

Efficient Algorithms for Deep Learning

Shai Shalev-Shwartz

School of CS and Engineering, The Hebrew University of Jerusalem

> "Simons Institute", Berkeley 2013

• A single neuron with activation function $\sigma:\mathbb{R}\to\mathbb{R}$

 \bullet Usually, σ is taken to be a sigmoidal function

• A multilayer neural network of depth 3 and size 6

• Because "A" uses it to do "B"

- Because "A" uses it to do "B"
- Classic explanation: Neural Networks are universal approximators every Lipschitz function $f: [-1,1]^d \rightarrow [-1,1]$ can be approximated by a neural network

- Because "A" uses it to do "B"
- Classic explanation: Neural Networks are universal approximators every Lipschitz function $f: [-1,1]^d \rightarrow [-1,1]$ can be approximated by a neural network
- Not convincing because
 - It can be shown that the size of the network must be exponential in *d*, so why should we care about such large networks ?
 - Many other universal approximators exist (nearest neighbor, boosting with decision stumps, SVM with RBF kernels), so why should we prefer neural networks?

- Goal: Learn a function $h: \mathcal{X} \to \mathcal{Y}$ based on training examples $S = ((x_1, y_1), \dots, (x_m, y_m)) \in (\mathcal{X} \times \mathcal{Y})^m$
- No-Free-Lunch Theorem: For any algorithm A, and any sample size m, there exists a distribution D over X × Y and a function h* such that h* is perfect w.r.t. D but with high probability over S ~ D^m, the output of A is very bad
- Prior knowledge: We must bias the learner toward "reasonable" functions — hypothesis class *H* ⊂ *Y*^{*X*}
- What should be \mathcal{H} ?

- First idea: Let \mathcal{H}_{++} be all functions we can implement in C++ using code length of at most b bits
- \bullet With sufficiently large $\mathit{b}, \, \mathcal{H}_{++}$ contains all functions we would ever want to learn
- Sample complexity of learning \mathcal{H}_{++} to accuracy ϵ is b/ϵ^2
- Learning algorithm is very simple: Empirical Risk Minimization (ERM) find $h \in \mathcal{H}_{++}$ that has minimal error on S
- End of story ?

- First idea: Let \mathcal{H}_{++} be all functions we can implement in C++ using code length of at most b bits
- \bullet With sufficiently large $b, \ \mathcal{H}_{++}$ contains all functions we would ever want to learn
- Sample complexity of learning \mathcal{H}_{++} to accuracy ϵ is b/ϵ^2
- Learning algorithm is very simple: Empirical Risk Minimization (ERM) find $h \in \mathcal{H}_{++}$ that has minimal error on S
- End of story ?
- The computational barrier: But, how do we implement ERM?

- \bullet Second idea: Consider all functions over $\{0,1\}^d$ that can be executed in time at most T(d)
- Theorem: The class \mathcal{H}_{NN} of neural networks of depth O(T(d)) and size $O(T(d)^2)$ contains all functions that can be executed in time at most T(d)
- A great hypothesis class:
 - With sufficiently large network depth and size, we can express all functions we would ever want to learn
 - Sample complexity behaves nicely and is well understood (see Anthony & Bartlett 1999)

- \bullet Second idea: Consider all functions over $\{0,1\}^d$ that can be executed in time at most T(d)
- Theorem: The class \mathcal{H}_{NN} of neural networks of depth O(T(d)) and size $O(T(d)^2)$ contains all functions that can be executed in time at most T(d)
- A great hypothesis class:
 - With sufficiently large network depth and size, we can express all functions we would ever want to learn
 - Sample complexity behaves nicely and is well understood (see Anthony & Bartlett 1999)
- The computational barrier: But, how do we train neural networks ?

- It is NP hard to implement ERM for a depth 2 network with $k \ge 3$ hidden layers whose activation function is sigmoidal or sign (Blum and Rivest 1992, Bartlett and Ben-David 2002)
- Current approaches: Back propagation, possibly with unsupervised pre-training and other bells and whistles
- No theoretical guarantees, and often requires manual tweaking

Outline

How to circumvent hardness?

Over-specification

- Extreme over-specification eliminate local (non-global) minima
- \bullet Hardness of improperly learning a two layers network with $k=\omega(1)$ hidden neurons

Change the activation function (sum-product networks)

- An efficient algorithm for learning sum-product networks of depth 2 and small size using over-specification
- Hardness of learning deep sum-product networks

Oistributional assumptions

Learning of algebraic sets

- Yann LeCun:
 - Fix a network architecture and generate data according to it
 - Backpropagation fails to recover parameters
 - However, if we enlarge the network size, backpropagation works just fine

- Yann LeCun:
 - Fix a network architecture and generate data according to it
 - Backpropagation fails to recover parameters
 - However, if we enlarge the network size, backpropagation works just fine
 - Maybe we can efficiently learn neural network using over-specification?

