Large-Scale Generalized Matching

Baruch Awerbuch, Rainer Gemulla, Rohit Khandekar, Faraz Makari, Julián Mestre, Mauro Sozio

Bob wants to watch a movie

E-Mail from DVD rental store

Recommended for you

Bob wants to watch Avatar

E-Mail from DVD rental store

Recommended for you

Bob wants to watch Avatar

DVD rental store

Ordering Avatar...

DVD not available, try again tomorrow

Step 1: Predict preference

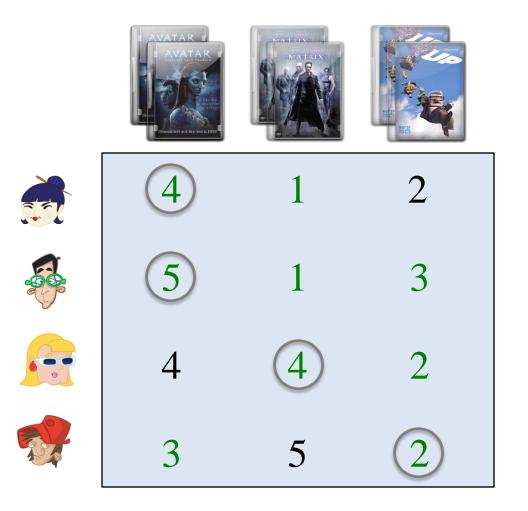
Step 2: Recommend preferred movies

Step 1: Predict preference

Step 2: Recommend preferred movies

Step 1: Predict preference

Step 2: Recommend preferred movies *under constraints*



Step 1: Predict preference

Step 2: Recommend preferred movies under constraints

Step 1: Predict preference

Step 2:

