A Strongly Polynomial Algorithm for Bimodular Integer Programming Rico Zenklusen

ETH Zurich

joint work with Stephan Artmann and Robert Weismantel

Integer Linear Program (ILP)

$$
\max\{c^T x \mid Ax \leq b, x \in \mathbb{Z}^n\},\
$$

where
$$
A \in \mathbb{Z}^{m \times n}
$$
, $b \in \mathbb{Z}^m$, $c \in \mathbb{Z}^n$.

Integer Linear Program (ILP)

$$
\max\{c^T x \mid Ax \leq b, x \in \mathbb{Z}^n\},\
$$

where
$$
A \in \mathbb{Z}^{m \times n}
$$
, $b \in \mathbb{Z}^m$, $c \in \mathbb{Z}^n$.

Two classes of efficiently solvable ILPs

► If
$$
n = O(1)
$$
 or $m = O(1)$
→ Lenstra's Algorithm. (Lenstra [1983])

If
$$
A
$$
 is totally unimodular (TU)

 \rightarrow Relaxation is naturally integral.

Integer Linear Program (ILP)

$$
\max\{c^T x \mid Ax \leq b, x \in \mathbb{Z}^n\},\
$$

where
$$
A \in \mathbb{Z}^{m \times n}
$$
, $b \in \mathbb{Z}^m$, $c \in \mathbb{Z}^n$.

Two classes of efficiently solvable ILPs

► If
$$
n = O(1)
$$
 or $m = O(1)$
\n→ Lenstra's Algorithm. (Lenstra [1983])

If *A* is totally unimodular (TU) \blacktriangleright \rightarrow Relaxation is naturally integral.

What if minors, in absolute value, are still bounded, but not by 1?

Integer Linear Program (ILP)

$$
\max\{c^T x \mid Ax \leq b, x \in \mathbb{Z}^n\},\
$$

where
$$
A \in \mathbb{Z}^{m \times n}
$$
, $b \in \mathbb{Z}^m$, $c \in \mathbb{Z}^n$.

Two classes of efficiently solvable ILPs

► If
$$
n = O(1)
$$
 or $m = O(1)$
\n→ Lenstra's Algorithm. (Lenstra [1983])

► If *A* is totally unimodular (TU) \rightarrow Relaxation is naturally integral.

What if minors, in absolute value, are still bounded, but not by 1?

One can show that for any $\epsilon > 0$, if minors are of order n^{ϵ} , then ILP gets NP-hard. (see, e.g., Burch et al. [2003], Chestnut, Z. [2016])

Beyond TU-ness: Bimodular integer programs

Definition: Bimodular Integer Program (BIP)

 $max{c^T x \mid Ax \leq b, x \in \mathbb{Z}}$ where

\n- (i) All
$$
n \times n
$$
 minors of A are $\in \{-2, -1, 0, 1, 2\}$.
\n- (ii) rank(A) = n.
\n

Beyond TU-ness: Bimodular integer programs

Definition: Bimodular Integer Program (BIP)

 $max{c^T x \mid Ax \leq b, x \in \mathbb{Z}}$ where

\n- (i) All
$$
n \times n
$$
 minors of A are $\in \{-2, -1, 0, 1, 2\}$.
\n- (ii) rank(A) = n.
\n

Any ILPs s.t. all minors of *A* are ∈ {-2, -1, 0, 1, 2} can easily be reduced to BIP.

Theorem AWZ [2017]

There is a strongly polynomial algorithm to solve BIP.

Some comments and gained insights

- ▶ BIP is equivalent to "parity-constrained TU ILPs".
- ▶ We heavily use Seymour's TU decomposition.
- Crucial role play parity-constrained combinatorial problems, like the *T*-cut problem.

A useful tool: parity-constrained submodular minimization

(Grötschel, Lovász, Schrijver [1981], Goemans and Ramakrishnan [1995]):

 $min{f(S) | S \subseteq N, |S| \text{ odd}}$.

submodular set function

Largest minor of M in abs. value $=2^{\mathrm{ocp}(G)}$ where $\mathrm{ocp}(G)$ is odd cycle packing number.

If $\text{ocp}(G) = 1$, then *M* is tot. bimodular \rightarrow can efficiently find max weight stable set through BIP.