Extremely over-specified Networks have no local (non-global) minima

- Let $X \in \mathbb{R}^{d,m}$ be a data matrix of m examples
- Consider a network with:
 - N internal neurons
 - $\bullet \ v$ be the weights of all but the last layer
 - F(v; X) be evaluations of internal neurons over data matrix X
 - ullet w be weights connecting internal neurons to the output neuron
 - The output of the network is $w^{\top}F(v;X)$
- Theorem: If $N \ge m$, and under mild conditions on F, the optimization problem $\min_{w,v} \|w^{\top}F(v;X) y\|^2$ has no local (non-global) minima

Extremely over-specified Networks have no local (non-global) minima

- Let $X \in \mathbb{R}^{d,m}$ be a data matrix of m examples
- Consider a network with:
 - $\bullet \ N \ {\rm internal} \ {\rm neurons}$
 - v be the weights of all but the last layer
 - F(v; X) be evaluations of internal neurons over data matrix X
 - w be weights connecting internal neurons to the output neuron
 - The output of the network is $w^{\top}F(v;X)$
- Theorem: If $N \ge m$, and under mild conditions on F, the optimization problem $\min_{w,v} \|w^{\top}F(v;X) y\|^2$ has no local (non-global) minima
- Proof idea: W.h.p. over perturbation of v, F(v; X) has full rank. For such v, if we're not at global minimum, just by changing w we can decrease the objective

イロト 不得下 イヨト イヨト

- But, such large networks will lead to overfitting
- Maybe there's a clever trick that circumvent overfitting (regularization, dropout, ...) ?

- But, such large networks will lead to overfitting
- Maybe there's a clever trick that circumvent overfitting (regularization, dropout, ...) ?
- Theorem (Daniely, Linial, S.) Even if the data is perfectly generated by a neural network of depth 2 and with only $k = \omega(1)$ neurons in the hidden layer, there is no algorithm that can achieve small test error
- Corollary: over-specification alone is not enough for efficient learnability

Proof Idea: Hardness of Improper Learning

• Improper learning: Learner tries to learn some hypothesis $h^* \in \mathcal{H}$ but is not restricted to output a hypothesis from \mathcal{H}

Proof Idea: Hardness of Improper Learning

- Improper learning: Learner tries to learn some hypothesis $h^* \in \mathcal{H}$ but is not restricted to output a hypothesis from \mathcal{H}
- How to show hardness?

- Improper learning: Learner tries to learn some hypothesis $h^* \in \mathcal{H}$ but is not restricted to output a hypothesis from \mathcal{H}
- How to show hardness?
- Technical novelty: A new method for deriving lower bounds for improper learning
- Technique yields new hardness results for improper learning of:
 - DNFs

(open problem since Kearns&Valiant'1989)

- Intersection of $\omega(1)$ halfspaces (Klivans&Sherstov'2006 showed hardness for d^c halfspaces)
- Constant approximation ratio for agnostically learning halfspaces (previously, only hardness of exact learning was known)

Computational-Statistical Tradeoffs

• Daniely, Linial, S. To appear in NIPS'13

For agnostically learning halfspaces over 3-sparse vectors:

 Most previous work either rely on upper bounds or deal with synthetic hypothesis classes

Shai Shalev-Shwartz (Hebrew U)

Outline

How to circumvent hardness?

Over-specification

- Extreme over-specification eliminate local (non-global) minima
- Hardness of improperly learning a two layers network with $k=\omega(1)$ hidden neurons

Change the activation function (sum-product networks)

- An efficient algorithm for learning sum-product networks of depth 2 and small size using over-specification
- Hardness of learning deep sum-product networks

Distributional assumptions

Learning of algebraic sets

- Simpler non-linearity replace sigmoidal activation function by the square function $\sigma(a)=a^2$
- Network implements polynomials, where the depth corresponds to degree
- The size of the network (number of neurons) determines generalization properties and evaluation time
- Can we efficiently learn the class of polynomial networks of small size?

Depth 2 polynomial network

Shai Shalev-Shwartz (Hebrew U)

<ロト </p>

• Corresponding hypothesis class:

$$\mathcal{H} = \left\{ x \mapsto \sum_{i=1}^r \lambda_i \langle v_i, x \rangle^2 : \lambda_i \in \mathbb{R}, v_i \in \mathbb{R}^d \right\} .$$

∃ ▶ ∢

• Corresponding hypothesis class:

$$\mathcal{H} = \left\{ x \mapsto \sum_{i=1}^r \lambda_i \langle v_i, x \rangle^2 : \lambda_i \in \mathbb{R}, v_i \in \mathbb{R}^d \right\} .$$

- ERM is still NP hard
- But, here, over-specification works !

• Corresponding hypothesis class:

$$\mathcal{H} = \left\{ x \mapsto \sum_{i=1}^{r} \lambda_i \langle v_i, x \rangle^2 : \lambda_i \in \mathbb{R}, v_i \in \mathbb{R}^d \right\} \,.$$

- ERM is still NP hard
- But, here, over-specification works !
- Using d^2 hidden neurons suffices (trivial)
- Can we do better?