Recommend preferred movies under constraints

This talk

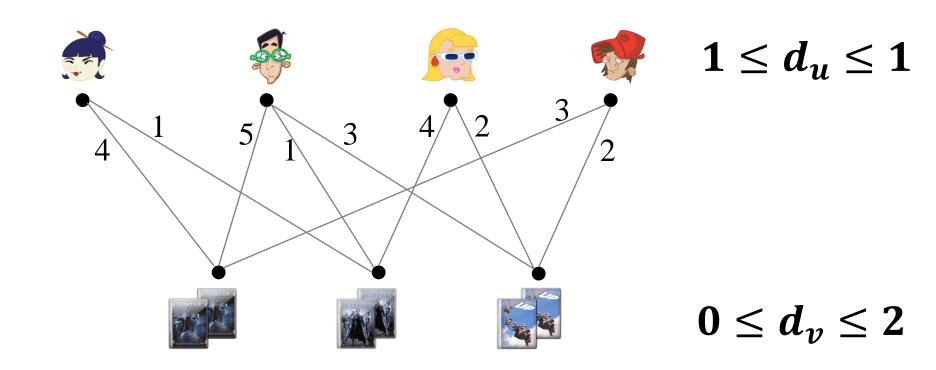
Outline

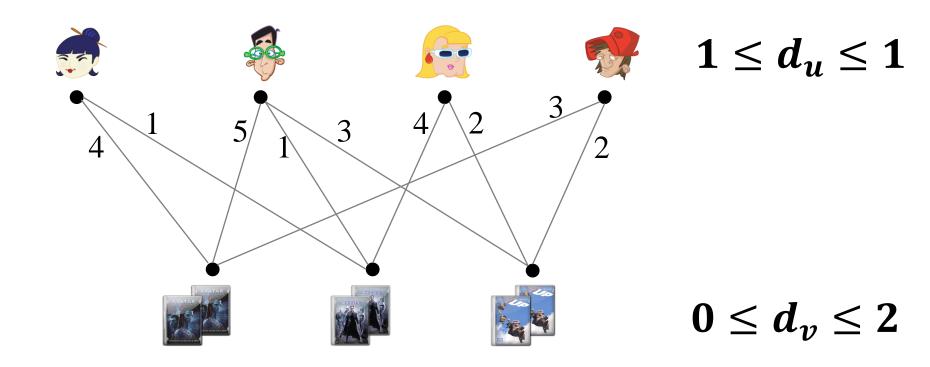
1. Introduction

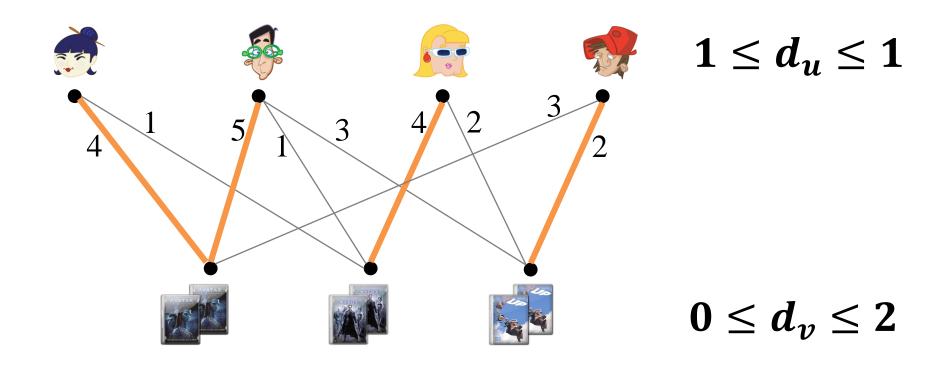
2. Generalized bipartite matching

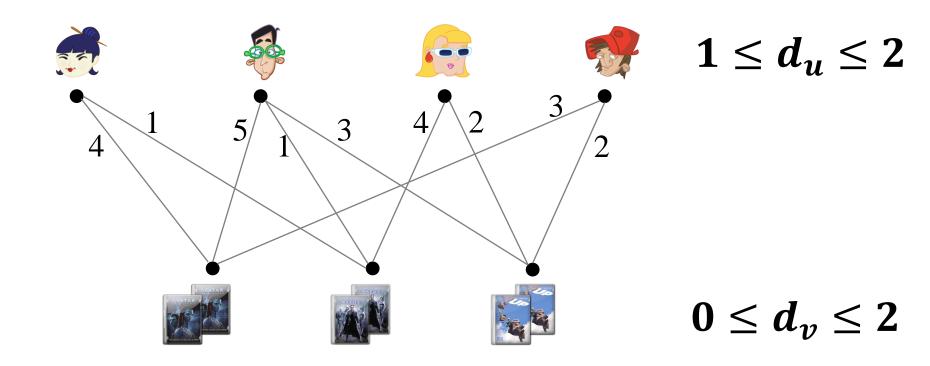
- 3. Distributed mixed packing/covering LPs
- 4. Distributed rounding
- 5. Experiments
- 6. Conclusion

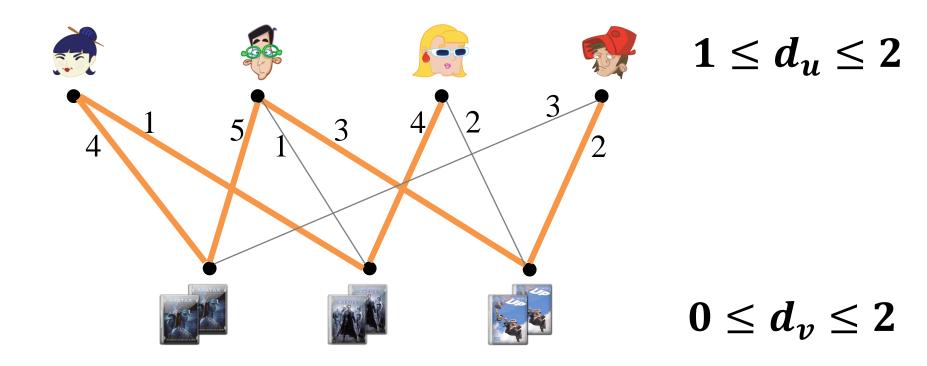
Given a weighted bipartite graph, degree constraints.











