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Toward general classes of efficiently solvable ILPs

c

Integer Linear Program (ILP)

max{cT x | Ax ≤ b, x ∈ Zn},

where A ∈ Zm×n, b ∈ Zm, c ∈ Zn.

Two classes of efficiently solvable ILPs

If n = O(1) or m = O(1)
→ Lenstra’s Algorithm. (Lenstra [1983])

If A is totally unimodular (TU)
→ Relaxation is naturally integral.

What if minors, in absolute value, are still bounded, but not by 1?

One can show that for any ε > 0, if minors are of order nε, then ILP gets NP-hard.
(see, e.g., Burch et al. [2003], Chestnut, Z. [2016])
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Beyond TU-ness: Bimodular integer programs

Definition: Bimodular Integer Program (BIP)

max{cT x | Ax ≤ b, x ∈ Zn}, where

(i) All n × n minors of A are ∈ {−2,−1, 0, 1, 2}.
(ii) rank(A) = n.

Any ILPs s.t. all minors of
A are ∈ {−2,−1, 0, 1, 2}
can easily be reduced to BIP.
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Our results

Theorem AWZ [2017]

There is a strongly polynomial algorithm to solve BIP.

Some comments and gained insights

BIP is equivalent to “parity-constrained TU ILPs”.

We heavily use Seymour’s TU decomposition.

Crucial role play parity-constrained combinatorial problems, like the T -cut problem.

A useful tool: parity-constrained submodular minimization
(Grötschel, Lovász, Schrijver [1981], Goemans and Ramakrishnan [1995]):

min{f(S) | S ⊆ N, |S| odd} .

submodular set function
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Small minors

v1
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1 1 0 1 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 1 0 0 1 1
0 0 0 1 0 0 1 0 1 0
0 0 0 0 1 0 0 1 0 1
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Largest minor of M in abs. value = 2ocp(G), where ocp(G) is odd cycle packing number.

If ocp(G) = 1, then M is tot. bimodular→ can efficiently find max weight stable set through BIP.

Some optimization questions studied in context of minors

Odd cycle packing number. Kawarabayashi & Reed [2010], Bock, Faenza, Moldenhauer & Ruiz-Vargas [2010]

Diameter of polyhedra and efficient simplex-type algorithms. Bonifas, Di Summa, Eisenbrand, Hähnle &
Niemeier [2014], Eisenbrand & Vempala [2017]

Computing largest minor. Summa, Eisenbrand, Faenza & Moldenhauer [2015], Nikolov [2015]

Efficient minimization of seperable convex functions. Hochbaum & Shanthikumar [1990]
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Our approach



Our approach on a high level

x1

x2

v
y1

y2

T

+ 3

T5

+ 2

T3

+ 1

T1 T2

T4

T9

pivot

T8

+ 3

T6 T7
we assume v 6∈ Zn

BIP

max{cT x | Ax ≤ b, x ∈ Zn}
where A is bimodular.

Conic parity TU problem (CPTU)

max{c̃T y | Ty ≤ 0, y ∈ Zn
≥0, y(S) odd},

where T is TU, and S ⊆ [n].

Seymour’s TU decomposition

I Decompose T into base blocks (leaves).

I Solve CPTU by solving CPTUs on base
blocks and propagating solutions up.
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From BIP to CPTU



Prior work by Veselov and Chirkov [2009]
Theorem Veselov and Chirkov [2009]

Let max{cT x | Ax ≤ b, x ∈ Zn} be a BIP, P = {x ∈ Rn | Ax ≤ b}, v ∈ vertices(P), and let Ax ≤ b
be the v -tight subsystem of Ax ≤ b.

Then each vertex of C = conv({x ∈ Zn | Ax ≤ b}) lies on an edge of P.

• All vertices of C are feasible for BIP.
• Opt sol of BIP is vertex of C.

⇒
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From BIP to CPTU (I)

max{cT x | Ax ≤ b, x ∈ Zn} = max{cT Q−1y | AQ−1y ≤ 0,Q−1(bQ + y) ∈ Zn}

y = Q · (x − v)

x1

x2

v
· x ≤




A b

A b

tight
constraints
A · v = b

x1

x2

v


· x ≤




A b

Q bQ

full-rank square
submatrix Q

y1

y2


· y ≤ 0

AQ−1 =: T

Id

y = Q · (x − v)
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From BIP to CPTU (II)

max{c̃T y | Ty ≤ 0,Q−1(bQ + y) ∈ Zn} = max{c̃T y | Ty ≤ 0,Q−1(bQ + y) ∈ Zn, y ∈ Zn}

= max{c̃T y | Ty ≤ 0, y(S) odd, y ∈ Zn}

Question

Given w ∈ Zn, when do we have Q−1w ∈ Zn, where Q ∈ Zn×n with det Q ∈ {−2, 2}?

Answer

Up to row and column permutations, Q−1 looks as follows: Q−1 =


∈ 1

2 + Z

∈ Z

R ⊆ [n]

S ⊆ [n]⇒ Q−1w ∈ Zn ⇔ w(S) is even.

