A Strongly Polynomial Algorithm for Bimodular Integer Programming Bico Zenklusen

ETH Zurich

joint work with Stephan Artmann and Robert Weismantel

Integer Linear Program (ILP)

$$\max\{c^{\mathsf{T}}x\mid Ax\leq b,x\in\mathbb{Z}^n\},$$

where
$$A \in \mathbb{Z}^{m \times n}$$
, $b \in \mathbb{Z}^m$, $c \in \mathbb{Z}^n$.

Integer Linear Program (ILP)

$$\max\{c^T x \mid Ax \leq b, x \in \mathbb{Z}^n\},\$$

where
$$A \in \mathbb{Z}^{m \times n}$$
, $b \in \mathbb{Z}^m$, $c \in \mathbb{Z}^n$.

Two classes of efficiently solvable ILPs

• If
$$n = O(1)$$
 or $m = O(1)$

 \rightarrow Lenstra's Algorithm. (Lenstra [1983])

► If A is totally unimodular (TU) → Relaxation is naturally integral.

Integer Linear Program (ILP)

$$\max\{c^{\mathsf{T}}x \mid Ax \leq b, x \in \mathbb{Z}^n\},\$$

where
$$A \in \mathbb{Z}^{m \times n}$$
, $b \in \mathbb{Z}^m$, $c \in \mathbb{Z}^n$.

Two classes of efficiently solvable ILPs

• If
$$n = O(1)$$
 or $m = O(1)$

 \rightarrow Lenstra's Algorithm. (Lenstra [1983])

► If A is totally unimodular (TU) → Relaxation is naturally integral.

What if minors, in absolute value, are still bounded, but not by 1?

Integer Linear Program (ILP)

$$\max\{c^T x \mid Ax \leq b, x \in \mathbb{Z}^n\},\$$

where
$$A \in \mathbb{Z}^{m \times n}$$
, $b \in \mathbb{Z}^m$, $c \in \mathbb{Z}^n$.

Two classes of efficiently solvable ILPs

• If
$$n = O(1)$$
 or $m = O(1)$

 \rightarrow Lenstra's Algorithm. (Lenstra [1983])

► If A is totally unimodular (TU) → Relaxation is naturally integral.

What if minors, in absolute value, are still bounded, but not by 1?

One can show that for any ε > 0, if minors are of order n^ε, then ILP gets NP-hard. (see, e.g., Burch et al. [2003], Chestnut, Z. [2016])

Beyond TU-ness: Bimodular integer programs

Definition: Bimodular Integer Program (BIP)

 $\max\{c^T x \mid Ax \leq b, x \in \mathbb{Z}^n\}, \text{ where }$

(i) All
$$n \times n$$
 minors of A are $\in \{-2, -1, 0, 1, 2\}$.
(ii) rank $(A) = n$.

Beyond TU-ness: Bimodular integer programs

Definition: Bimodular Integer Program (BIP)

 $\max\{c^T x \mid Ax \leq b, x \in \mathbb{Z}^n\}, \text{ where }$

(i) All
$$n \times n$$
 minors of A are $\in \{-2, -1, 0, 1, 2\}$.
(ii) rank $(A) = n$.

Any ILPs s.t. all minors of A are $\in \{-2, -1, 0, 1, 2\}$ can easily be reduced to BIP.

Theorem

AWZ [2017]

There is a strongly polynomial algorithm to solve BIP.

Some comments and gained insights

- BIP is equivalent to "parity-constrained TU ILPs".
- ► We heavily use Seymour's TU decomposition.
- Crucial role play parity-constrained combinatorial problems, like the *T*-cut problem.
 A useful tool: parity-constrained submodular minimization

(Grötschel, Lovász, Schrijver [1981], Goemans and Ramakrishnan [1995]):

 $\min\{f(S) \mid S \subseteq N, |S| \text{ odd}\}$.

Largest minor of *M* in abs. value = $2^{\operatorname{ocp}(G)}$, where $\operatorname{ocp}(G)$ is odd cycle packing number.

If ocp(G) = 1, then *M* is tot. bimodular \rightarrow can efficiently find max weight stable set through BIP.

Largest minor of *M* in abs. value = $2^{\operatorname{ocp}(G)}$, where $\operatorname{ocp}(G)$ is odd cycle packing number.

