
Efficient Algorithms for Deep Learning

Shai Shalev-Shwartz

School of CS and Engineering,
The Hebrew University of Jerusalem

”Simons Institute”,
Berkeley 2013

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 1 / 28

Neural Networks

A single neuron with activation function σ : R→ R

x1

x2

x3

x4

x5

σ(〈v, x〉)

v1

v2

v3

v4

v5

Usually, σ is taken to be a sigmoidal function

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 2 / 28

Neural Networks

A multilayer neural network of depth 3 and size 6

x1

x2

x3

x4

x5

Hidden
layer

Hidden
layer

Input
layer

Output
layer

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 3 / 28

Why Deep Neural Networks are Great?

Because “A” uses it to do “B”

Classic explanation: Neural Networks are universal approximators —
every Lipschitz function f : [−1, 1]d → [−1, 1] can be approximated
by a neural network

Not convincing because

It can be shown that the size of the network must be exponential in d,
so why should we care about such large networks ?
Many other universal approximators exist (nearest neighbor, boosting
with decision stumps, SVM with RBF kernels), so why should we prefer
neural networks?

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 4 / 28

Why Deep Neural Networks are Great?

Because “A” uses it to do “B”

Classic explanation: Neural Networks are universal approximators —
every Lipschitz function f : [−1, 1]d → [−1, 1] can be approximated
by a neural network

Not convincing because

It can be shown that the size of the network must be exponential in d,
so why should we care about such large networks ?
Many other universal approximators exist (nearest neighbor, boosting
with decision stumps, SVM with RBF kernels), so why should we prefer
neural networks?

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 4 / 28

Why Deep Neural Networks are Great?

Because “A” uses it to do “B”

Classic explanation: Neural Networks are universal approximators —
every Lipschitz function f : [−1, 1]d → [−1, 1] can be approximated
by a neural network

Not convincing because

It can be shown that the size of the network must be exponential in d,
so why should we care about such large networks ?
Many other universal approximators exist (nearest neighbor, boosting
with decision stumps, SVM with RBF kernels), so why should we prefer
neural networks?

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 4 / 28

Why Deep Neural Networks are Great?
A Statistical Learning Perspective

Goal: Learn a function h : X → Y based on training examples
S = ((x1, y1), . . . , (xm, ym)) ∈ (X × Y)m

No-Free-Lunch Theorem: For any algorithm A, and any sample size
m, there exists a distribution D over X × Y and a function h∗ such
that h∗ is perfect w.r.t. D but with high probability over S ∼ Dm,
the output of A is very bad

Prior knowledge: We must bias the learner toward “reasonable”
functions — hypothesis class H ⊂ YX

What should be H ?

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 5 / 28

Why Deep Neural Networks are Great?
A Statistical Learning Perspective

First idea: Let H++ be all functions we can implement in C++ using
code length of at most b bits

With sufficiently large b, H++ contains all functions we would ever
want to learn

Sample complexity of learning H++ to accuracy ε is b/ε2

Learning algorithm is very simple: Empirical Risk Minimization
(ERM) — find h ∈ H++ that has minimal error on S

End of story ?

The computational barrier: But, how do we implement ERM?

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 6 / 28

Why Deep Neural Networks are Great?
A Statistical Learning Perspective

First idea: Let H++ be all functions we can implement in C++ using
code length of at most b bits

With sufficiently large b, H++ contains all functions we would ever
want to learn

Sample complexity of learning H++ to accuracy ε is b/ε2

Learning algorithm is very simple: Empirical Risk Minimization
(ERM) — find h ∈ H++ that has minimal error on S

End of story ?

The computational barrier: But, how do we implement ERM?

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 6 / 28

Why Deep Neural Networks are Great?
A Statistical Learning Perspective

Second idea: Consider all functions over {0, 1}d that can be executed
in time at most T (d)

Theorem: The class HNN of neural networks of depth O(T (d)) and
size O(T (d)2) contains all functions that can be executed in time at
most T (d)

A great hypothesis class:

With sufficiently large network depth and size, we can express all
functions we would ever want to learn
Sample complexity behaves nicely and is well understood (see Anthony
& Bartlett 1999)

The computational barrier: But, how do we train neural networks ?

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 7 / 28

Why Deep Neural Networks are Great?
A Statistical Learning Perspective

Second idea: Consider all functions over {0, 1}d that can be executed
in time at most T (d)

Theorem: The class HNN of neural networks of depth O(T (d)) and
size O(T (d)2) contains all functions that can be executed in time at
most T (d)

A great hypothesis class:

With sufficiently large network depth and size, we can express all
functions we would ever want to learn
Sample complexity behaves nicely and is well understood (see Anthony
& Bartlett 1999)

The computational barrier: But, how do we train neural networks ?

