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Classification: Distinguish 2 Classes 

•  M vectors vk, each with N binary features/attributes: xi for i = 1… N 
•  Each vector can have a weight wi 

•  Each vector is a positive or negative example: 
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Feature	   	  	  x1	   	  x2	   	  x3	   	  x4	   class	   wi	  

v1	   0	   0	   1	   1	   +	   1.0	  

v2	   1	   0	   0	   1	   -‐	   2.0	  

v3	   1	   0	   1	   1	   -‐	   3.0	  

v4	   0	   1	   1	   0	   +	   4.0	  

v5	   1	   0	   0	   0	   +	   5.0	  

Matrix	  A	  ObservaAon	  



Binary Monomial 

•  A binary monomial is a conjunction of binary features: 
•  It is equivalent to a binary function: 

–  Let J be the set of literals that appear (uncomplemented) 
–  Let C be the set of literals that appear complemented 

October	  23,	  2013	   Simons	  Workshop	   3	  

•  A binary monomial covers  a vector if mJ,C(x) = 1. 
–  The vector agrees with the monomial on each selected feature 



Example: Coverage 

•  Uncomplemented variables J = {1} 
•  Complemented variables C = {2} 
•  Cover(J,C) = {2,3,5} 
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Feature	   	  	  x1	   	  x2	   	  x3	   	  x4	   class	   wi	  

v1	   0	   0	   1	   1	   +	   1.0	  

v2	   1	   0	   0	   1	   -‐	   2.0	  

v3	   1	   0	   1	   1	   -‐	   3.0	  

v4	   0	   1	   1	   0	   +	   4.0	  

v5	   1	   0	   0	   0	   +	   5.0	  

x1	  =	  1	  and	  x2	  =	  0	  



Maximum Monomial Agreement 

•  MaximizeJC:  
 

–  Weighted difference between covered + and - examples 
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Feature	   	  	  x1	   	  x2	   	  x3	   	  x4	   class	   wi	  

v1	   0	   0	   1	   1	   +	   1.0	  

v2	   1	   0	   0	   1	   -‐	   2.0	  

v3	   1	   0	   1	   1	   -‐	   3.0	  

v4	   0	   1	   1	   0	   +	   4.0	  

v5	   1	   0	   0	   0	   +	   5.0	  

x1	  =	  1	  and	  x2	  =	  0	  

f (J,C) = w Cover(J,C)∩Ω+( )−w Cover(J,C)∩Ω−( )

f ({1},{2}) = 5−3− 2 = 0



LPBoost 

•  Use MMA as a weak learner 
•  Use a linear program to find optimal linear combination of the 

weak learners (column generation) 
–  Optimize for gap/separation 

•  Dual of the LP gives weights for next MMA round 
–  More weight to the harder parts 

•  We want to solve MMA exactly (Goldberg,Shan, 2007) 
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Branch and Bound 

Branch and Bound is an intelligent (enumerative) search procedure for 
discrete optimization problems. 

 

 

Requires subproblem representation and 3 (problem-specific) procedures: 

•  Compute an upper bound b(X) 

•  Find a candidate solution  

–  Can fail 

–  Require that it recognizes feasibility if X has only one point 

•  Split a feasible region (e.g. over parameter/decision space) 

–  e.g. Add a constraint 

 

maxx∈X f (x)

∀x ∈ X,  b(x) ≥ f (x) ∀x ∈ X
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Branch and Bound 

•  Recursively divide feasible region, prune search when no optimal solution can be in the 
region. 

•  Important: need good bounds 

Root	  Problem	  =	  original	  

Fathomed	  
Uk	  <	  L	  

infeasible	  

	  
	  

New	  best	  soluAon	  
L	  =	  Uk	  
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Solution Quality 

•  Global upper bound (maximum over all active problems): U=maxk Uk 
•  Approximation ratio for current incumbent L is L/U. 
•  Can stop when L/U is “good enough” (e.g. 95%) 
•  Running to completion proves optimality 

U1	  

U3	  U2	  

U4	   U5	  
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B&B Representation for MMA 

•  Subproblem (partial solution) = (J,C,E,F) 
–  J are features forced into monomial 
–  C are features forced in as complemented 
–  E are eliminated features: cannot appear 
–  F are free features 

•  Any partition of {1, …, N} is possible 
•  A feasible solution that respects (J,C,E,F) is just (J,C) 
•  When F is empty, only one element (leaf) 

Serial MMA branch-and-bound elements from Eckstein and Goldberg, “An 
improved method for maximum monomial agreement,” INFORMS J. Computing, 
24(2), 2012. 
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Upper Bound 