If ocp(G) = 1, then *M* is tot. bimodular \rightarrow can efficiently find max weight stable set through BIP.

Some optimization questions studied in context of minors

- Odd cycle packing number. Kawarabayashi & Reed [2010], Bock, Faenza, Moldenhauer & Ruiz-Vargas [2010]
- Diameter of polyhedra and efficient simplex-type algorithms. Bonifas, Di Summa, Eisenbrand, Hähnle & Niemeier [2014], Eisenbrand & Vempala [2017]
- Computing largest minor. Summa, Eisenbrand, Faenza & Moldenhauer [2015], Nikolov [2015]
- Efficient minimization of seperable convex functions. Hochbaum & Shanthikumar [1990]

Our approach

From BIP to CPTU

Theorem

Veselov and Chirkov [2009]

Let $\max\{c^T x \mid Ax \leq b, x \in \mathbb{Z}^n\}$ be a BIP, $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$, $v \in \text{vertices}(P)$, and let $\overline{Ax} \leq \overline{b}$ be the *v*-tight subsystem of $Ax \leq b$.

Theorem

Veselov and Chirkov [2009]

Let $\max\{c^T x \mid Ax \leq b, x \in \mathbb{Z}^n\}$ be a BIP, $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$, $v \in \text{vertices}(P)$, and let $\overline{Ax} \leq \overline{b}$ be the *v*-tight subsystem of $Ax \leq b$.

Theorem

Veselov and Chirkov [2009]

Let $\max\{c^T x \mid Ax \leq b, x \in \mathbb{Z}^n\}$ be a BIP, $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$, $v \in \text{vertices}(P)$, and let $\overline{Ax} \leq \overline{b}$ be the *v*-tight subsystem of $Ax \leq b$.

Theorem

Veselov and Chirkov [2009]

Let $\max\{c^T x \mid Ax \leq b, x \in \mathbb{Z}^n\}$ be a BIP, $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$, $v \in \text{vertices}(P)$, and let $\overline{Ax} \leq \overline{b}$ be the *v*-tight subsystem of $Ax \leq b$.

Theorem

Veselov and Chirkov [2009]

Let $\max\{c^T x \mid Ax \leq b, x \in \mathbb{Z}^n\}$ be a BIP, $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$, $v \in \text{vertices}(P)$, and let $\overline{Ax} \leq \overline{b}$ be the *v*-tight subsystem of $Ax \leq b$.

Theorem

Veselov and Chirkov [2009]

Let $\max\{c^T x \mid Ax \leq b, x \in \mathbb{Z}^n\}$ be a BIP, $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$, $v \in \text{vertices}(P)$, and let $\overline{Ax} \leq \overline{b}$ be the *v*-tight subsystem of $Ax \leq b$.

Theorem

Veselov and Chirkov [2009]

Let $\max\{c^T x \mid Ax \leq b, x \in \mathbb{Z}^n\}$ be a BIP, $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$, $v \in \text{vertices}(P)$, and let $\overline{Ax} \leq \overline{b}$ be the *v*-tight subsystem of $Ax \leq b$.

 $\max\{\tilde{\boldsymbol{c}}^{\mathsf{T}}\boldsymbol{y}\mid \boldsymbol{T}\boldsymbol{y}\leq \boldsymbol{0}, \boldsymbol{Q}^{-1}(\boldsymbol{b}_{\boldsymbol{Q}}+\boldsymbol{y})\in\mathbb{Z}^n\}=\max\{\tilde{\boldsymbol{c}}^{\mathsf{T}}\boldsymbol{y}\mid \boldsymbol{T}\boldsymbol{y}\leq \boldsymbol{0}, \boldsymbol{Q}^{-1}(\boldsymbol{b}_{\boldsymbol{Q}}+\boldsymbol{y})\in\mathbb{Z}^n, \boldsymbol{y}\in\mathbb{Z}^n\}$

 $\max\{\tilde{c}^{\mathsf{T}}y\mid \mathsf{T}y\leq 0, Q^{-1}(b_Q+y)\in\mathbb{Z}^n\}=\max\{\tilde{c}^{\mathsf{T}}y\mid \mathsf{T}y\leq 0, Q^{-1}(b_Q+y)\in\mathbb{Z}^n, y\in\mathbb{Z}^n\}$

Question

Given $w \in \mathbb{Z}^n$, when do we have $Q^{-1}w \in \mathbb{Z}^n$, where $Q \in \mathbb{Z}^{n \times n}$ with det $Q \in \{-2, 2\}$?