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 7 / 28

Neural Networks — The computational barrier

It is NP hard to implement ERM for a depth 2 network with k ≥ 3
hidden layers whose activation function is sigmoidal or sign (Blum
and Rivest 1992, Bartlett and Ben-David 2002)

Current approaches: Back propagation, possibly with unsupervised
pre-training and other bells and whistles

No theoretical guarantees, and often requires manual tweaking

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 8 / 28

Outline

How to circumvent hardness?

1 Over-specification
Extreme over-specification eliminate local (non-global) minima
Hardness of improperly learning a two layers network with k = ω(1)
hidden neurons

2 Change the activation function (sum-product networks)
An efficient algorithm for learning sum-product networks of depth 2
and small size using over-specification
Hardness of learning deep sum-product networks

3 Distributional assumptions
Learning of algebraic sets

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 9 / 28

Circumventing Hardness using Over-specification

Yann LeCun:

Fix a network architecture and generate data according to it
Backpropagation fails to recover parameters
However, if we enlarge the network size, backpropagation works just
fine

Maybe we can efficiently learn neural network using over-specification?

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 10 / 28

Circumventing Hardness using Over-specification

Yann LeCun:

Fix a network architecture and generate data according to it
Backpropagation fails to recover parameters
However, if we enlarge the network size, backpropagation works just
fine
Maybe we can efficiently learn neural network using over-specification?

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 10 / 28

Extremely over-specified Networks have no local
(non-global) minima

Let X ∈ Rd,m be a data matrix of m examples

Consider a network with:

N internal neurons
v be the weights of all but the last layer
F (v;X) be evaluations of internal neurons over data matrix X
w be weights connecting internal neurons to the output neuron
The output of the network is w>F (v;X)

Theorem: If N ≥ m, and under mild conditions on F , the
optimization problem minw,v ‖w>F (v;X)− y‖2 has no local
(non-global) minima

Proof idea: W.h.p. over perturbation of v, F (v;X) has full rank. For
such v, if we’re not at global minimum, just by changing w we can
decrease the objective

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 11 / 28

Extremely over-specified Networks have no local
(non-global) minima

Let X ∈ Rd,m be a data matrix of m examples

Consider a network with:

N internal neurons
v be the weights of all but the last layer
F (v;X) be evaluations of internal neurons over data matrix X
w be weights connecting internal neurons to the output neuron
The output of the network is w>F (v;X)

Theorem: If N ≥ m, and under mild conditions on F , the
optimization problem minw,v ‖w>F (v;X)− y‖2 has no local
(non-global) minima

Proof idea: W.h.p. over perturbation of v, F (v;X) has full rank. For
such v, if we’re not at global minimum, just by changing w we can
decrease the objective

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 11 / 28

Is over-specification enough ?

But, such large networks will lead to overfitting

Maybe there’s a clever trick that circumvent overfitting
(regularization, dropout, ...) ?

Theorem (Daniely, Linial, S.) Even if the data is perfectly generated
by a neural network of depth 2 and with only k = ω(1) neurons in the
hidden layer, there is no algorithm that can achieve small test error

Corollary: over-specification alone is not enough for efficient
learnability

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 12 / 28

Is over-specification enough ?

But, such large networks will lead to overfitting

Maybe there’s a clever trick that circumvent overfitting
(regularization, dropout, ...) ?

Theorem (Daniely, Linial, S.) Even if the data is perfectly generated
by a neural network of depth 2 and with only k = ω(1) neurons in the
hidden layer, there is no algorithm that can achieve small test error

Corollary: over-specification alone is not enough for efficient
learnability

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 12 / 28

Proof Idea: Hardness of Improper Learning

Improper learning: Learner tries to learn some hypothesis h∗ ∈ H but
is not restricted to output a hypothesis from H

How to show hardness?

Technical novelty: A new method for deriving lower bounds for
improper learning

Technique yields new hardness results for improper learning of:

DNFs
(open problem since Kearns&Valiant’1989)
Intersection of ω(1) halfspaces
(Klivans&Sherstov’2006 showed hardness for dc halfspaces)
Constant approximation ratio for agnostically learning halfspaces
(previously, only hardness of exact learning was known)

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 13 / 28

Proof Idea: Hardness of Improper Learning

Improper learning: Learner tries to learn some hypothesis h∗ ∈ H but
is not restricted to output a hypothesis from H
How to show hardness?