⇒ Q−1(bQ + y) ∈ Zn ⇔ (bQ + y)(S) is even ⇔ y(S) odd.
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Toward simpler combinatorial
problems via Seymour’s

TU decomposition



Seymour’s TU decomposition (I)
Any TU matrix can be constructed from 3 basic types of TU matrices:

(i) Network matrices (gen. of incidence matrices),

(ii) transposes of network matrices,

(iii) the following two matrices:


1 −1 0 0 −1

−1 1 −1 0 0
0 −1 1 −1 0
0 0 −1 1 −1

−1 0 0 −1 1

 ,


1 1 1 1 1
1 1 1 0 0
1 0 1 1 0
1 0 0 1 1
1 1 0 0 1



using the following operations:

1-sum: L⊕1 R =

[
L 0
0 R

]
,

2-sum:
[
L a

]
⊕2

[
dT

R

]
=

[
L adT

0 R

]
, and

3-sum:

[
L a a
f T 0 1

]
⊕3

[
1 0 dT

g g R

]
=

[
L adT

gf T R

]
,

where rows(L) + cols(L) ≥ 4 and rows(R) + cols(R) ≥ 4.

permuting rows/columns,

adding a row/column with at most 1
nonzero entry,

negating a row/column,

doubling a row/column,

pivoting (think of simplex pivoting).
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Seymour’s TU decomposition (II)

We slightly tweak Seymour’s TU decomposition to get additional properties.

Key operations that have to be considered: 1-sums, 2-sums, 3-sums, and pivots.

T

+ 3

T5

+ 2

T3

+ 1

T1 T2

T4

T9

pivot

T8

+ 3

T6 T7
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Using Seymour’s decomposition to solve CPTU

CPTU problem: max{cT x | Tx ≤ 0, x(S) odd, x ∈ Zn
≥0} .

T

+ 3

T5

+ 2

T3

+ 1

T1 T2

T4

T9

pivot

T8

+ 3

T6 T7

Base blocks

We can solve any CPTU for
any base block matrix.

Pivots

Eficient algo for CPTU wrt TA

implies efficient algo for CPTU
wrt TB .

TB

pivot

TA

k -sums for k ∈ {1, 2, 3}

Efficient algo for CPTU wrt
TA, TB implies efficient algo for
CPTU wrt TC .

TC

+ k

TA TB
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Propagation aspects on
the example of 2-sums



Dealing with 2-sums (I)
CPTU: max{cT x | Tx ≤ 0, x(S) odd, x ∈ Zn

≥0}

Assume T can be written as a 2-sum:

T =




L

0

ab>

R

SL SR∪̇=S

=
(

L a
)
⊕2

(
b>

R

)

Lemma AWZ [2017]

∃ opt. sol. x∗ =
(

x∗
L

x∗
R

)
to CPTU wrt T such

that bT x∗R ∈ {−1, 0, 1}.

In what follows, assume rows(R) ≤ rows(L).

Assume you are given x∗R with bT x∗R ∈ {−1, 0, 1}.
All one has to know to determine x∗L is:

(i) value of bT x∗R ∈ {−1, 0, 1}, and

(ii) parity of xR(SR) ∈ {even, odd}.

For each of the 6 combinations of (i) and (ii)
we construct an optimal x∗R .
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Dealing with 2-sums (II)
T =




L

0

ab>

R

SL SR∪̇=S

=
(

L a
)
⊕2

(
b>

R

)

For α ∈ {−1, 0, 1} and β ∈ {0, 1}, we compute:

ρ(γ, δ) := max{cT
R xR | R · xR ≤ 0, bT xR = α, xR(SR) ≡ β (mod 2), xR ∈ ZnR

≥0} .

We incorporate these options into a problem involving L. We set:
J: components with β = 1

(α, β) : (−1, 0) (0, 0) (1, 0) (−1, 1) (0, 1) (1, 1)

L = L −a 0 a −a 0 a

cT = cT
L ρ(−1, 0) ρ(0, 0) ρ(1, 0) ρ(−1, 1) ρ(0, 1) ρ(1, 1)

,

,

,

,

,

,

,

,

,

,

Combined problem to find x∗L : max{cT x | Lx ≤ 0, x ∈ ZnL+6
≥0 , x(SL ∪ J) odd}
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Conclusions



Conclusions

Our main result

I BIPs are efficiently solvable (even in strongly poly time).

Some natural open questions (. . . and things I am interested in)

I Recognition of bimodular matrices?

I Solve k -modular ILPs for k = O(1), or even just determine feasibility?

I Reduction of k -modular ILP to modular optimization, e.g., TU problem with x(S) ≡ 1 (mod k)?

I Different approach to solve BIP not based on TU decomposition?

I Derive additional structural properties of k -modular matrices.

20 / 20


	Our approach
	From BIP to CPTU
	Breaking the problem down through Seymour's TU decomposition
	Dealing with 2-sums
	Conclusions