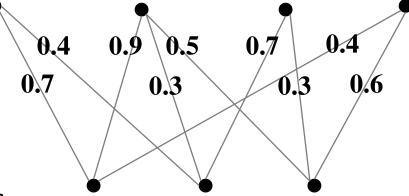
Solving GBM Problems

- Optimally solvable in PTIME
 - E.g., via a linear programming formulation
 - Small to medium-size instances well handled by out-of-the-box solvers
- Instances can get very large
 - E.g., Netflix has 20M users, 10k's of items
 - Available solvers break down

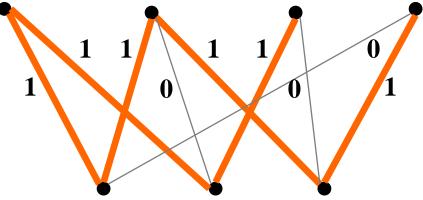
NEF

Overview

- **Phase 1:** LP relaxation
 - Outputs "edge probabilities"
 - Mixed packing-covering LP
 - Distributed approximate solver
 - Strong approximation guarantees



- Phase 2: Rounding
 - Selects actual matching
 - Distributed dependent rounding
 - Good approximation guarantees



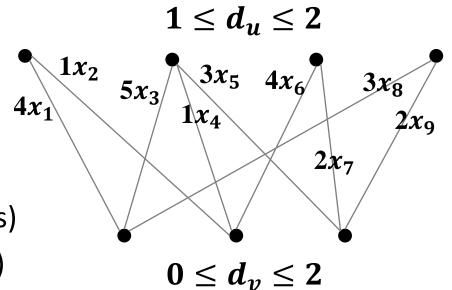
Outline

- 1. Introduction
- 2. Generalized bipartite matching
- 3. Distributed mixed packing/covering LPs
- 4. Distributed rounding
- 5. Experiments
- 6. Conclusion

Mixed Packing-Covering LP

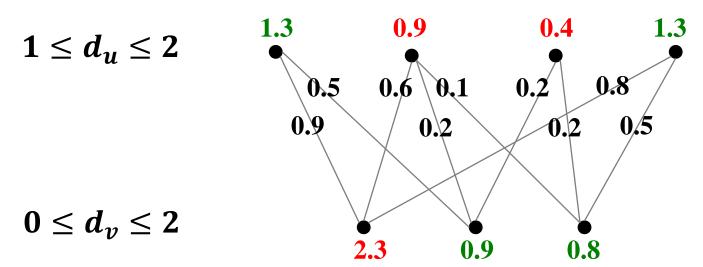
maximize	$w^T x$	
subject to	$Px \leq 1$	(packing constraints)
	$Cx \ge 1$	(covering constraints
	$x \ge 0$	

- w, P, C all non-negative
- For GBM
 - w: edge weights (Bs)
 - x: edge variables (Bs)
 - Covering c.: lower bounds (Ms)
 - Packing c.: upper bounds (Ms)



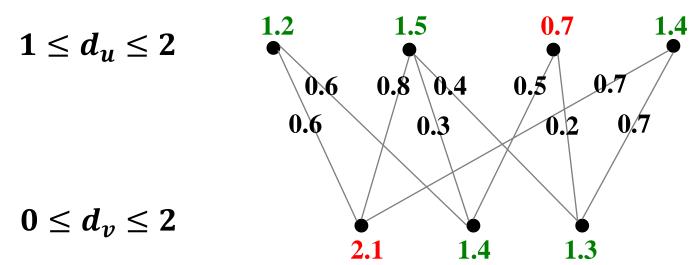
MPCSolver

- General parallel solver for MPC problems
 - Fast convergence: polylog rounds
 - Almost feasible: All constraints satisfied up to $(1 \pm \varepsilon)$
 - Near optimal: Objective at least (1ε) of optimum
 - Easy to implement: matrix-vector operations