 $\max\{\tilde{c}^T y \mid Ty \leq 0, Q^{-1}(b_Q + y) \in \mathbb{Z}^n\} = \max\{\tilde{c}^T y \mid Ty \leq 0, Q^{-1}(b_Q + y) \in \mathbb{Z}^n, y \in \mathbb{Z}^n\}$

Question

Given $w \in \mathbb{Z}^n$, when do we have $Q^{-1}w \in \mathbb{Z}^n$, where $Q \in \mathbb{Z}^{n \times n}$ with det $Q \in \{-2, 2\}$?

Answer

 $\max\{\tilde{c}^T y \mid Ty \leq 0, Q^{-1}(b_Q + y) \in \mathbb{Z}^n\} = \max\{\tilde{c}^T y \mid Ty \leq 0, Q^{-1}(b_Q + y) \in \mathbb{Z}^n, y \in \mathbb{Z}^n\}$

Question

Given $w \in \mathbb{Z}^n$, when do we have $Q^{-1}w \in \mathbb{Z}^n$, where $Q \in \mathbb{Z}^{n \times n}$ with det $Q \in \{-2, 2\}$?

Answer

 $\implies \quad Q^{-1}(b_Q+y)\in \mathbb{Z}^n \quad \Leftrightarrow \quad (b_Q+y)(S) \text{ is even } \quad \Leftrightarrow \quad y(S) \text{ odd.}$

$$\max\{\tilde{c}^T y \mid Ty \leq 0, Q^{-1}(b_Q + y) \in \mathbb{Z}^n\} = \max\{\tilde{c}^T y \mid Ty \leq 0, Q^{-1}(b_Q + y) \in \mathbb{Z}^n, y \in \mathbb{Z}^n\} \\ = \max\{\tilde{c}^T y \mid Ty \leq 0, y(S) \text{ odd}, y \in \mathbb{Z}^n\}$$

Question

Given $w \in \mathbb{Z}^n$, when do we have $Q^{-1}w \in \mathbb{Z}^n$, where $Q \in \mathbb{Z}^{n \times n}$ with det $Q \in \{-2, 2\}$?

Answer

 \Rightarrow $Q^{-1}(b_Q + y) \in \mathbb{Z}^n \Leftrightarrow (b_Q + y)(S)$ is even $\Leftrightarrow y(S)$ odd.

Toward simpler combinatorial problems via Seymour's TU decomposition

Seymour's TU decomposition (I)

Any TU matrix can be constructed from 3 basic types of TU matrices:

(i)	Network matrices (gen. of incidence matrices),	(1	-1	0	0	-1	/	/1	1	1	1	1
(ii)	transposes of network matrices,	-1 0	1 —1	-1 1	0 —1	0 0	,	1 1	1 0	1 1	0 1	0 0
(iii)	the following two matrices:	0 (_1	0 0	-1 0	1 —1	$\begin{pmatrix} -1 \\ 1 \end{pmatrix}$		1	0 1	0 0	1 0	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

using the following operations:

▶ 1-sum:
$$L \oplus_1 R = \begin{bmatrix} L & 0 \\ 0 & R \end{bmatrix}$$
,
▶ 2-sum: $\begin{bmatrix} L & a \end{bmatrix} \oplus_2 \begin{bmatrix} d^T \\ R \end{bmatrix} = \begin{bmatrix} L & ad^T \\ 0 & R \end{bmatrix}$, and
▶ 3-sum: $\begin{bmatrix} L & a & a \\ f^T & 0 & 1 \end{bmatrix} \oplus_3 \begin{bmatrix} 1 & 0 & d^T \\ g & g & R \end{bmatrix} = \begin{bmatrix} L & ad^T \\ gf^T & R \end{bmatrix}$,
where rows(L) + cols(L) ≥ 4 and rows(R) + cols(R) ≥ 4.

