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Combinatorial Scientific Computing 

 “I observed that most of the 
coefficients in our matrices were 
zero; i.e., the nonzeros were 
‘sparse’ in the matrix, and that 
typically the triangular matrices 
associated with the forward and back 
solution provided by Gaussian 
elimination would remain sparse if 
pivot elements were chosen with 
care” 

- Harry Markowitz, describing the 1950s 
work on portfolio theory that won  
the 1990 Nobel Prize for Economics 
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Graphs and sparse matrices:  Cholesky factorization 

                       A  =  LLT  
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G(A) G(L) 
[chordal] 

Symmetric Gaussian elimination: 

for j = 1 to n 
    add edges between j’s 
    higher-numbered neighbors 

Fill: new nonzeros in factor 
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(PAPT) (Px) = (Pb)	


Ax = b	


PAPT = L2L2
T	


A = L1L1
T	
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Sparse Gaussian elimination and chordal completion 
[Parter, Rose] 
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Sparse Gaussian elimination and chordal completion 
[Parter, Rose] 

Repeat: 
 Choose a vertex v and mark it; 
 Add edges between unmarked neighbors of v; 

Until:  Every vertex is marked 
 
Goal:  End up with as few edges as possible. 
 

Or, add fewest possible edges to make the graph chordal. 

Space = edges + vertices  =  Σvertices (1 + # higher neighbors) 

Time = flops  =  Σvertices  (1+ # higher neighbors)2 
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Elimination tree with nested dissection

Nested dissection and graph partitioning 
[George 1973, many extensions] 
 
 

•  Find a small vertex separator, number it last, recurse on subgraphs 

•  Theory:  approx optimal separators  =>  approx optimal fill & flop count 
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•  Planar graphs have O(n1/2) - separators. 

•  Well-shaped finite element meshes in 3 dimensions 
have O(n2/3) - separators.  

•  Also some others – trees, bounded genus, chordal 
graphs, bounded-excluded-minor graphs, … 

•  Most of these theorems come with efficient algorithms, 
but they aren’t used much – heuristics do okay. 

•  Random graphs don’t have good separators. 
–  e.g. Erdos-Renyi graphs have only O(n) - separators. 

Separators in theory 



8 

Separators in practice 

•  Graph partitioning heuristics have been an active 
research area for many years, often motivated by 
partitioning for parallel computation. 

•  Some techniques: 
–  Spectral partitioning (using Laplacian eigenvectors) 

–  Geometric partitioning (meshes with vertex coordinates) 
–  Iterative swapping (Kernighan-Lin, Fiduccia-Matheysses) 

–  Breadth-first search (fast but low quality) 

•  Many popular modern codes (e.g. Zoltan, Metis) use 
multilevel iterative swapping 
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Graph algorithms in sparse matrix computation 

Many, many graph algorithms have been used, invented, 
implemented at large scale for sparse matrix computation: 

•  Symmetric problems:  elimination tree, nonzero 
structure prediction, sparse triangular solve, sparse 
matrix-matrix multiplication, min-height etree, … 

•  Nonsymmetric problems:  sparse triangular solve, 
bipartite matching (weighted and unweighted), 
Dulmage-Mendelsohn decomposition / strong 
components, … 

•  Iterative methods:  graph partitioning again, 
independent set, low-stretch spanning trees, … 
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Sparse-sparse triangular solve 
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Symbolic: 

Predict structure of x by search from nonzeros of b 

Numeric: 
Compute values of x in topological order 

    
    Time = O(flops)	




1.  Preorder:  replace A by PAPT and b by Pb 
•  Independent of numerics 

2.  Symbolic Factorization:  build static data structure 
•  Elimination tree 
•  Nonzero counts 
•  Supernodes 
•  Nonzero structure of L 

3.  Numeric Factorization:  A = LLT 
•  Static data structure 
•  Supernodes use BLAS3 to reduce memory traffic 

4.  Triangular Solves:   solve Ly = b, then LTx = y 

Sparse Cholesky factorization to solve  Ax = b 
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Chordal graphs, dense matrices, and communication 

 

•  A chordal graph can be compactly represented as a 
tree of overlapping cliques (complete subgraphs). 