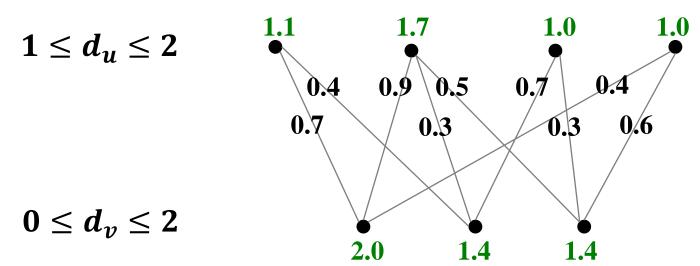
MPCSolver

- General parallel solver for MPC problems
 - Fast convergence: polylog rounds
 - Almost feasible: All constraints satisfied up to $(1 \pm \varepsilon)$
 - Near optimal: Objective at least (1ε) of optimum
 - Easy to implement: matrix-vector operations



MPCSolver

- General parallel solver for MPC problems
 - Fast convergence: polylog rounds
 - Almost feasible: All constraints satisfied up to $(1 \pm \varepsilon)$
 - Near optimal: Objective at least (1ε) of optimum
 - Easy to implement: matrix-vector operations



Algorithm (*ɛ*-feasibility)

repeat

Compute
$$y_i(x) = \exp \left[\mu \cdot \left(\boldsymbol{P}_i x - 1 \right) \right]$$
 for $i = 1, ...$
Compute $z_i(x) = \exp \left[\mu \cdot \left(1 - \boldsymbol{C}_i x \right) \right]$ for $i = 1, ...$
for $j = 1, ..., n$ do
if $\frac{\boldsymbol{P}_j^\top y(x)}{\boldsymbol{C}_j^\top z(x)} \leq 1 - \alpha$ then
 $x_j \leftarrow \max\{x_j(1 + \beta), \delta\}$
if $\frac{\boldsymbol{P}_j^\top y(x)}{\boldsymbol{C}_j^\top z(x)} \geq 1 + \alpha$ then
 $x_j \leftarrow x_j(1 - \beta)$
until convergence (Sec. 3.3)

$$\tilde{O}\left(\frac{1}{\varepsilon^5}\log^3(kmMnx_{\max})\right)$$
 rounds.

1

MPCSolver in Practice

- Parallelization
 - Straightforward on shared-memory or GPU
 - Intelligent data placement and synchronization for shared-nothing
 - Also fits MapReduce framework
- From feasibility to near-optimality
 - Obtain lower bound λ_{min} and upper bound $\,\lambda_{max}$ on objective (only covering or only packing)
 - Add constraint $w^T x \geq \lambda$
 - Binary search for λ in $\log_2 \log_{1-\epsilon}(\lambda_{\min}/\lambda_{\max})$ steps

Outline

- 1. Introduction
- 2. Generalized bipartite matching
- 3. Distributed mixed packing/covering LPs
- 4. Distributed rounding
- 5. Experiments
- 6. Conclusion

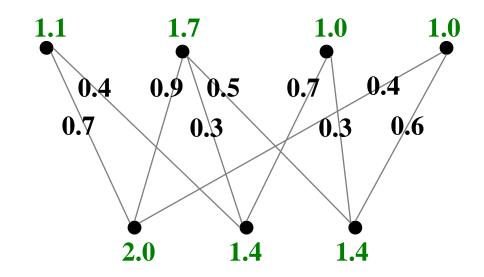
GBM Rounding

Given a near-optimal, ε -feasible fractional solution to GBM. **Find** an integral solution that

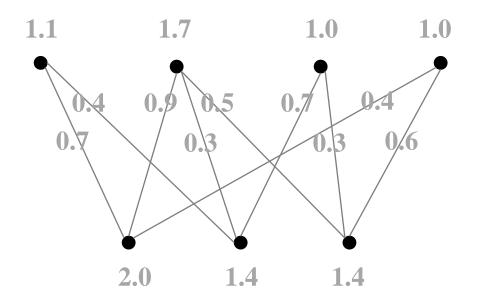
- 1) preserves ε -feasibility (up to rounding) and
- 2) preserves near-optimality.