•  Valid: 

•  Strengthen by considering excluded features E 
•  Two vectors inseparable if they agree on all features 

–  Creates q(E) equivalence classes  
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max w Cover J,C( )∩Ω+( ),w Cover J,C( )∩Ω−( ){ }

i ∉ E

x1	   x2	   x3	   x4	  
v1	   0	   0	   1	   1	  

v2	   1	   0	   0	   1	  

v3	   1	   0	   1	   1	  

v4	   0	   1	   1	   0	  

v5	   1	   0	   0	   0	  

x1	   x3	   x2	   x4	  
v1	   0	   1	   0	   1	  

v4	   0	   1	   1	   0	  

v2	   1	   0	   0	   1	  

v5	   1	   0	   0	   0	  

v3	   1	   1	   0	   1	  

E	  



Upper Bound 

•  Vη
E  are vectors in the ηth equivalence class 
–  All covered or all not covered 

•  Stronger upper bound: 
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x1	   x3	   x2	   x4	  
v1	   0	   1	   0	   1	  

v4	   0	   1	   1	   0	  

v2	   1	   0	   0	   1	  

v5	   1	   0	   0	   0	  

v3	   1	   1	   0	   1	  

E	  

wη
+ J,C,E( ) = w Vη

E ∩Cover J,C( )∩Ω+( )
wη

− J,C,E( ) = w Vη
E ∩Cover J,C( )∩Ω−( )

b J,C,E( ) =max
wη

+ J,C,E( )−wη
− J,C,E( )( )

+
η=1

q E( )

∑

wη
− J,C,E( )−wη

+ J,C,E( )( )
+

η=1

q E( )
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Upper Bound 

•  More convenient form: 
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b J,C( ) =max w Cover J,C( )∩Ω+( ),w Cover J,C( )∩Ω−( ){ }

b J,C,E( ) = b J,C( )− min wη
+ J,C,E( ),wη

− J,C,E( ){ }
η=1

q E( )

∑

•  Compute b(J,C) first 
–             set intersections 

•  If can’t fathom, compute second part 
–  Compute equivalence classes with radix sort on non-E features 

J∪C



Branching 

•  Eckstein, Goldberg considered higher branching factor 
–  Branching on 1 feature faster, more nodes 
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J,C,E,F( )  and f ∈ F

J,C,E∪ f{ },F − f{ }( )J,C∪ f{ },E,F − f{ }( )J∪ f{ },C,E,F − f{ }( )



Choose branch variable 

•  Strong branching: for all f 
–  Compute all 3 upper bounds, (b1,b2,b3) sorted descending 
–  Sort lexicographically, pick smallest. Gives lookahead bound 
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J,C,E,F( )  and f ∈ F

J,C,E∪ f{ },F − f{ }( )J,C∪ f{ },E,F − f{ }( )J∪ f{ },C,E,F − f{ }( )

b J,C,E,F( ) =min f∈F max

b J∪ f{ },C,E,F − f{ }( )
b J,C∪ f{ },E,F − f{ }( )
b J,C,E∪ f{ },F − f{ }( )
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PEBBL 

Parallel Enumeration and Branch-and-Bound Library 
•  Distributed memory (MPI), C++ 
Goals: 
•  Massively parallel (scalable) 
•  General parallel Branch & Bound environment 
•  Parallel search engine cleanly separated from application and 

platform 
•  Portable 
•  Flexible 
•  Integrate approximation techniques 
 
There are other parallel B&B frameworks: PUBB, Bob, PPBB-Lib, 
Symphony, BCP, CHiPPS/ALPS, FTH-B&B, and codes for MIP 
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Pebbl’s Parallelism (Almost) Free 

User must 

•  Define serial application (debug in serial) 

•  Describe how to pack/unpack data (using a generic packing tool) 

C++ inheritance gives parallel management 

User may add threads to 

•  Share global data 

•  Exploit problem-specific parallelism 

•  Add parallel heuristics 

 

PEBBL	  parallel	  Core	   Serial	  applicaAon	  

Parallel	  applicaAon	  

PEBBL	  serial	  Core	  
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PEBBL Features for Efficient Parallel 
B&B 

•  Efficient processor use during ramp-up (beginning) 
•  Integration of heuristics to generate good solutions early 
•  Worker/hub hierarchy 
•  Efficient work storage/distribution 
•  Control of task granularity 
•  Load balancing 
•  Non-preemptive proportional-share “thread” scheduler 
•  Correct termination 
•  Early output 
•  Checkpointing 
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PEBBL Ramp-up 