Technical novelty: A new method for deriving lower bounds for
improper learning

Technique yields new hardness results for improper learning of:

DNFs
(open problem since Kearns&Valiant’1989)
Intersection of ω(1) halfspaces
(Klivans&Sherstov’2006 showed hardness for dc halfspaces)
Constant approximation ratio for agnostically learning halfspaces
(previously, only hardness of exact learning was known)

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 13 / 28

Proof Idea: Hardness of Improper Learning

Improper learning: Learner tries to learn some hypothesis h∗ ∈ H but
is not restricted to output a hypothesis from H
How to show hardness?

Technical novelty: A new method for deriving lower bounds for
improper learning

Technique yields new hardness results for improper learning of:

DNFs
(open problem since Kearns&Valiant’1989)
Intersection of ω(1) halfspaces
(Klivans&Sherstov’2006 showed hardness for dc halfspaces)
Constant approximation ratio for agnostically learning halfspaces
(previously, only hardness of exact learning was known)

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 13 / 28

Computational-Statistical Tradeoffs

Daniely, Linial, S. To appear in NIPS’13

For agnostically learning halfspaces over 3-sparse vectors:

runtime

2O(d)

> poly(d)

dO(1)

examples

d2d1.5d

Most previous work either rely on upper bounds or deal with synthetic
hypothesis classes

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 14 / 28

Outline

How to circumvent hardness?

1 Over-specification
Extreme over-specification eliminate local (non-global) minima
Hardness of improperly learning a two layers network with k = ω(1)
hidden neurons

2 Change the activation function (sum-product networks)
An efficient algorithm for learning sum-product networks of depth 2
and small size using over-specification
Hardness of learning deep sum-product networks

3 Distributional assumptions
Learning of algebraic sets

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 15 / 28

Circumventing hardness — sum-product networks

Simpler non-linearity — replace sigmoidal activation function by the
square function σ(a) = a2

Network implements polynomials, where the depth corresponds to
degree

The size of the network (number of neurons) determines
generalization properties and evaluation time

Can we efficiently learn the class of polynomial networks of small size?

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 16 / 28

Depth 2 polynomial network

x1

x2

x3

x4

x5

〈v1, x〉2

〈v2, x〉2

〈v3, x〉2

∑
i λi〈vi, x〉2

Hidden
layer

Input
layer

Output
layer

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 17 / 28

Depth 2 polynomial networks

Corresponding hypothesis class:

H =

{
x 7→

r∑
i=1

λi〈vi, x〉2 : λi ∈ R, vi ∈ Rd

}
.

ERM is still NP hard

But, here, over-specification works !

Using d2 hidden neurons suffices (trivial)

Can we do better?

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 18 / 28

Depth 2 polynomial networks

Corresponding hypothesis class:

H =

{
x 7→

r∑
i=1

λi〈vi, x〉2 : λi ∈ R, vi ∈ Rd

}
.

ERM is still NP hard

But, here, over-specification works !

Using d2 hidden neurons suffices (trivial)

Can we do better?

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 18 / 28

Depth 2 polynomial networks

Corresponding hypothesis class:

H =

{
x 7→

r∑
i=1

λi〈vi, x〉2 : λi ∈ R, vi ∈ Rd

}
.

ERM is still NP hard

But, here, over-specification works !

Using d2 hidden neurons suffices (trivial)

Can we do better?

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 18 / 28

Learning depth 2 polynomial networks using GECO

Greedy Efficient Component Optimization (GECO):

Initialize V = [], λ = []

For t = 1, 2, . . . , T

Let M = E(x,y)(
∑

i λi(〈vi, x〉)2 − y)xx>

V = [V v] where v is a leading eigenvector of M
Let B = argminB E(x,y)((V x)>B(V x)− y)2

Update λ = eigenvalues(B) and V = V eigenvectors(B)

Analysis:

For every λ1, . . . , λr and v1, . . . , vr s.t. ‖vi‖ = 1 and |λi| = O(1)

If T ≥ Ω(r2/ε2) then the output of GECO is ε-accurate

Over-specification helps !

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 19 / 28

Learning depth 2 polynomial networks using GECO

Greedy Efficient Component Optimization (GECO):

Initialize V = [], λ = []

For t = 1, 2, . . . , T

Let M = E(x,y)(
∑

i λi(〈vi, x〉)2 − y)xx>

V = [V v] where v is a leading eigenvector of M
Let B = argminB E(x,y)((V x)>B(V x)− y)2

Update λ = eigenvalues(B) and V = V eigenvectors(B)

Analysis:

For every λ1, . . . , λr and v1, . . . , vr s.t. ‖vi‖ = 1 and |λi| = O(1)

If T ≥ Ω(r2/ε2) then the output of GECO is ε-accurate

Over-specification helps !