Independent rounding

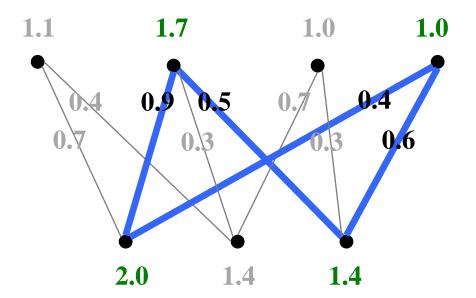
- Naive approach
- Satisfies (2)
 in expectation
- Violates (1)



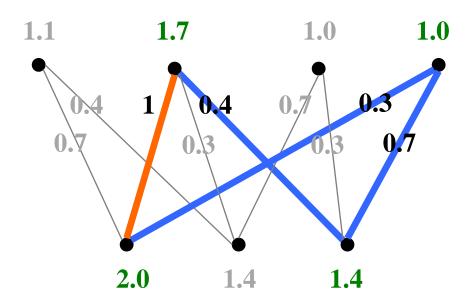
Sequential algorithm by Gandhi et al., 20061. Find a fractional cycle or maximal path



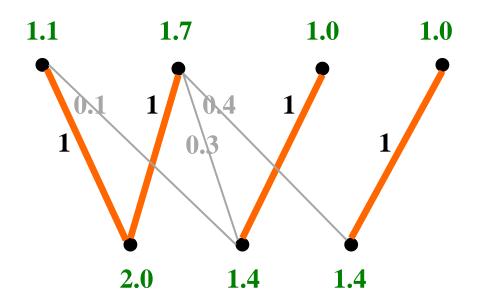
- 1. Find a fractional cycle or maximal path
- 2. Round \geq 1 edge on the cycle/path



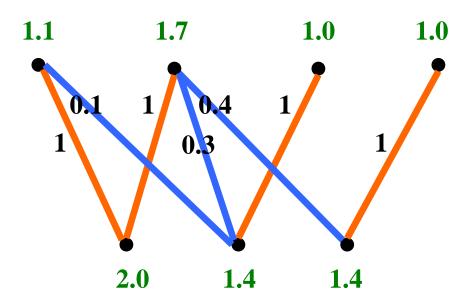
- 1. Find a fractional cycle or maximal path
- 2. Round \geq 1 edge on the cycle/path
- 3. Repeat



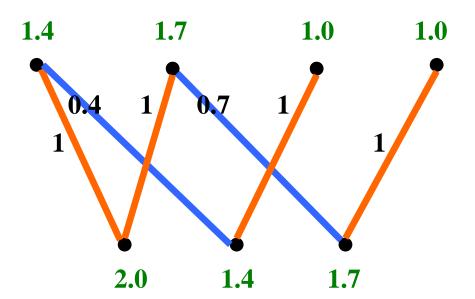
- 1. Find a fractional cycle or maximal path
- 2. Round \geq 1 edge on the cycle/path
- 3. Repeat



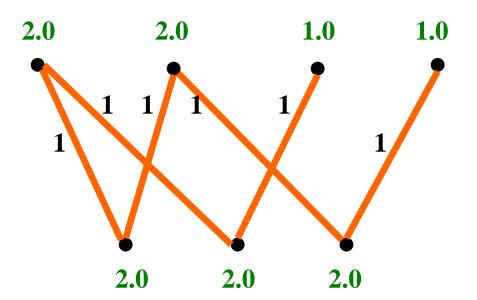
- 1. Find a fractional cycle or maximal path
- 2. Round \geq 1 edge on the cycle/path
- 3. Repeat



