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Solving GBM Problems 

• Optimally solvable in PTIME 

– E.g., via a linear programming formulation 

– Small to medium-size instances well handled by 
out-of-the-box solvers 

• Instances can get very large 

– E.g., Netflix has 20M users, 10k’s of items 

– Available solvers break down 

6 

How can we solve GBM and related 
problems in a scalable and efficient way? 
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Overview 
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• Phase 1: LP relaxation 

– Outputs “edge probabilities” 

– Mixed packing-covering LP 

– Distributed approximate solver 

– Strong approximation guarantees 

 
 

• Phase 2: Rounding 

– Selects actual matching 

– Distributed dependent rounding 

– Good approximation guarantees 
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Mixed Packing-Covering LP 

maximize 𝑤𝑇𝑥
subject to 𝑃𝑥 ≤ 1 packing constraints

𝐶𝑥 ≥ 1 covering constraints  

𝑥 ≥ 0

 

• w, P, C all non-negative 

• For GBM 

– w: edge weights (Bs) 

– x: edge variables (Bs) 

– Covering c.: lower bounds (Ms) 

– Packing c.: upper bounds (Ms) 
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MPCSolver 

• General parallel solver for MPC problems 

– Fast convergence: polylog rounds 

– Almost feasible: All constraints satisfied up to 1 ± 𝜀  

– Near optimal: Objective at least 1 − 𝜀  of optimum 

– Easy to implement: matrix-vector operations 
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Algorithm (𝜀-feasibility) 
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𝑂 
1

𝜀5 log3 𝑘𝑚𝑀𝑛𝑥max  rounds. 



MPCSolver in Practice 

• Parallelization 

– Straightforward on shared-memory or GPU 

– Intelligent data placement and synchronization for 
shared-nothing 

– Also fits MapReduce framework 

• From feasibility to near-optimality 

– Obtain lower bound λmin and upper bound  λmax on 
objective (only covering or only packing) 

– Add constraint 𝑤𝑇𝑥 ≥  λ 

– Binary search for λ in log2log1−𝜀(λmin/λmax) steps 
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GBM Rounding 
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Given a near-optimal, 𝜀-feasible fractional solution to GBM. 
Find an integral solution that 

1) preserves 𝜀-feasibility (up to rounding) and 
2) preserves near-optimality. 
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Independent rounding 

– Naive approach 

– Satisfies (2) 
in expectation 

– Violates (1) 
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Sequential algorithm by Gandhi et al., 2006 

1. Find a fractional cycle or maximal path 

0.7 

0.4 0.9 

0.3 

0.5 0.7 

0.3 

0.4 

0.6 

             1.1               1.7                 1.0            1.0      

2.0           1.4           1.4      
15 Rainer Gemulla 



Dependent Rounding 

Sequential algorithm by Gandhi et al., 2006 

1. Find a fractional cycle or maximal path 

2. Round ≥1 edge on the cycle/path 

 

0.7 

0.4 0.9 

0.3 

0.5 0.7 

0.3 

0.4 

0.6 

             1.1               1.7                 1.0            1.0      

2.0           1.4           1.4      
Rainer Gemulla 15 



Dependent Rounding 

Sequential algorithm by Gandhi et al., 2006 

1. Find a fractional cycle or maximal path 

2. Round ≥1 edge on the cycle/path  

3. Repeat 

 

0.7 

0.4 1 

0.3 

0.4 0.7 

0.3 

0.3 

0.7 

             1.1               1.7                 1.0            1.0      

2.0           1.4           1.4      
Rainer Gemulla 15 



Dependent Rounding 

Sequential algorithm by Gandhi et al., 2006 

1. Find a fractional cycle or maximal path 

2. Round ≥1 edge on the cycle/path  

3. Repeat 

 

1 1 

2.0           1.4           1.4      

             1.1               1.7                 1.0            1.0      

1 

0.3 

1 0.1 0.4 

Rainer Gemulla 15 



Dependent Rounding 

Sequential algorithm by Gandhi et al., 2006 

1. Find a fractional cycle or maximal path 

2. Round ≥1 edge on the cycle/path  

3. Repeat 

 

1 1 

2.0           1.4           1.4      

             1.1               1.7                 1.0            1.0      

1 

0.3 

1 0.1 0.4 

Rainer Gemulla 15 



Dependent Rounding 

Sequential algorithm by Gandhi et al., 2006 

1. Find a fractional cycle or maximal path 

2. Round ≥1 edge on the cycle/path  

3. Repeat 

 

1 

0.4 

1 

2.0           1.4           1.7      

             1.4               1.7                 1.0            1.0      

1 0.7 1 

Rainer Gemulla 15 



Dependent Rounding 

Sequential algorithm by Gandhi et al., 2006 

1. Find a fractional cycle or maximal path 

2. Round ≥1 edge on the cycle/path  

3. Repeat 

 

1 

1 

1 

2.0           2.0           2.0      

             2.0               2.0                 1.0            1.0      

1 1 1 

Rainer Gemulla 15 



• Partitioning of edges to compute nodes 

 

Full graph 

Distributed Rounding 
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Distributed Rounding 

• Partitioning of edges to compute nodes 

• A local cycle is a global cycle 

• A local maximal path may not be globally maximal 

Full graph 

Node 1 

Node 2 
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Algorithm 

1. Partition edges (fractional only) 
2. Process local cycles 

• k compute nodes, m vertices → O(km) edges left 

3. Repeat until graph small 
4. Process rest sequentially (cycles and max. paths) 
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Distributed Rounding in Practice 

• Edges already partitioned by MPCSolver 
→ don’t redistribute 

• Empirical: most work done in first iteration 
→ scales nicely, little communication 

• Further saving in communication  

– Halving available compute nodes at each iteration 

– Even compute nodes keep their data 

– Odd compute nodes send data 
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Scalability  

20 

Users  Items Edges 

490k  18k  3.2B 

10M  1M  1B 

(Gurobi ran out of 
memory on a high-
memory server 
with 512GB RAM.) 
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MPCSolver on a GPU 
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Quality (feasibility, 𝜀 = 0.05) 
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Netflix (pred.) Synthetic 

Users 490k 10M 

Items 18k 1M 

Edges 3.2B 1B 

Sat. constraints 99.996% 99.993% 

Max violation (fractional) 4.98% 4.99% 

Max violation (integral) 2% 5% 
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Summary 

• Parallel approximation algorithms for  

– General mixed packing-covering linear programs 

– Rounding for generalized bipartite matching 

– Millions of vertices (users/items), billions of edges 
(preferences) 

• Shared memory, MPI, MapReduce, GPU 

24 Rainer Gemulla 

A Distributed Algorithm for Large-Scale Generalized Matching  
@ PVLDB, 2013 