•  Tree starts with one node.  What to do with 10,000 processors? 
•  Serialize tree growth 

–  All processors work in parallel on a single node 
•  Parallelize 

–  Preprocessing 
–  Tough root bounds 
–  Incumbent Heuristics 
–  Splitting decisions (MMA) 

•  Strong-branching for variable selection 
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PEBBL Ramp-up 

•  Strong branching for variable selection 
–  Divide free variables evenly 
–  Processors compute bound triples for their free variables 
–  All-reduce on best triples to determine branch var 
–  All-reduce to compute lookahead bound 

20	  October	  23,	  2013	  

b J,C,E,F( ) =min f∈F max

b J∪ f{ },C,E,F − f{ }( )
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•  Note: last element most computation: recompute equivalence 
classes 
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Crossing over 

•  Switch from parallel operations on one node to processing independent subproblems 
(serially) 

•  Work division by processor ID/rank 
•  Generally Crossover to parallel with perfect load balance 

–  When there are enough subproblems to keep the processors busy 
–  When single subproblems cannot effectively use parallelism 

•  For MMA: crossover when #open problems = N, the # of features 
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Hubs and Workers 

•  Control communication 
–  Processor utilization 
–  Approximation of serial order 

•  Subproblem pools at both the hubs and workers 
•  Hubs keep only tokens 

–  Subproblem identifier 
–  Bound 
–  Location (processor, address) 
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Load Balancing 

•  Hub pullback 
•  Random scattering 
•  Rendezvous 

–  Hubs determine load (function of quantity and quality) 
–  Use binary tree of hubs 
–  Determine what processors need more work or better work 
–  Exchange work 
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Experiments 

•  UC Irvine machine learning repository 
–  Hungarian heart disease dataset (M = 294, N = 72) 
–  Spam dataset (M= 4601, N = 75) 
–  Multiple MMA instances based on boost iteration 

•  Later iterations are harder 
•  Dropped observations with missing features 
•  Binarization of real features (Boros, Hammer, Ibaraki, Kogan) 

–  Feature (i,j) is 1 iff  xi ≥ tj 

–  Cannot map an element of      and      to the same vector 
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min	   max	  

000	   001	   011	   111	  t3	  t2	  t1	  

Ω+ Ω−



Red Sky 

•  Node: two quad-core Intel Xeon X5570 procs, 48GB shared RAM 
•  Full system: 22,528 cores, 132TB RAM 
•  General partition: 17,152 cores, 100.5TB RAM 

–  Queue wait times OK for 1000s of processors 
•  Network: Infiniband, 3D torroidal (one dim small), 10GB/s 
•  Red Hat Linux 5, Intel 11.1 C++ compiler (O2), Open MPI 1.4.3 

•  Because subproblem bounding is slow, 128 workers/core 
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Value of ramp up (no enumeration) 
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Number of tree nodes 
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Spam, value of ramp up 
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Spam, tree nodes 
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Comments: Ramp up 

•  Using initial synchronous ramp up improves scalability (e.g. 2x 
processors), reduces tree inflation. 

•  Speed up departure point from linear depends on problem 
difficulty and tree size. 
–  Tree inflation is the main contributor to sub-linear speedup 

•  Solution times down to 1-3 minutes 
–  Spam26: 3 min on 6144 cores, 27 hours on 8 cores 

•  For MMA no significant efficiency drop from 1 processor and going 
to multiple hubs 
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Parallel Enumeration 

•  Fundamental in PEBBL: best k, absolute tolerance, relative 
tolerance, objective threshold 

•  Requires: branch-through on “leaves” and duplicate detection 
•  Hash solution to find owning processor 
•  For all but best-k 

–   independent solution repositories 
–  parallel merge sort at end 

•  For k-best need to periodically compute cut off objective value 
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Enumeration Experiments 

•  Why Enumeration for MMA? 
–  MMA is the weak learner for LP-Boost 
–  Add multiple columns in column generation 

•  In this case, add the best 25 MMA solutions 

•  Hungarian Heart 
–  Tree size about same 
–  More communication 

•  Spam 
–  Larger tree with enumeration 
–  Harder subproblems than Hungarian heart (more observations) 
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Results: Enumeration 
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Results: Enumeration 
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Open-Source Code Available 

•  Software freely available (BSD license) 
–  PEBBL plus knapsack and MMA examples 

•  http://software.sandia.gov/acro  
•  ACRO = A Common Repository for Optimizers 
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Thank you! 
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