•  A complete subgraph is a dense submatrix. 

•  Dense matrix ops do n3 work for n2 communication. 

•  Most of the ops in Gaussian elimination can be done 
within dense BLAS primitives, esp. DGEMM. 

 



Supernodes for Gaussian elimination 

•  Supernode-column update:  k sparse vector ops become 
    1 dense triangular solve 
 + 1 dense matrix * vector 
 + 1 sparse vector add 

 

•  Sparse BLAS 1 => Dense BLAS 2 
•  Supernode-panel or multifrontal updates => Dense BLAS 3 

{	


•  Supernode = group of 
adjacent columns of L with 
same nonzero structure 

•  Related to clique structure 
of filled graph G+(A) 



Aside:  Nonsymmetric matrices and partial pivoting 

•  PAQT = LU:   Q preorders columns for sparsity, P is row pivoting 

•  Column permutation of A ó Symmetric permutation of ATA 

•  Symmetric ordering:  Nested dissection or approximate minimum degree 

•  But, forming ATA is expensive (sometimes bigger than L+U). 

=	
 x P 

Q 



Given the nonzero structure of (nonsymmetric) A,  
one can find . . . 

 
•  column nested dissection or min degree permutation 
•  column elimination tree   T(ATA) 
•  row and column counts for  G+(ATA) 
•  supernodes of   G+(ATA) 
•  nonzero structure of  G+(ATA) 

. . . without forming ATA or G∩(A). 
 

     

Aside:  Nonsymmetric matrices and partial pivoting 
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The middleware of scientific computing 

Computers 

Continuous 
physical modeling 

Linear algebra Ax = b 
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Computers 

Continuous 
physical modeling 

Linear algebra 

Discrete 
structure analysis 

Graph theory 

Computers 

The middleware challenge for graph analysis 
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Top 500 List (June 2013) 

=	
 x P	
A L	
 U

Top500  Benchmark: 
Solve a large system  
of linear equations  

by Gaussian elimination 
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Graph 500 List (June 2013) 

Graph500  
Benchmark: 

Breadth-first search 
in a large  

power-law graph 

1 2 

3 

4 7 

6 

5 



20 

Floating-point vs. graphs, June 2013 

=	
 x P	
 A L	
 U	
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33.8 Peta / 15.3 Tera is about  2200.  

33.8 Petaflops 15.3 Terateps 
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Floating-point vs. graphs, June 2013 

=	
 x P	
 A L	
 U	
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Jun 2013:  33.8 Peta / 15.3 Tera ~ 2,200 
 Nov 2010:  2.5 Peta / 6.6 Giga ~ 380,000 

 

15.3 Terateps 33.8 Petaflops 
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•  By analogy to 
numerical  
scientific 
computing. . . 

 

•  What should the 
combinatorial 
BLAS look like? 

The middleware challenge for graph analysis 

C  =  A*B 

y  =  A*x 

µ  =  xT y 

Basic Linear Algebra Subroutines (BLAS): 
Ops/Sec  vs.  Matrix Size 
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Identification of Primitives 

Sparse matrix-matrix  
multiplication (SpGEMM) 

 
 

Element-wise operations 
          

× 

Matrices over various semirings:    (+ . x),   (min . +),   (or . and),   … 

Sparse matrix-dense 
vector multiplication 
 
 
 
 
Sparse matrix indexing 
          

× 

.* 

  Sparse array primitives for graph manipulation 
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Multiple-source breadth-first search 
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Multiple-source breadth-first search 

•  Sparse array representation => space efficient 
•  Sparse matrix-matrix multiplication => work efficient 

•  Three possible levels of parallelism:  searches, vertices, edges 
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Graph	  contrac+on	  via	  	  
sparse	  triple	  product	  
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Subgraph	  extrac+on	  via	  
sparse	  triple	  product	  
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Betweenness centrality [Robinson 2008] 

•  Slide on BC in CombBLAS, or at least array based. 
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Graph algorithms in the language of linear algebra 