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 19 / 28

High degree polynomials ?

Learning sigmoidal networks is hard even of depth 2 and ω(1) hidden
neurons, and even if we allow over-specification

Learning polynomial networks of depth 2 is tractable if we allow
over-specification

What about higher degrees?

Theorem (Livni, Shamir, S.): It is hard to learn polynomial networks of
depth poly(d) even if their size is poly(d).
Proof idea: It is possible to approximate the sigmoid function with a
polynomial of degree poly(d)

What about depth 3 and constant number of hidden neurons?

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 20 / 28

Outline

How to circumvent hardness?

1 Over-specification
Extreme over-specification eliminate local (non-global) minima
Hardness of improperly learning a two layers network with k = ω(1)
hidden neurons

2 Change the activation function (sum-product networks)
An efficient algorithm for learning sum-product networks of depth 2
and small size using over-specification
Hardness of learning deep sum-product networks

3 Distributional assumptions
Learning of algebraic sets

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 21 / 28

Distributional Assumptions

A set of points is an algebraic set if it is the set of solutions to a set
of polynomial equations

Assume that the positive and negative examples lie on different
algebraic sets

Can we efficiently train a network that classifies the data?

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 22 / 28

Vanishing Component Analysis (VCA)

The vanishing ideal: I(S), for S ⊂ Rd, is the set of all polynomials p
s.t. ∀x ∈ S, p(x) = 0

Generators: f1, . . . , fk are generators of ideal I if every f ∈ I can be
written as f =

∑k
i=1 gifi, for gi being polynomials

Hilbert’s basis theorem: Every ideal is generated by a finite set of
polynomials

Goal: Given a finite set of points, S ⊂ Rd, efficiently find a small set
of polynomials that generates I(S)

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 23 / 28

Vanishing Component Analysis (VCA)

Main ideas:

Given p and S = (x1, . . . , xm) define p(S) = (p(x1), . . . , p(xm))

Every linear operation on p(S) has an analogue on p

Let C1 = [x1(S) . . . xd(S)].

Perform SVD on C1

Non-vanishing eigenvectors go to F1

Vanishing eigenvectors go to V1

Induction step

Assume F1, . . . , Ft spans non-vanishing polynomials of degree at most
t and V1, . . . , Vt generates vanishing polynomials of degree at most t
Grading property: Every polynomial f of degree t+ 1 can be written as
q +

∑
i gihi where q is of degree at most t, all hi are of degree t and

all gi are of degree 1
Let Ct+1 = [g(S)h(S) : g ∈ Ft, h ∈ F1]
Obtain Ft+1, Vt+1 by SVD’ing Ct+1

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 24 / 28

Vanishing Component Analysis (VCA)

Analysis

Correctness: For every t, for every p of degree t, we can write
p = g + h where g ∈ span(F1, . . . , Ft) and h is in the ideal generated
by V1, . . . , Vt

Usefulness: If negative and positive examples are on different
algebraic set, using F, V as features yields linearly separable data

Efficiency: Number of polynomials and their evaluation time is
polynomial in m, d

What about statistical usefulness ?

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 25 / 28

Comparing VCA to Polynomial Kernels

Polynomial kernels also rely on a distributional assumption: large
margin in the feature space

VCA relies on a different distributional assumption

Which assumption is more natural / realistic?

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 26 / 28

Summary

Deep networks are great statistically but cannot be trained efficiently

Main open problem: Find a combination of network architecture and
distributional assumptions that are useful in practice and lead to
efficient algorithms

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 27 / 28

Thanks!

Collaborators

Seek of efficient algorithms for deep learning: Ohad Shamir

GECO: Alon Gonen and Ohad Shamir
Based on a previous paper with Tong Zhang and Nati Srebro

VCA: Roi Livni, David Lehavi, Hila Nachlieli, Sagi Schein, Amir
Globerson

Lower bounds: Amit Daniely and Nati Linial

Shai Shalev-Shwartz (Hebrew U) Learning Deep Networks Oct’13 28 / 28

	Over-specification
	Extreme over-specification eliminate local (non-global) minima
	Hardness of improperly learning a two layers network with k = (1) hidden neurons

	Change the activation function (sum-product networks)
	An efficient algorithm for learning sum-product networks of depth 2 and small size using over-specification
	Hardness of learning deep sum-product networks

	Distributional assumptions
	Learning of algebraic sets