Largest minor of M in abs. value $=2^{\mathrm{ocp}(G)}$ where $\text{ocp}(G)$ is odd cycle packing number.

If $\text{ocp}(G) = 1$, then *M* is tot. bimodular \rightarrow can efficiently find max weight stable set through BIP.

Some optimization questions studied in context of minors

- Odd cycle packing number. Kawarabayashi & Reed [2010], Bock, Faenza, Moldenhauer & Ruiz-Vargas [2010]
- Diameter of polyhedra and efficient simplex-type algorithms. Bonifas, Di Summa, Eisenbrand, Hähnle & Niemeier [2014], Eisenbrand & Vempala [2017]
- Computing largest minor. Summa, Eisenbrand, Faenza & Moldenhauer [2015], Nikolov [2015]
- Efficient minimization of seperable convex functions. Hochbaum & Shanthikumar [1990]

Our approach

where *T* is TU, and $S \subseteq [n]$.

Solve CPTU by solving CPTUs on base blocks and propagating solutions up.

From BIP to CPTU

Theorem Veselov and Chirkov [2009]

Let $\max\{c^T x \mid Ax \leq b, x \in \mathbb{Z}^n\}$ be a BIP, $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}, \, v \in \text{vertices}(P),$ and let $\overline{A}x \leq \overline{b}$ be the *v*-tight subsystem of *Ax* ≤ *b*.

Theorem Veselov and Chirkov [2009]

Let $\max\{c^T x \mid Ax \leq b, x \in \mathbb{Z}^n\}$ be a BIP, $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}, \, v \in \text{vertices}(P),$ and let $\overline{A}x \leq \overline{b}$ be the *v*-tight subsystem of *Ax* ≤ *b*.

Theorem Veselov and Chirkov [2009]

Let $\max\{c^T x \mid Ax \leq b, x \in \mathbb{Z}^n\}$ be a BIP, $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}, \, v \in \text{vertices}(P),$ and let $\overline{A}x \leq \overline{b}$ be the *v*-tight subsystem of *Ax* ≤ *b*.

Theorem Veselov and Chirkov [2009]

Let $\max\{c^T x \mid Ax \leq b, x \in \mathbb{Z}^n\}$ be a BIP, $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}, \, v \in \text{vertices}(P),$ and let $\overline{A}x \leq \overline{b}$ be the *v*-tight subsystem of *Ax* ≤ *b*.

Theorem Veselov and Chirkov [2009]

Let $\max\{c^T x \mid Ax \leq b, x \in \mathbb{Z}^n\}$ be a BIP, $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}, \, v \in \text{vertices}(P),$ and let $\overline{A}x \leq \overline{b}$ be the *v*-tight subsystem of *Ax* ≤ *b*.

Theorem Veselov and Chirkov [2009]

Let $\max\{c^T x \mid Ax \leq b, x \in \mathbb{Z}^n\}$ be a BIP, $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}, \, v \in \text{vertices}(P),$ and let $\overline{A}x \leq \overline{b}$ be the *v*-tight subsystem of *Ax* ≤ *b*.

Theorem Veselov and Chirkov [2009]

Let $\max\{c^T x \mid Ax \leq b, x \in \mathbb{Z}^n\}$ be a BIP, $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}, \, v \in \text{vertices}(P),$ and let $\overline{A}x \leq \overline{b}$ be the *v*-tight subsystem of *Ax* ≤ *b*.

 $\max\{\tilde{c}^{\sf \scriptscriptstyle T} y \mid \textit{Ty}\leq 0, \textit{Q}^{\sf -1}(b_{Q}+y)\in \mathbb{Z}^n\}=\max\{\tilde{c}^{\sf \scriptscriptstyle T} y \mid \textit{Ty}\leq 0, \textit{Q}^{\sf -1}(b_{Q}+y)\in \mathbb{Z}^n, y\in \mathbb{Z}^n\}$

$$
\text{max}\{\tilde{c}^T y \mid \textit{Ty}\leq 0, \textit{Q}^{-1}(b_Q+y)\in \mathbb{Z}^n\} = \text{max}\{\tilde{c}^T y \mid \textit{Ty}\leq 0, \textit{Q}^{-1}(b_Q+y)\in \mathbb{Z}^n, y\in \mathbb{Z}^n\}
$$

