     ݕ ௌ ௌ : ௨ , ௩ א � ሺ ௌ ሻ   + � ௨ − � ௩  ݒ , ݑ ݓ       ∀ ሺ ݒ , ݑ ሻ ݕ     ܧ א  Ͳ 
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Reduction to laminarly weighted ATSP 

• Start with any 
 and ܩ 
 . ݓ 
• Compute Held-Karp 

optimal solution 
 and  ݔ 

dual 
 supported on ݕ 

laminar family
   ℒ  

• Delete all edges with  ݔ � = Ͳ. 

 

 

Observations: 

• Optimal solutions and optimum value are 

the same for 
 ௩ − � ௨ � + ݒ , ݑ ݓ = ݒ , ݑ ′ ݓ   and for ݓ 

• All remaining edges have  ݒ , ݑ ′ ݓ =  ௌ ݕ  

ௌ
 

:
 

௨
 

,
 

௩
 

א
 

�
 

ሺ
 

ௌ
 

ሻ
   

 

maximize 
      � ⊋ ௌ ∅ ≠ ௌ ݕ  ʹ 
subject to     ݕ ௌ ௌ : ௨ , ௩ א � ሺ ௌ ሻ   + � ௨ − � ௩  ݒ , ݑ ݓ       ∀ ሺ ݒ , ݑ ሻ ݕ     ܧ א  Ͳ 
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Vertebrate pairs 

 Vertebrate pair 
 ℐ , ܤ  

•
 ℐ = ܩ , ℒ , ݕ , ݔ  instance 

•
 backbone = subtour that crosses every nonsingleton set in :ܤ 

 ℒ   



Vertebrate pairs 

• We will reduce general ATSP to solving ATSP for a vertebrate pair 
 ℐ , ܤ  

with 
ܱܶܲ = ܤ ݓ   (more or less…) 

• Solve Local-Connectivity ATSP on such instances, and apply 
[Svensson’15] 

 



Local-Connectivity ATSP [Svensson’15] 

Instance 
 ℐ = ܩ , ℒ , ݕ , ݔ  with induced weights 
 + ℝ → ܧ : ݓ 

Lower bound function 

 lb : � → 

 ℝ + with   lb ሺ ݒ ሻ ௩ א � = ܱܲܶ 

Input: partition of the vertex set 

 � = � ଵ  � ଶ  ⋯  � �  

 

 � ଵ 
 � ଶ 

 � ଷ 
 � ସ 



Local-Connectivity ATSP [Svensson’15] 

Instance 
 ℐ = ܩ , ℒ , ݕ , ݔ  with induced weights 
 w : ܧ → ℝ + 

Lower bound function 

 lb : � → 

 ℝ + with   lb ሺ ݒ ሻ ௩ א � = ܱܲܶ 

Input: partition of the vertex set 

 � = � ଵ  � ଶ  ⋯  � �  

Output: Eulerian edge set 

 with  ܨ 

 Ͳ for each < ܨ ת � � ߜ 

 � �  
 

 

 � ଵ 
 � ଶ 

 � ଷ 
 � ସ 



Local-Connectivity ATSP [Svensson’15] 

Instance 
 ℐ = ܩ , ℒ , ݕ , ݔ  with induced weights 
 w : ܧ → ℝ + 

Lower bound function 
 lb : � → 
 ℝ + with   lb ሺ ݒ ሻ ௩ א � = ܱܲܶ 

Input: partition of the vertex set
   � = � ଵ  � ଶ  ⋯  � � 

Output: Eulerian 
 with  ܨ 
 Ͳ for each < ܨ ת � � ߜ 
 � �  
  �-light algorithm: for every component 
 of  ܥ 
 � ሻ  ܥ � ሻ lb ሺ ܥ ሺ ܧ ݓ  ,ܨ 

Every component pays for itself locally  

 



Local-Connectivity ATSP [Svensson’15] 

Theorem [Svensson’15]  

There exists a polytime 
 ሺ ʹ + ߝ)-

approximation for node-weighted ATSP. 