- permuting rows/columns,
- adding a row/column with at most 1 nonzero entry,
- negating a row/column,
- doubling a row/column,
- pivoting (think of simplex pivoting).

Seymour's TU decomposition (II)

We slightly tweak Seymour's TU decomposition to get additional properties.

Key operations that have to be considered: 1-sums, 2-sums, 3-sums, and pivots.

Using Seymour's decomposition to solve CPTU

 $\mathsf{CPTU} \text{ problem:} \quad \max\{ \boldsymbol{c}^\mathsf{T} \boldsymbol{x} \mid \mathsf{T} \boldsymbol{x} \leq \mathsf{0}, \boldsymbol{x}(\mathcal{S}) \text{ odd}, \boldsymbol{x} \in \mathbb{Z}_{\geq 0}^n \} \ .$

k-sums for $k \in \{1, 2, 3\}$

Efficient algo for CPTU wrt T_A , T_B implies efficient algo for CPTU wrt T_C .

Base blocks

We can solve any CPTU for any base block matrix.

Pivots

Eficient algo for CPTU wrt T_A implies efficient algo for CPTU wrt T_B .

Propagation aspects on the example of 2-sums

Dealing with 2-sums (I)

$$\mathsf{CPTU:} \quad \mathsf{max}\{\boldsymbol{c}^{\mathsf{T}}\boldsymbol{x} \mid \mathsf{T}\boldsymbol{x} \leq \mathsf{0}, \boldsymbol{x}(\mathcal{S}) \text{ odd}, \boldsymbol{x} \in \mathbb{Z}_{\geq 0}^n\}$$

Assume T can be written as a 2-sum:

$$T = \begin{pmatrix} L & ab^{\top} \\ \hline & 0 & R \\ \hline & 0 & R \\ S & = & S_L & \cup & S_R \end{pmatrix} = (L \ a) \oplus_2 \begin{pmatrix} b^{\top} \\ R \end{pmatrix}$$

Lemma

$$\exists$$
 opt. sol. $x^* = \begin{pmatrix} x_L^* \\ x_R^* \end{pmatrix}$ to CPTU wrt T such that $b^T x_R^* \in \{-1, 0, 1\}$.

AWZ [2017]

In what follows, assume $rows(R) \le rows(L)$.

Assume you are given x_R^* with $b^T x_R^* \in \{-1, 0, 1\}$. All one has to know to determine x_L^* is:

- (i) value of $b^T x_R^* \in \{-1, 0, 1\}$, and
- (ii) parity of $x_R(S_R) \in \{\text{even}, \text{odd}\}$.

For each of the 6 combinations of (i) and (ii) we construct an optimal x_R^* .

$$T = \begin{pmatrix} L & ab^{\top} \\ \hline & 0 & R \\ \hline & 0 & R \\ \hline & S & = & S_L & \dot{\cup} & S_R \end{pmatrix} = (L \ a) \oplus_2 \begin{pmatrix} b^{\top} \\ R \end{pmatrix}$$

For
$$\alpha \in \{-1, 0, 1\}$$
 and $\beta \in \{0, 1\}$, we compute:

$$\rho(\gamma, \delta) \coloneqq \max\{c_R^T x_R \mid R \cdot x_R \leq 0, \ b^T x_R = \alpha, \ x_R(S_R) \equiv \beta \pmod{2}, \ x_R \in \mathbb{Z}_{\geq 0}^{n_R}\}.$$

We incorporate these options into a problem involving *L*. We set:

Combined problem to find x_L^* :

$$\{ \max\{\overline{c}^{\mathcal{T}}x \mid \overline{L}x \leq 0, x \in \mathbb{Z}^{n_L+6}_{\geq 0}, x(S_L \cup J) ext{ odd} \} \}$$

Dealing with 2-sums (II)

J: components with $\beta = 1$

Conclusions

Our main result

BIPs are efficiently solvable (even in strongly poly time).

Some natural open questions (... and things I am interested in)

- Recognition of bimodular matrices?
- Solve k-modular ILPs for k = O(1), or even just determine feasibility?
- ▶ Reduction of *k*-modular ILP to modular optimization, e.g., TU problem with $x(S) \equiv 1 \pmod{k}$?
- Different approach to solve BIP not based on TU decomposition?
- Derive additional structural properties of k-modular matrices.