- 1. Find a fractional cycle or maximal path
- 2. Round \geq 1 edge on the cycle/path
- 3. Repeat

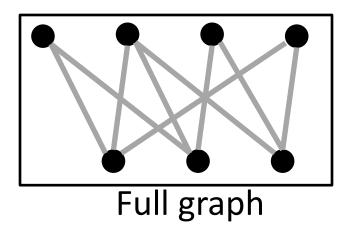


- 1. Find a fractional cycle or maximal path
- 2. Round \geq 1 edge on the cycle/path
- 3. Repeat



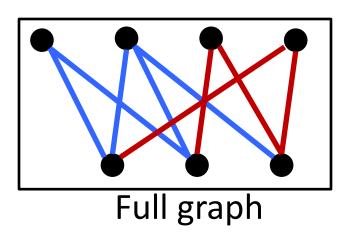
Distributed Rounding

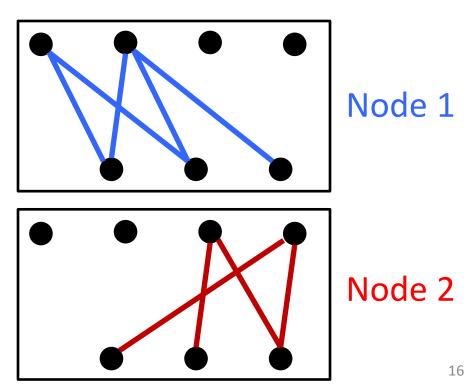
• Partitioning of edges to compute nodes



Distributed Rounding

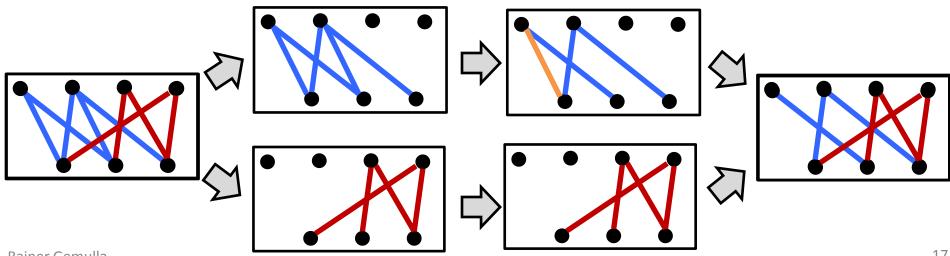
- Partitioning of edges to compute nodes
- A local cycle is a global cycle
- A local maximal path may not be globally maximal





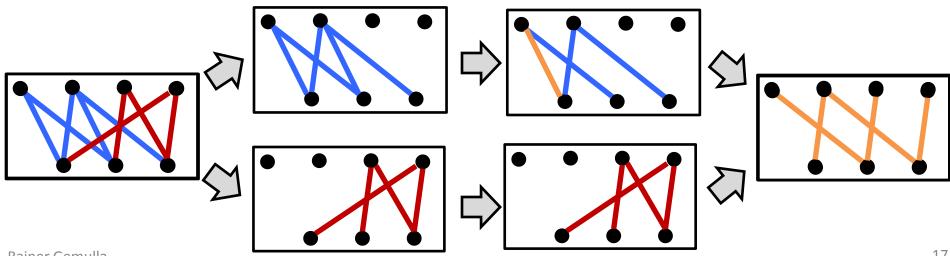
Algorithm

- 1. Partition edges (fractional only)
- 2. Process local cycles
 - k compute nodes, m vertices $\rightarrow O(km)$ edges left
- 3. Repeat until graph small
- 4. Process rest sequentially (cycles and max. paths)



Algorithm

- 1. Partition edges (fractional only)
- 2. Process local cycles
 - k compute nodes, m vertices $\rightarrow O(km)$ edges left
- 3. Repeat until graph small
- 4. Process rest sequentially (cycles and max. paths)