 �-light algorithm for 

Local-Connectivity ATSP 

 ͻ + ߝ �-approximation 

for ATSP 



Local-Connectivity ATSP:  
node-weighted case 

• Instance 
 ℐ = ܩ , ℒ , ݕ , ݔ , with 
 ℒ  containing only singletons (ignore 
 { ௩ } ݕ + { ௨ } ݕ = ݒ , ݑ ݓ  (ܤ 
• Define 

 lb ݕ ʹ = ݑ { ௨ }       ∀ א ݑ � 

• Partition 

 � = � ଵ  � ଶ  ⋯  � �  all strongly connected 

• Modify 

 and ܩ 

 and solve an integer circulation problem ,ݔ 
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 ℐ = ܩ , ℒ , ݕ , ݔ , with 
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 and ܩ 
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0.375 0.25 

0.125 

0.375 

0.375 

0.25 

• For each 
 � � ,   create auxiliary vertex 
 � � 
• Reroute 1 fractional unit of incoming 

and outgoing flow 
 to ݔ 
 � � 
• Solve integer circulation problem 

routing =1 unit through each 
 � � 
• Map back to original 
 ܩ 

 � � 



Local-Connectivity ATSP:  
node-weighted case 

• The rerouted 
 is feasible to the circulation problem of weight ݔ 
 ܱܲܶ 

• Flow integrality: there exists integer solution of weight 

  ܱܲܶ 

• After mapping back, every vertex with 

 ௩ > Ͳ  has in-degree ݕ 

  ʹ 

• For a component 

= ܥ ܧ ݓ  , ܥ  � א ௩ { ௩ } ݕ  ா ሺ � ሻ  Ͷ א ሺ ௨ , ௩ ሻ { ௩ } ݕ + { ௨ } ݕ    

•
 lb � ݕ  ʹ = ܥ { ௩ } ௩ א �   

 ⟹ 2-light algorithm 

 � �  0.25 

0.375 0.25 

0.125 

0.375 

0.375 

0.25  � � 



Local-Connectivity ATSP: 
one nonsingular set in 
 ℒ  

• Vertebrate pair  
 ℐ , ܤ .  Assume
   ℒ has a single non-singleton 

component 
 ܵ . Thus,  ݒ , ݑ ݓ = ݅           ௌ ݕ + ௩ ݕ + { ௨ } ݕ    ݕ ሺ ܵ ሻ ߜ א ݒ , ݑ   ݂

{
 

௨
 

}
 ݕ + 

{
 

௩
 

}
                               ݅  ሺ ܵ ሻ ߜ ב ݒ , ݑ   ݂
• Define  l b ሺ ݑ ሻ = ݅                                       { ௨ } ݕ ʹ    ܤ ݓ ሻ ܤ ሺ � ∖ � א ݑ   ݂

�
 

ܤ
                                             ݅ ሻ ܤ ሺ � א ݑ   ݂  

•    lb ሺ ݒ ሻ ௩ א � = ܱ ܱܲܶ ,  since 

 (ܱܶܲ ሺ = ܤ ݓ 



Local-Connectivity ATSP: 
one nonsingular set in 
 ℒ  

• By assumption, 
 ௨௧ ܵ ሻ =1 ߜ ሺ ݔ =  ܵ ሻ� ߜ ሺ ݔ 

• Backbone property: there is a node 

 ܵ ת ܤ � א � 

• Simple flow argument: we can route the incoming 1 unit of flow to  ܵ  to 
 s 

 ܵ 

 ܤ 

 � 



Local-Connectivity ATSP: 
one nonsingular set in 
 ℒ  

• Partition 
 � = � ଵ  � ଶ  ⋯  � �  

• Add backbone 

 into Eulerian set ܤ 

 .ܨ 

• Via flow splitting, ͞force͟ all edges entering 

 ܵ to proceed to 

 ሻ ܤ ሺ � א � 
• Create auxiliary vertices 

 � �  as before 

• Solve integral circulation problem, and add solution to 

  .ܨ 



Local-Connectivity ATSP: 
one nonsingular set in 
 ℒ  

Analysis 

• For all components 

,not crossing S  ܥ 

ܥ � lb / ܥ ܧ ݓ     

  ʹ exactly 

as in the node-weighted case 

• Giant component 

  containing ܥ 

 .ܤ 

• Contains all edges crossing 
 ܵ 

• Has lower bound 
 lb � ܥ   lb ሺ � ሺ ܤ ሻ ሻ = ሺ ܱܲܶ) 

•
  ܨ ݓ   ܥ ܧ ݓ 
 ܱ ሺ ܱܲܶ) 

• Therefore solution is 

 ܱ ሺ ͳ ሻ-light. 

