
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. !

Highly-scalable branch and bound for
maximum monomial agreement

Jonathan Eckstein (Rutgers)
William Hart

Cynthia A. Phillips
Sandia National Laboratories

Classification: Distinguish 2 Classes

•  M vectors vk, each with N binary features/attributes: xi for i = 1… N
•  Each vector can have a weight wi

•  Each vector is a positive or negative example:

October	 23,	 2013	 Simons	 Workshop	 2	

Feature	 	 	 x1	 	 x2	 	 x3	 	 x4	 class	 wi	

v1	 0	 0	 1	 1	 +	 1.0	

v2	 1	 0	 0	 1	 -‐	 2.0	

v3	 1	 0	 1	 1	 -‐	 3.0	

v4	 0	 1	 1	 0	 +	 4.0	

v5	 1	 0	 0	 0	 +	 5.0	

Matrix	 A	 ObservaAon	

Binary Monomial

•  A binary monomial is a conjunction of binary features:
•  It is equivalent to a binary function:

–  Let J be the set of literals that appear (uncomplemented)
–  Let C be the set of literals that appear complemented

October	 23,	 2013	 Simons	 Workshop	 3	

•  A binary monomial covers a vector if mJ,C(x) = 1.
–  The vector agrees with the monomial on each selected feature

Example: Coverage

•  Uncomplemented variables J = {1}
•  Complemented variables C = {2}
•  Cover(J,C) = {2,3,5}

October	 23,	 2013	 Simons	 Workshop	 4	

Feature	 	 	 x1	 	 x2	 	 x3	 	 x4	 class	 wi	

v1	 0	 0	 1	 1	 +	 1.0	

v2	 1	 0	 0	 1	 -‐	 2.0	

v3	 1	 0	 1	 1	 -‐	 3.0	

v4	 0	 1	 1	 0	 +	 4.0	

v5	 1	 0	 0	 0	 +	 5.0	

x1	 =	 1	 and	 x2	 =	 0	

Maximum Monomial Agreement

•  MaximizeJC:

–  Weighted difference between covered + and - examples

October	 23,	 2013	 Simons	 Workshop	 5	

Feature	 	 	 x1	 	 x2	 	 x3	 	 x4	 class	 wi	

v1	 0	 0	 1	 1	 +	 1.0	

v2	 1	 0	 0	 1	 -‐	 2.0	

v3	 1	 0	 1	 1	 -‐	 3.0	

v4	 0	 1	 1	 0	 +	 4.0	

v5	 1	 0	 0	 0	 +	 5.0	

x1	 =	 1	 and	 x2	 =	 0	

f (J,C) = w Cover(J,C)∩Ω+()−w Cover(J,C)∩Ω−()

f ({1},{2}) = 5−3− 2 = 0

LPBoost

•  Use MMA as a weak learner
•  Use a linear program to find optimal linear combination of the

weak learners (column generation)
–  Optimize for gap/separation

•  Dual of the LP gives weights for next MMA round
–  More weight to the harder parts

•  We want to solve MMA exactly (Goldberg,Shan, 2007)

October	 23,	 2013	 Simons	 Workshop	 6	

maxρ −D ξi
i=1

M

∑

s.t. yiHiλ +ξi ≥ ρ for i =1,…,M

 λu
u=1

U

∑ =1

 ξi,λu ≥ 0

Simons	 Workshop	

Branch and Bound

Branch and Bound is an intelligent (enumerative) search procedure for
discrete optimization problems.

Requires subproblem representation and 3 (problem-specific) procedures:

•  Compute an upper bound b(X)

•  Find a candidate solution

–  Can fail

–  Require that it recognizes feasibility if X has only one point

•  Split a feasible region (e.g. over parameter/decision space)

–  e.g. Add a constraint

maxx∈X f (x)

∀x ∈ X, b(x) ≥ f (x) ∀x ∈ X

7	 October	 23,	 2013	

Simons	 Workshop	

Branch and Bound

•  Recursively divide feasible region, prune search when no optimal solution can be in the
region.