Question

Given $w \in \mathbb{Z}^n$, when do we have $Q^{-1}w \in \mathbb{Z}^n$, where $Q \in \mathbb{Z}^{n \times n}$ with det $Q \in \{-2,2\}$?

$$
\max\{\tilde{c}^T y\mid \mathcal{T} y\leq 0, \mathcal{Q}^{-1}(b_{\mathcal{Q}}+y)\in \mathbb{Z}^n\}=\max\{\tilde{c}^T y\mid \mathcal{T} y\leq 0, \mathcal{Q}^{-1}(b_{\mathcal{Q}}+y)\in \mathbb{Z}^n, y\in \mathbb{Z}^n\}
$$

Question

Given $w \in \mathbb{Z}^n$, when do we have $Q^{-1}w \in \mathbb{Z}^n$, where $Q \in \mathbb{Z}^{n \times n}$ with det $Q \in \{-2,2\}$?

Answer

$$
\max\{\tilde{c}^T y\mid \mathcal{T} y\leq 0, \mathcal{Q}^{-1}(b_{\mathcal{Q}}+y)\in \mathbb{Z}^n\}=\max\{\tilde{c}^T y\mid \mathcal{T} y\leq 0, \mathcal{Q}^{-1}(b_{\mathcal{Q}}+y)\in \mathbb{Z}^n, y\in \mathbb{Z}^n\}
$$

Question

Given $w \in \mathbb{Z}^n$, when do we have $Q^{-1}w \in \mathbb{Z}^n$, where $Q \in \mathbb{Z}^{n \times n}$ with det $Q \in \{-2,2\}$?

Answer

⇒ $Q^{-1}(b_Q + y) \in \mathbb{Z}^n$ ⇔ $(b_Q + y)(S)$ is even ⇔ $y(S)$ odd.

$$
\max{\{\tilde{c}^T y \mid \mathcal{T} y \leq 0, \mathcal{Q}^{-1}(b_Q + y) \in \mathbb{Z}^n\}} = \max{\{\tilde{c}^T y \mid \mathcal{T} y \leq 0, \mathcal{Q}^{-1}(b_Q + y) \in \mathbb{Z}^n, y \in \mathbb{Z}^n\}} = \max{\{\tilde{c}^T y \mid \mathcal{T} y \leq 0, y(S) \text{ odd}, y \in \mathbb{Z}^n\}}
$$

Question

Given $w \in \mathbb{Z}^n$, when do we have $Q^{-1}w \in \mathbb{Z}^n$, where $Q \in \mathbb{Z}^{n \times n}$ with det $Q \in \{-2,2\}$?

Answer

⇒ $Q^{-1}(b_Q + y) \in \mathbb{Z}^n$ ⇔ $(b_Q + y)(S)$ is even ⇔ $y(S)$ odd.

Toward simpler combinatorial problems via Seymour's TU decomposition

Seymour's TU decomposition (I)

Any TU matrix can be constructed from 3 basic types of TU matrices:

using the following operations:

▶ 1-sum:
$$
L \oplus_1 R = \begin{bmatrix} L & 0 \\ 0 & R \end{bmatrix}
$$
,
\n▶ 2-sum: $[L \ a] \oplus_2 \begin{bmatrix} d^T \\ R \end{bmatrix} = \begin{bmatrix} L & ad^T \\ 0 & R \end{bmatrix}$, and
\n▶ 3-sum: $\begin{bmatrix} L & a & a \\ f^T & 0 & 1 \end{bmatrix} \oplus_3 \begin{bmatrix} 1 & 0 & d^T \\ g & g & R \end{bmatrix} = \begin{bmatrix} L & ad^T \\ gf^T & R \end{bmatrix}$,
\nwhere rows $(L) + \text{cols}(L) \ge 4$ and rows $(R) + \text{cols}(R) \ge 4$.

- permuting rows/columns,
- ▶ adding a row/column with at most 1 nonzero entry,
- ▶ negating a row/column,
- \blacktriangleright doubling a row/column,
- \blacktriangleright pivoting (think of simplex pivoting).

Seymour's TU decomposition (II)

We slightly tweak Seymour's TU decomposition to get additional properties.

Key operations that have to be considered: 1-sums, 2-sums, 3-sums, and pivots.