Learning depth 2 polynomial networks using GECO

Greedy Efficient Component Optimization (GECO):

• Initialize
$$V = [], \lambda = []$$

- For $t = 1, 2, \ldots, T$
 - Let $M = \mathbb{E}_{(x,y)} (\sum_i \lambda_i (\langle v_i, x \rangle)^2 y) x x^\top$
 - $V = [V \ v]$ where v is a leading eigenvector of M
 - Let $B = \operatorname{argmin}_B \mathbb{E}_{(x,y)}((Vx)^\top B(Vx) y)^2$
 - Update $\lambda = \text{eigenvalues}(B)$ and V = V eigenvectors(B)

Learning depth 2 polynomial networks using GECO

Greedy Efficient Component Optimization (GECO):

• Initialize
$$V = []$$
, $\lambda = []$

- For t = 1, 2, ..., T
 - Let $M = \mathbb{E}_{(x,y)}(\sum_i \lambda_i (\langle v_i, x \rangle)^2 y) x x^\top$
 - $V = \left[V \; v \right]$ where v is a leading eigenvector of M
 - Let $B = \operatorname{argmin}_B \mathbb{E}_{(x,y)}((Vx)^\top B(Vx) y)^2$
 - Update $\lambda = \text{eigenvalues}(B)$ and V = V eigenvectors(B)

Analysis:

- For every $\lambda_1, \ldots, \lambda_r$ and v_1, \ldots, v_r s.t. $\|v_i\| = 1$ and $|\lambda_i| = O(1)$
- If $T \geq \Omega(r^2/\epsilon^2)$ then the output of GECO is $\epsilon\text{-accurate}$
- Over-specification helps !

- Learning sigmoidal networks is hard even of depth 2 and $\omega(1)$ hidden neurons, and even if we allow over-specification
- Learning polynomial networks of depth 2 is tractable if we allow over-specification
- What about higher degrees?

Theorem (Livni, Shamir, S.): It is hard to learn polynomial networks of depth poly(d) even if their size is poly(d). Proof idea: It is possible to approximate the sigmoid function with a polynomial of degree poly(d)

• What about depth 3 and constant number of hidden neurons?

Outline

How to circumvent hardness?

Over-specification

- Extreme over-specification eliminate local (non-global) minima
- Hardness of improperly learning a two layers network with $k=\omega(1)$ hidden neurons

Change the activation function (sum-product networks)

- An efficient algorithm for learning sum-product networks of depth 2 and small size using over-specification
- Hardness of learning deep sum-product networks

Oistributional assumptions

Learning of algebraic sets

- A set of points is an algebraic set if it is the set of solutions to a set of polynomial equations
- Assume that the positive and negative examples lie on different algebraic sets
- Can we efficiently train a network that classifies the data?

- The vanishing ideal: I(S), for $S \subset \mathbb{R}^d$, is the set of all polynomials p s.t. $\forall x \in S, p(x) = 0$
- Generators: f_1, \ldots, f_k are generators of ideal I if every $f \in I$ can be written as $f = \sum_{i=1}^k g_i f_i$, for g_i being polynomials
- Hilbert's basis theorem: Every ideal is generated by a finite set of polynomials
- Goal: Given a finite set of points, $S \subset \mathbb{R}^d$, efficiently find a small set of polynomials that generates I(S)

Main ideas:

- Given p and $S = (x_1, \ldots, x_m)$ define $p(S) = (p(x_1), \ldots, p(x_m))$
- $\bullet\,$ Every linear operation on p(S) has an analogue on p

• Let
$$C_1 = [x_1(S) \dots x_d(S)].$$

- Perform SVD on C_1
- Non-vanishing eigenvectors go to F_1
- Vanishing eigenvectors go to V_1
- Induction step
 - Assume F_1, \ldots, F_t spans non-vanishing polynomials of degree at most t and V_1, \ldots, V_t generates vanishing polynomials of degree at most t
 - Grading property: Every polynomial f of degree t+1 can be written as $q + \sum_i g_i h_i$ where q is of degree at most t, all h_i are of degree t and all g_i are of degree 1
 - Let $C_{t+1} = [g(S)h(S) : g \in F_t, h \in F_1]$
 - Obtain F_{t+1}, V_{t+1} by SVD'ing C_{t+1}

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

Analysis

- Correctness: For every t, for every p of degree t, we can write p = g + h where $g \in \text{span}(F_1, \ldots, F_t)$ and h is in the ideal generated by V_1, \ldots, V_t
- Usefulness: If negative and positive examples are on different algebraic set, using F, V as features yields linearly separable data
- Efficiency: Number of polynomials and their evaluation time is polynomial in m, d
- What about statistical usefulness ?

- Polynomial kernels also rely on a distributional assumption: large margin in the feature space
- VCA relies on a different distributional assumption
- Which assumption is more natural / realistic?

- Deep networks are great statistically but cannot be trained efficiently
- Main open problem: Find a combination of network architecture and distributional assumptions that are useful in practice and lead to efficient algorithms

Collaborators

- Seek of efficient algorithms for deep learning: Ohad Shamir
- GECO: Alon Gonen and Ohad Shamir Based on a previous paper with Tong Zhang and Nati Srebro
- VCA: Roi Livni, David Lehavi, Hila Nachlieli, Sagi Schein, Amir Globerson
- Lower bounds: Amit Daniely and Nati Linial