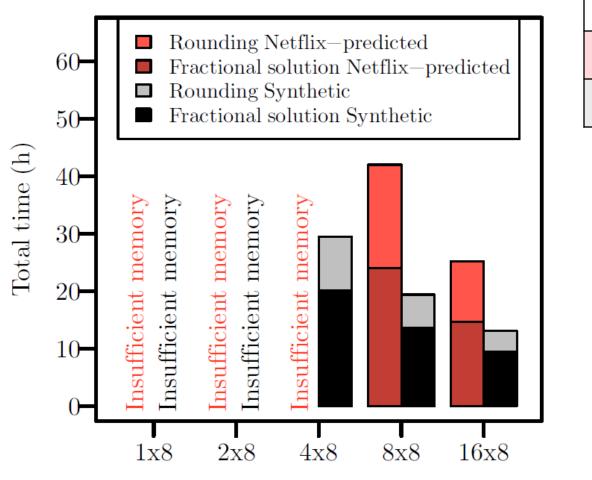
Distributed Rounding in Practice

- Edges already partitioned by MPCSolver
 → don't redistribute
- Empirical: most work done in first iteration
 → scales nicely, little communication
- Further saving in communication
 - Halving available compute nodes at each iteration
 - Even compute nodes keep their data
 - Odd compute nodes send data

Outline

- 1. Introduction
- 2. Generalized bipartite matching
- 3. Distributed mixed packing/covering LPs
- 4. Distributed rounding
- 5. Experiments
- 6. Conclusion

Scalability

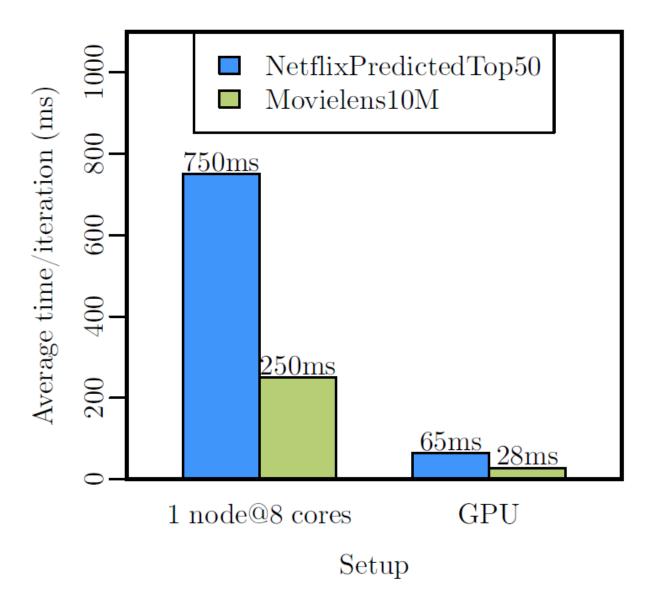


Users	Items	Edges
490k	18k	3.2B
10M	1M	1B

(Gurobi ran out of memory on a highmemory server with 512GB RAM.)

Nodes x cores

MPCSolver on a GPU



Quality (feasibility, $\varepsilon = 0.05$)

	Netflix (pred.)	Synthetic
Users	490k	10M
Items	18k	1M
Edges	3.2B	1B
Sat. constraints	99.996%	99.993%
Max violation (fractional)	4.98%	4.99%
Max violation (integral)	2%	5%

Outline

- 1. Introduction
- 2. Generalized bipartite matching
- 3. Distributed mixed packing/covering LPs
- 4. Distributed rounding
- 5. Experiments
- 6. Conclusion

Summary

- Parallel approximation algorithms for
 - General mixed packing-covering linear programs
 - Rounding for generalized bipartite matching
 - Millions of vertices (users/items), billions of edges (preferences)
- Shared memory, MPI, MapReduce, GPU

A Distributed Algorithm for Large-Scale Generalized Matching @ PVLDB, 2013