•  Kepner et al. study [2006]: 
fundamental graph algorithms 
including min spanning tree, 
shortest paths, independent 
set, max flow, clustering, … 

•  SSCA#2 / centrality [2008] 

•  Basic breadth-first search /  
Graph500 [2010] 

•  Beamer et al. [2013] direction-
optimizing breadth-first search, 
implemented with CombBLAS 
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Matrices over semirings 

•  E.g. matrix multiplication   C = AB  (or matrix/vector): 
   

Ci,j = Ai,1×B1,j + Ai,2×B2,j + · · · + Ai,n×Bn,j  

•  Replace scalar operations × and + by  
  ⊗ : associative, distributes over ⊕ 

  ⊕ : associative, commutative 
 

•  Then  Ci,j = Ai,1⊗B1,j  ⊕  Ai,2⊗B2,j  ⊕  · · ·  ⊕  Ai,n⊗Bn,j 

•  Examples:  ×.+ ; and.or ; +.min ; . . . 

•  Same data reference pattern and control flow 
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Examples of semirings in graph algorithms 

(R, +, x) 
Real Field 

Standard numerical linear algebra 

({0,1}, |, &) 
Boolean Semiring 

Graph traversal 

(R U {∞}, min, +) 
Tropical Semiring 

Shortest paths 

(R U {∞}, min, x) Select subgraph, or contract nodes 
to form quotient graph 

(edge/vertex attributes, vertex data 
aggregation, edge data processing) 

Schema for user-specified 
computation at vertices and edges 
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Question:  Berry challenge problems 

•  Clustering coefficient (triangle counting) 

•  Connected components (bully algorithm) 

•  Maximum independent set (NP-hard) 

•  Maximal independent set (Luby algorithm) 

•  Single-source shortest paths 

•  Special betweenness (for subgraph isomorphism) 
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Recall: Given nonsymmetric A, one can find . . . 
–  column nested dissection or min degree permutation 
–  column elimination tree   T(ATA) 
–  row and column counts for  G+(ATA) 
–  supernodes of   G+(ATA) 

–  nonzero structure of  G+(ATA) 
. . . without forming ATA. 

•  How generally can we do graph algorithms in linear 
algebra without storing intermediate results? 

•  Maybe related to Joey Gonzalez’s scheduling of 
vertex and edge operations in GraphLab. 

•  Maybe related to techniques for avoiding  
“boil the ocean” database queries. 

Question:  Not materializing big matrix products   
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History of BLAS 

•  Separation of concerns: 
•  Experts in mapping algorithms onto hardware tuned BLAS to specific platforms. 

•  Experts in linear algebra built software on top of the BLAS to obtain high 
performance “for free”. 

•  Today every computer, phone, etc. comes with /usr/lib/libblas!

The Basic Linear Algebra Subroutines 
 had a revolutionary impact  

on computational linear algebra. 

BLAS 1 vector ops Lawson, Hanson, Kincaid, 
Krogh, 1979 

LINPACK 

BLAS 2 matrix-vector ops Dongarra, Du Croz, 
Hammarling, Hanson, 1988 

LINPACK on  
vector machines 

BLAS 3 matrix-matrix ops Dongarra, Du Croz, 
Hammarling, Hanson, 1990 

LAPACK on  
cache based machines 
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•  No, it is not reasonable to define a universal set of graph 
algorithm building blocks: 
–  Huge diversity in matching algorithms to hardware platforms. 

–  No consensus on data structures and linguistic primitives. 
–  Lots of graph algorithms remain to be discovered. 

–  Early standardization can inhibit innovation. 

•  Yes, it is reasonable to define a common set of graph 
algorithm building blocks … for Graphs as Linear Algebra: 
–  Representing graphs in the language of linear algebra is a mature 

field. 

–  Algorithms, high level interfaces, and implementations vary. 
–  But the core primitives are well established. 

Can we define and standardize  
the “Graph BLAS”? 
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Conclusion 

•  Matrix computation is beginning to repay a 50-year 
debt to graph algorithms. 

•  Graphs in the language of linear algebra are 
sufficiently mature to support a standard set of BLAS. 

•  It helps to look at things from two directions. 

 