• Same approach extends to arbitrary 

 ℒ : enforce that every subtour 
crossing a set in 

 ℒ must intersect the backbone. 
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Motivation: reducing by contraction 

• All sets in the family 
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 ℒ 



• Irreducible set 
 S א ℒ: 

There exists 
 ܵ א ݒ , ݑ 

such that the shortest 
path between 

 and ݑ 
 ݒ 

inside 
 ܵ visits almost 

all  sets 
 א � , ܵ ⊇ � 
 ℒ 

• Irreducible instance   ℐ = ܩ , ℒ , ݕ , ݔ : 

all sets in 
 ℒ are 

irreducible 

Irreducible instances 



Irreducible instances 

• Irreducible set 
 S א ℒ: 

There exists 
 ܵ א ݒ , ݑ 

such that the shortest 
path between 

 and ݑ 
 ݒ 

inside 
 ܵ visits almost 

all  sets 
 א � , ܵ ⊇ � 
 ℒ 

• Irreducible instance   ℐ = ܩ , ℒ , ݕ , ݔ : 

all sets in 
 ℒ are 

irreducible 



Irreducible instances 

• Reducible set 
 S א ℒ: For every pair 
 there is a ͞cheap͟ path ,ܵ א ݒ , ݑ 

connecting them (if they are connected). 

• Reducible sets can be contracted. 

 

Theorem:   

polytime 
 �-approximation for irreducible instances   ⟹ 

polytime 
 ͺ�-approximation for arbitrary instances 
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Vertebrate pairs 

 Vertebrate pair 
 ℐ , ܤ  

•
 ℐ = ܩ , ℒ , ݕ , ݔ  instance 

•
 backbone = subtour that crosses every nonsingleton set in :ܤ 

 ℒ   



Finding a vertebrate pair in an irreducible 
instance 
 ℐ = ܩ , ℒ , ݕ , ݔ   

1. Obtain a node-weighted instance by contracting all maximal sets in 
 ℒ 

2. Use [Svensson ’15] to find a tour here, and blow it back to a subtour  ܤ  in the original instance 
 ℐ in a pessimistic way:  

inside each maximal 
 S א ℒ, 
 crosses ܤ 
  Ͳ . ͷ݁ݑ݈�ݒ ሺ ܵ ሻ 
3. If it crosses every set in 

 ℒ, then 

 ℐ , ܤ  is a vertebrate pair 

4. Otherwise, recurse by contracting all maximal sets in 

 ℒ not crossed by  ܤ. 
This works because their total weight is 

  Ͳ . ʹͷ݁ݑ݈�ݒ ሺ ℐ ሻ 
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Summary 

• Via all these reductions, we obtain an          -approximation 
algorithm for ATSP. 

• Squeezing the arguments a bit more and opening up black boxes, can 
be probably decreased to a few hundreds. 

• Still very far from lower bound 2 on the integrality gap of Held-Karp 

Open questions 

• Improve to a constant 
 < ͳͲͲ 

• Thin tree conjecture is still open. 

• Bottleneck ATSP. 

• Better than 3/2 approximation for symmetric TSP. 

5500 



• ERC Starting Grant 2018-22 

• Openings for post docs and PhD students 

http://personal.lse.ac.uk/veghl/scaleopt.html 

 

 

SCALEOPT 
Scaling Methods for Discrete 

and Continuous Optimization 

Thank you! 

http://personal.lse.ac.uk/veghl/scaleopt.html


Simplifying assumption for the talk 

Not true in general, but the connected components have a nice path 

structure: 

Assumption: all sets in the family 
 ℒ are strongly connected in 
 .ܩ 



Paths traversing a set 

• How much is the weight of connecting an incoming and an outgoing 
edge in a set 

 S א ℒ?  ܦ ௌ ݒ , ݑ =  

 ݑ 
 ݒ 

 ͵ 

 ͷ 
 ͳ 

 ܵ  ͳͲ 



Paths traversing a set 

• How much is the weight of connecting an incoming and an outgoing 
edge in a set 

 S א ℒ?  ܦ ௌ ݒ , ݑ =  ோ ݕ  

ோ
 

:
 

௨
 

א
 

ோ
 

,
 

ோ
 

⊊
 

ௌ  

 ݑ 
 ݒ 
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Paths traversing a set 

• How much is the weight of connecting an incoming and an outgoing 
edge in a set 

 S א ℒ?  ܦ ௌ ݒ , ݑ =  ோ ݕ  

ோ
 

:
 

௨
 

א
 

ோ
 

,
 

ோ
 

⊊
 

ௌ
 + ݀ ௌ ݒ , ݑ  

 ݑ 
 ݒ 

 ͵ 

 ͷ 
 ͳ 

 ܵ 

6 

3 

1 

5 

 ͳͲ 

Min weight path inside 
 ܵ . 