•  Important: need good bounds

Root	 Problem	 =	 original	

Fathomed	
Uk	 <	 L	

infeasible	

	
	

New	 best	 soluAon	
L	 =	 Uk	

8	 October	 23,	 2013	

Simons	 Workshop	

Solution Quality

•  Global upper bound (maximum over all active problems): U=maxk Uk
•  Approximation ratio for current incumbent L is L/U.
•  Can stop when L/U is “good enough” (e.g. 95%)
•  Running to completion proves optimality

U1	

U3	 U2	

U4	 U5	

9	 October	 23,	 2013	

B&B Representation for MMA

•  Subproblem (partial solution) = (J,C,E,F)
–  J are features forced into monomial
–  C are features forced in as complemented
–  E are eliminated features: cannot appear
–  F are free features

•  Any partition of {1, …, N} is possible
•  A feasible solution that respects (J,C,E,F) is just (J,C)
•  When F is empty, only one element (leaf)

Serial MMA branch-and-bound elements from Eckstein and Goldberg, “An
improved method for maximum monomial agreement,” INFORMS J. Computing,
24(2), 2012.

October	 23,	 2013	 Simons	 Workshop	 10	

Upper Bound

•  Valid:

•  Strengthen by considering excluded features E
•  Two vectors inseparable if they agree on all features

–  Creates q(E) equivalence classes

October	 23,	 2013	 Simons	 Workshop	 11	

max w Cover J,C()∩Ω+(),w Cover J,C()∩Ω−(){ }

i ∉ E

x1	 x2	 x3	 x4	
v1	 0	 0	 1	 1	

v2	 1	 0	 0	 1	

v3	 1	 0	 1	 1	

v4	 0	 1	 1	 0	

v5	 1	 0	 0	 0	

x1	 x3	 x2	 x4	
v1	 0	 1	 0	 1	

v4	 0	 1	 1	 0	

v2	 1	 0	 0	 1	

v5	 1	 0	 0	 0	

v3	 1	 1	 0	 1	

E	

Upper Bound

•  Vη
E are vectors in the ηth equivalence class
–  All covered or all not covered

•  Stronger upper bound:

October	 23,	 2013	 Simons	 Workshop	 12	

x1	 x3	 x2	 x4	
v1	 0	 1	 0	 1	

v4	 0	 1	 1	 0	

v2	 1	 0	 0	 1	

v5	 1	 0	 0	 0	

v3	 1	 1	 0	 1	

E	

wη
+ J,C,E() = w Vη

E ∩Cover J,C()∩Ω+()
wη

− J,C,E() = w Vη
E ∩Cover J,C()∩Ω−()

b J,C,E() =max
wη

+ J,C,E()−wη
− J,C,E()()

+
η=1

q E()

∑

wη
− J,C,E()−wη

+ J,C,E()()
+

η=1

q E()

∑

#

$

%
%%

&

%
%
%

Upper Bound

•  More convenient form:

October	 23,	 2013	 Simons	 Workshop	 13	

b J,C() =max w Cover J,C()∩Ω+(),w Cover J,C()∩Ω−(){ }

b J,C,E() = b J,C()− min wη
+ J,C,E(),wη

− J,C,E(){ }
η=1

q E()

∑

•  Compute b(J,C) first
–  set intersections

•  If can’t fathom, compute second part
–  Compute equivalence classes with radix sort on non-E features

J∪C

Branching

•  Eckstein, Goldberg considered higher branching factor
–  Branching on 1 feature faster, more nodes

October	 23,	 2013	 Simons	 Workshop	 14	

J,C,E,F() and f ∈ F

J,C,E∪ f{ },F − f{ }()J,C∪ f{ },E,F − f{ }()J∪ f{ },C,E,F − f{ }()