Using Seymour's decomposition to solve CPTU

CPTU problem: $T x \mid Tx \leq 0, x(S) \text{ odd}, x \in \mathbb{Z}_{\geq 0}^n\}$.

*k***-sums for** $k \in \{1, 2, 3\}$

Efficient algo for CPTU wrt *TA*, *T^B* implies efficient algo for CPTU wrt *TC*.

Base blocks

We can solve any CPTU for any base block matrix.

Pivots

Eficient algo for CPTU wrt *T^A* implies efficient algo for CPTU wrt T_B .

Propagation aspects on the example of 2-sums

Dealing with 2**-sums (I)**

$$
\mathsf{CPTU:} \quad \mathsf{max}\{c^T x \mid Tx \leq 0, x(S) \text{ odd}, x \in \mathbb{Z}_{\geq 0}^n\}
$$

Assume *T* can be written as a 2-sum:

$$
T = \left(\begin{array}{c|c}\nL & ab^{\top} \\
\hline\n0 & R\n\end{array}\right) = (L \ a) \ \oplus_2 \left(\begin{array}{c} b^{\top} \\
R\n\end{array}\right)
$$

$$
S = S_L \ \dot{\cup} \ S_R
$$

Lemma AWZ [2017]

$$
\exists \text{ opt. sol. } x^* = \begin{pmatrix} x_i^* \\ x_n^* \end{pmatrix} \text{ to CPTU wrt } T \text{ such}
$$

that $b^T x_B^* \in \{-1, 0, 1\}.$

In what follows, assume rows(*R*) ≤ rows(*L*).

Assume you are given x_R^* with $b^T x_R^* \in \{-1,0,1\}.$ All one has to know to determine x_L^* is:

- **(i)** value of $b^T x_R^* \in \{-1, 0, 1\}$, and
- (ii) parity of $x_R(S_R) \in \{$ even, odd $\}$.

For each of the 6 combinations of **(i)** and **(ii)** we construct an optimal x_R^* .

$$
\tau = \left(\begin{array}{c|c}\nL & ab^{\top} \\
\hline\n0 & R\n\end{array}\right) = (L \ a) \ \oplus_2 \begin{pmatrix} b^{\top} \\
B\n\end{pmatrix}
$$

$$
S = S_L \ \dot{\cup} \ S_R
$$

For
$$
\alpha \in \{-1, 0, 1\}
$$
 and $\beta \in \{0, 1\}$, we compute:
\n
$$
\rho(\gamma, \delta) := \max \{c_R^T x_R \mid R \cdot x_R \le 0, \ b^T x_R = \alpha, \ x_R(S_R) \equiv \beta \pmod{2}, \ x_R \in \mathbb{Z}_{\geq 0}^{n_R} \}.
$$

We incorporate these options into a problem involving *L*. We set:

$$
(\alpha, \beta): \qquad (-1, 0) \quad (0, 0) \qquad (1, 0) \quad (-1, 1) \quad (0, 1) \qquad (1, 1)
$$
\n
$$
\overline{L} = \begin{bmatrix} L & | & -a \\ c_L^T & | & \rho(-1, 0) \end{bmatrix}, \qquad \alpha = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad \alpha = \begin{bmatrix} -a \\ a \\ b \end{bmatrix}, \qquad \beta = \begin{bmatrix} -a \\ b \\ c \end{bmatrix}, \qquad \beta = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end
$$

Combined problem to find x_L^* : $\Big[\max\{\overline{c}$

$$
\max\{\overline{c}^T x \mid \overline{L}x \leq 0, x \in \mathbb{Z}_{\geq 0}^{n_L+6}, x(S_L \cup J) \text{ odd}\}\
$$

Dealing with 2**-sums (II)**

J: components with $\beta = 1$

Conclusions

Our main result

BIPs are efficiently solvable (even in strongly poly time).

Some natural open questions (. . . and things I am interested in)

- Recognition of bimodular matrices?
- Solve *k*-modular ILPs for $k = O(1)$, or even just determine feasibility?
- Reduction of *k*-modular ILP to modular optimization, e.g., TU problem with $x(S) \equiv 1 \pmod{k}$?
- Different approach to solve BIP not based on TU decomposition?
- I Derive additional structural properties of *k*-modular matrices.