Paths traversing a set 

• How much is the weight of connecting an incoming and an outgoing 
edge in a set 

 S א ℒ?  ܦ ௌ ݒ , ݑ =  ோ ݕ  

ோ
 

:
 

௨
 

א
 

ோ
 

,
 

ோ
 

⊊
 

ௌ
 + ݀ ௌ ݒ , ݑ +  ோ ݕ  

ோ
 

:
 

௩
 

א
 

ோ
 

,
 

ோ
 

⊊
 

ௌ
 = ͳͺ 

 ݑ 
 ݒ 

 ͵ 

 ͷ 
 ͳ 

 ܵ 

6 

3 

1 

5 

3 
 ͳͲ 



Paths traversing a set 

• How much is the weight of connecting an incoming and an outgoing 
edge in a set 

 S א ℒ?  ܦ ௌ ݒ , ݑ =  ோ ݕ  

ோ
 

:
 

௨
 

א
 

ோ
 

,
 

ோ
 

⊊
 

ௌ
 + ݀ ௌ ݒ , ݑ +  ோ ݕ  

ோ
 

:
 

௩
 

א
 

ோ
 

,
 

ோ
 

⊊
 

ௌ
 = ͳͺ 

 ݑ 
 ݒ 

 ͵ 

 ͷ 
 ͳ 

 ܵ 

6 

3 

1 

5 

3 Lemma:   ܦ ௌ ݒ , ݑ  ʹ  ோ ݕ  

ோ
 

⊊
 

ௌ
 ሺ ܵ ሻ  ͳͲ ݁ݑ݈�ݒ =   

  ͵ͺ 



 ݑ 
 ݒ 

 ͵ 

 ͷ 
 ͳ 

 ܵ 

6 

3 

1 

5 

3 

Irreducible instances 

• Reducible set 
 S א ℒ :   M ax ௨ , ௩ א ௌ     ܦ ௌ ݒ , ݑ  ͵ Ͷ   ݁ݑ݈�ݒ ܵ     
• Irreducible instance 

 ℐ = ሺ ܩ , ℒ , ݕ , ݔ ሻ: 
no set 

 S א ℒ is reducible 

Lemma:   ܦ ௌ ݒ , ݑ  ʹ  ோ ݕ  

ோ
 

⊊
 

ௌ
 ሺ ܵ ሻ ݁ݑ݈�ݒ =   

Theorem:   

polytime 
 �-approximation for 

irreducible instances 
 ⟹ 

polytime 
 ͺ�-approximation for 

arbitrary instances 

 ͳͲ 



Recursive algorithm via contractions 

• Instance 
 ℐ = ሺ ܩ , ℒ , ݕ , ݔ ሻ 
•
     � ⊋ ோ ோ ݕ  ʹ = ℐ ݁ݑ݈�ݒ 

       
 =Held-Karp optimum 

•
 ܵ :  minimal reducible set in 

 ℒ . 
  ͷ 

 ʹ 

    

 ͵ 

 ʹ  ͳ 

 ͵  Ͷ 

 ℐ = Ͷ ݁ݑ݈�ݒ 

 ͺ �-approximation for 
 ℐ =  ͺ �-approximation on instance by contracting 
 ܵ 

+  �-approximation of irreducible instance ͞inside͟ 
 ܵ 



Recursive algorithm via contractions 

• Instance 
 ℐ = ሺ ܩ , ℒ , ݕ , ݔ ሻ 
•
     � ⊋ ோ ோ ݕ  ʹ = ℐ ݁ݑ݈�ݒ 

       
 =Held-Karp optimum 

•
 ܵ :  minimal reducible set in 

 ℒ . 
 

•
 ℐ ′ = ℐ / ܵ: contract 

 ܵ in 

 ℐ. 

•
 ܵ → � 

•
 ሺ ܵ ሻ ݁ݑ݈�ݒ ௌ + ଷ 8 ݕ = { ௦ } ݕ 
•
 ሺ ܵ ሻ ݁ݑ݈�ݒ ℐ − ଵ ସ ݁ݑ݈�ݒ = ′ ℐ ݁ݑ݈�ݒ 

 

 

 ͷ 

 ʹ 

    

 ͵ 

 ʹ  ͳ 

 ͵  Ͷ 

 ℐ = Ͷ ݁ݑ݈�ݒ 

 ͵ 

 ʹ  ͳ 

 ͵  Ͷ 

 ͳ ͳ = ʹ + ͵ ͺ ⋅ ʹͶ 

 ℐ ′ = ͷͺ ݁ݑ݈�ݒ 

 ͷ 



Recursive algorithm via contractions 

 ͷ 

 ʹ 

    