Choose branch variable

•  Strong branching: for all f
–  Compute all 3 upper bounds, (b1,b2,b3) sorted descending
–  Sort lexicographically, pick smallest. Gives lookahead bound

October	 23,	 2013	 Simons	 Workshop	 15	

J,C,E,F() and f ∈ F

J,C,E∪ f{ },F − f{ }()J,C∪ f{ },E,F − f{ }()J∪ f{ },C,E,F − f{ }()

b J,C,E,F() =min f∈F max

b J∪ f{ },C,E,F − f{ }()
b J,C∪ f{ },E,F − f{ }()
b J,C,E∪ f{ },F − f{ }()

$

%

&
&

'

&
&

$

%

&
&

'

&
&

PEBBL

Parallel Enumeration and Branch-and-Bound Library
•  Distributed memory (MPI), C++
Goals:
•  Massively parallel (scalable)
•  General parallel Branch & Bound environment
•  Parallel search engine cleanly separated from application and

platform
•  Portable
•  Flexible
•  Integrate approximation techniques

There are other parallel B&B frameworks: PUBB, Bob, PPBB-Lib,
Symphony, BCP, CHiPPS/ALPS, FTH-B&B, and codes for MIP

October	 23,	 2013	 Simons	 Workshop	 16	

Slide	 17	

Pebbl’s Parallelism (Almost) Free

User must

•  Define serial application (debug in serial)

•  Describe how to pack/unpack data (using a generic packing tool)

C++ inheritance gives parallel management

User may add threads to

•  Share global data

•  Exploit problem-specific parallelism

•  Add parallel heuristics

PEBBL	 parallel	 Core	 Serial	 applicaAon	

Parallel	 applicaAon	

PEBBL	 serial	 Core	

Simons	 Workshop	

PEBBL Features for Efficient Parallel
B&B

•  Efficient processor use during ramp-up (beginning)
•  Integration of heuristics to generate good solutions early
•  Worker/hub hierarchy
•  Efficient work storage/distribution
•  Control of task granularity
•  Load balancing
•  Non-preemptive proportional-share “thread” scheduler
•  Correct termination
•  Early output
•  Checkpointing

18	 October	 23,	 2013	

Simons	 Workshop	

PEBBL Ramp-up

•  Tree starts with one node. What to do with 10,000 processors?
•  Serialize tree growth

–  All processors work in parallel on a single node
•  Parallelize

–  Preprocessing
–  Tough root bounds
–  Incumbent Heuristics
–  Splitting decisions (MMA)

•  Strong-branching for variable selection

19	 October	 23,	 2013	

Simons	 Workshop	

PEBBL Ramp-up

•  Strong branching for variable selection
–  Divide free variables evenly
–  Processors compute bound triples for their free variables
–  All-reduce on best triples to determine branch var
–  All-reduce to compute lookahead bound

20	 October	 23,	 2013	

b J,C,E,F() =min f∈F max

b J∪ f{ },C,E,F − f{ }()
b J,C∪ f{ },E,F − f{ }()
b J,C,E∪ f{ },F − f{ }()

$

%

&
&

'

&
&

$

%

&
&

'

&
&

•  Note: last element most computation: recompute equivalence
classes

Simons	 Workshop	

Crossing over

•  Switch from parallel operations on one node to processing independent subproblems
(serially)

•  Work division by processor ID/rank
•  Generally Crossover to parallel with perfect load balance

–  When there are enough subproblems to keep the processors busy
–  When single subproblems cannot effectively use parallelism

•  For MMA: crossover when #open problems = N, the # of features

21	 October	 23,	 2013	

Simons	 Workshop	

Hubs and Workers

•  Control communication
–  Processor utilization
–  Approximation of serial order

•  Subproblem pools at both the hubs and workers
•  Hubs keep only tokens

–  Subproblem identifier
–  Bound
–  Location (processor, address)

22	 October	 23,	 2013	

H	

W	

W	

W	

W	

W	

W	

H	
 Tree	 of	 hubs	

Simons	 Workshop	

Load Balancing

•  Hub pullback
•  Random scattering
•  Rendezvous

–  Hubs determine load (function of quantity and quality)
–  Use binary tree of hubs
–  Determine what processors need more work or better work
–  Exchange work

23	 October	 23,	 2013	

Experiments

•  UC Irvine machine learning repository
–  Hungarian heart disease dataset (M = 294, N = 72)
–  Spam dataset (M= 4601, N = 75)
–  Multiple MMA instances based on boost iteration

•  Later iterations are harder
•  Dropped observations with missing features
•  Binarization of real features (Boros, Hammer, Ibaraki, Kogan)

–  Feature (i,j) is 1 iff xi ≥ tj

–  Cannot map an element of and to the same vector

October	 23,	 2013	 Simons	 Workshop	 24	

min	 max	

000	 001	 011	 111	 t3	 t2	 t1	

Ω+ Ω−

Red Sky

•  Node: two quad-core Intel Xeon X5570 procs, 48GB shared RAM
•  Full system: 22,528 cores, 132TB RAM
•  General partition: 17,152 cores, 100.5TB RAM

–  Queue wait times OK for 1000s of processors
•  Network: Infiniband, 3D torroidal (one dim small), 10GB/s
•  Red Hat Linux 5, Intel 11.1 C++ compiler (O2), Open MPI 1.4.3

•  Because subproblem bounding is slow, 128 workers/core

October	 23,	 2013	 Simons	 Workshop	 25	

Value of ramp up (no enumeration)

October	 23,	 2013	 Simons	 Workshop	 26	

Number of tree nodes

October	 23,	 2013	 Simons	 Workshop	 27	

Spam, value of ramp up

October	 23,	 2013	 Simons	 Workshop	 28	

Spam, tree nodes

October	 23,	 2013	 Simons	 Workshop	 29	

Comments: Ramp up

•  Using initial synchronous ramp up improves scalability (e.g. 2x
processors), reduces tree inflation.

•  Speed up departure point from linear depends on problem
difficulty and tree size.
–  Tree inflation is the main contributor to sub-linear speedup

•  Solution times down to 1-3 minutes
–  Spam26: 3 min on 6144 cores, 27 hours on 8 cores

•  For MMA no significant efficiency drop from 1 processor and going
to multiple hubs

October	 23,	 2013	 Simons	 Workshop	 30	

Parallel Enumeration

•  Fundamental in PEBBL: best k, absolute tolerance, relative
tolerance, objective threshold

•  Requires: branch-through on “leaves” and duplicate detection
•  Hash solution to find owning processor
•  For all but best-k

–  independent solution repositories
–  parallel merge sort at end

•  For k-best need to periodically compute cut off objective value

October	 23,	 2013	 Simons	 Workshop	 31	

Enumeration Experiments

•  Why Enumeration for MMA?
–  MMA is the weak learner for LP-Boost
–  Add multiple columns in column generation

•  In this case, add the best 25 MMA solutions

•  Hungarian Heart
–  Tree size about same
–  More communication

•  Spam
–  Larger tree with enumeration
–  Harder subproblems than Hungarian heart (more observations)

October	 23,	 2013	 Simons	 Workshop	 32	

Results: Enumeration

October	 23,	 2013	 Simons	 Workshop	 33	

Results: Enumeration

October	 23,	 2013	 Simons	 Workshop	 34	

Open-Source Code Available

•  Software freely available (BSD license)
–  PEBBL plus knapsack and MMA examples

•  http://software.sandia.gov/acro
•  ACRO = A Common Repository for Optimizers

October	 23,	 2013	 Simons	 Workshop	 35	

Thank you!

October	 23,	 2013	 Simons	 Workshop	 36	