 ͵ 

 ʹ  ͳ 

 ͵  Ͷ 

 ℐ = Ͷ ݁ݑ݈�ݒ 

 ͵ 

 ʹ  ͳ 

 ͵  Ͷ 

 ℐ ′ = ͷͺ ݁ݑ݈�ݒ 

Inductive assumption: We have a 

polytime 
 ͺ �-approximation for 

smaller instances 

 ͷ 

• Apply recursively on 
 ℐ ′ to obtain 

tour 
′ ℐ ݁ݑ݈�ݒ � ͺ ′ ܶ ݓ   ′ ܶ    = ͺ� ሺ ݁ݑ݈�ݒ ℐ − ͳ Ͷ ݁ݑ݈�ݒ ܵ ሻ 

 ͳ ͳ = ʹ + ͵ ͺ ⋅ ʹͶ 

  ͶͶ� 



Contracting 
 ܵ 

 ͷ 

 ʹ 

    

 ͵ 

 ʹ  ͳ 

 ͵  Ͷ 

 ͵ 

 ʹ  ͳ 

 ͵  Ͷ 

Inductive assumption: We have a 

polytime 
 ͺ �-approximation for 

smaller instances 

 ͷ 

• Apply recursively on 
 ℐ ′ to obtain 

tour 
′ ℐ ݁ݑ݈�ݒ  ͺ ′ ܶ ݓ   ′ ܶ    = ͺ � ሺ ݁ݑ݈�ݒ ℐ − ͳ Ͷ ݁ݑ݈�ݒ ܵ ሻ 
• Map back to subtour 

 ܶ in 

 ℐ  with  ݓ ܶ  ݓ ሺ ܶ ′ ሻ 
 

 ℐ ′ = ͷͺ ݁ݑ݈�ݒ 

 ℐ = Ͷ ݁ݑ݈�ݒ 

 ͳ ͳ = ʹ + ͵ ͺ ⋅ ʹͶ 

  ͶͶ� 

  ͶͶ� 



Inducing on 
 ܵ 

 ͷ 

 ʹ 

    

 ͵ 

 ʹ  ͳ 

 ͵  Ͷ 

• We add a tour 
  ௌ inside S, using ܨ 

the 
 �-approximation on  

irreducible instances. 

•
 ℐ ′ ′: remove S, and contract 

 � ∖ ܵ  
to 

 � , with  ݕ { ௦  } = ݁ݑ݈�ݒ ሺ ܵ ሻ / ʹ 

•
 ℐ ′′ is irreducible. 

 

 

12=
 ʹͶ/2 

    

 ℐ ′′ = ͵ ݁ݑ݈�ݒ 

 ℐ = Ͷ ݁ݑ݈�ݒ 



 ͷ 

 ʹ 

    

 ͵ 

 ʹ  ͳ 

 ͵  Ͷ 

• ʹ͵ = ℐ ݁ݑ݈�ݒ  We add a tour 
  ௌ inside S, using ܨ 

the 
 �-approximation on 

irreducible instances. 

•
 ℐ ′ ′: remove S, and contract 

 � ∖ ܵ  
to 

 � , with  ݕ { ௦  } = ݁ݑ݈�ݒ ሺ ܵ ሻ / ʹ 

•
 ℐ ′′ is irreducible.  

• Find tour 

 in ′′ ܨ 

 ℐ ′′ with weight  ܨ ݓ ′′  �݁ݑ݈�ݒ ℐ ′′ = ʹ� ݁ݑ݈�ݒ ሺ ܵ ሻ 
 

 

12=
 ʹͶ/2 

    

  ͵� 

Inducing on 
 ܵ 



Inducing on 
 ܵ 

 ͷ 

 ʹ 

    

 ͵ 

 ʹ  ͳ 

 ͵  Ͷ 

• ʹ͵ = ℐ ݁ݑ݈�ݒ  Find tour 
 in ′′ ܨ 
 ℐ ′′ with weight  ܨ ݓ ′′  �݁ݑ݈�ݒ ℐ ′′ = ʹ� ݁ݑ݈�ݒ ሺ ܵ ሻ 
• Map back 

 to ′′ ܨ 

 ௌ  in ܨ 

 ℐ  with  ܨ ݓ ௌ  ܨ ݓ  ʹ� ݁ݑ݈�ݒ ሺ ܵ ሻ 
•
 ௌ is a tour in ܨ  ܶ 

 ℐ   
 

 ℐ − ଵ ݁ݑ݈�ݒ �ௌ  ͺ ܨ  ܶ ݓ 

ସ
ܵ ݁ݑ݈�ݒ   
ℐ ݁ݑ݈�ݒ�ͺ = ܵ ݁ݑ݈�ݒ �ʹ +   

12=
 ʹͶ/2 

    

  ͵� 


