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Distributed Optimization Problems: Challenges

• Lack of central “authority”

• The centralized architecture is not possible

� Size of the network / Proprietary issues

• Sometimes the centralized architecture is not desirable

� Security issues / Robustness to failures

• Network dynamics

• Mobility of the network

� The agent spatio-temporal dynamics

� Network connectivity structure is varying in time

• Time-varying network

� The network itself is evolving in time

• The challenge is to control, coordinate, design protocols and analyze operations/performance

over such networks
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• Goals:

Control-optimization algorithms deployed in such networks should be

• Completely distributed relying on local information and observations

• Robust against changes in the network topology

• Easily implementable
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Example: Computing Aggregates in P2P Networks

• Data network

• Each node (location) i has stored data/files with average size θi

• The value θi is known at that location only - no central access to all θi, i = 1, . . . ,m

• The nodes are connected over a static undirected network

• Distributedly compute the average size of the files stored?∗

• Control/Game/Optimization Problem: Agreement/Consensus Problem

Optimization Formulation min
x∈R

m∑
i=1

(x− θi)2

∗D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of aggregate information,” in Proc. of 44th Annual IEEE
Symposium on Foundations of CS, pp. 482–491, 2003.
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Example: Support Vector Machine (SVM)

Centralized Case
Given a data set {zj, yj}pj=1, where zj ∈ Rd and yj ∈ {+1,−1}

jξ

x
!

1

1

!

"

• Find a maximum margin separating hyperplane x?

Centralized (not distributed) formulation

min
x∈Rd,ξ∈Rp

F (x, ξ) ,
1

2
‖x‖2 + C

p∑
j=1

ξj

s.t. (x, ξ) ∈ X , {(x, ξ) | yj〈x, zj〉 ≥ 1− ξj, ξj ≥ 0, j = 1, . . . , p}
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Support Vector Machine (SVM) - Decentralized Case
Given m locations, each location i with its data set {zj, yj}j∈Ji, where zj ∈ Rd and

yj ∈ {+1,−1}

• Find a maximum margin separating hyperplane x?, without disclosing the data sets

min
x∈Rd,ξ∈Rp

m∑
i=1

 1

2m
‖x‖2 + C

∑
j∈Ji

ξj


s.t. (x, ξ) ∈ ∩mi=1Xi,

Xi , {(x, ξ) | yj〈x, zj〉 ≥ 1− ξj, ξj ≥ 0, j ∈ Ji} for i = 1, . . . ,m
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Consensus Model

Network Diffusion Model/ Alignment Model
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Consensus Problem

• Consider a connected network of m-

agent, each knowing its own scalar value

xi(0) at time t = 0.

• The problem is to design a distributed and

local algorithm ensuring that the agents

agree on the same value x, i.e.,

lim
t→∞

xi(t) = x for all i.
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Dynamic Network Topology

Each agent dynamic is given by

xi(k + 1) =
∑

j∈Ni(k)

aij(k)xj(k)

where Ni(k) is the set of neighbors of agent i (including itself) and aij(k) are the weights

that agent i assigns to its neighbors at time k.

• The set Ni(k) of neighbors is changing with time

• The weights aij(k) are changing with time

• The weights are nonnegative and sum to 1

aij(k) > 0, j ∈ Ni(k) and
∑

j∈Ni(k)

aij(k) = 1 for all i and k
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Weight Matrices

Introduce the weight matrix A(k) which is compliant with the connectivity graph (V, Ek)
enlarged with the self-loops:

aij(k) =

{
aij(k) > 0 if either (i, j) ∈ Ek or j = i

0 otherwise

Assumption 1: For each k,

• The graph (V, Ek) is strongly connected (there is a directed path from each node

to every other node in the graph).

• The matrix A(k) is row-stochastic (it has nonnegative entries that sum to 1 in each

row).

• The positive entries of A(k) are uniformly bounded away from zero: for a scalar

η > 0 and for all i, j, k

if aij(k) > 0 then aij(k) ≥ η.
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Basic Result

Proposition 2 [Tsitsiklis 84] Under Assumption 1, the agent values converge to a

consensus with a geometric rate. In particular,

lim
k→∞

xi(k) = α for all i,

where α is some convex combination of the initial values x1(0), . . . , xm(0); i.e., α =∑m
j=1 πjxj(0) with πj > 0 for all j, and

∑m
j=1 πj = 1.

Furthermore

max
i
xi(k)−min

j
xj(k) ≤

(
max
i
xi(0)−min

j
xj(0)

)
β

k
m−1 for all k,

where β = 1−mηm−1.

The convergence rate is geometric
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Computational Model

Part II

Distributed Optimization in Network

• Optimization problem - classic

• Problem data distributed - new
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General Multi-Agent Model

• Network of m agents represented by an undirected graph ([m], Et) where [m] =

{1, . . . ,m} and Et is the edge set

• Each agent i has a convex objective function fi(x) known to that agent only

• Common constraint (closed convex) set X known to all agents

The problem can be formalized:

minimize F (x) ,
m∑
i=1

fi(x)

subject to x ∈ X ⊆ Rn

Distributed Self-organized Agent System

f2(x1, . . . , xn)

fm(x1, . . . , xn)

f1(x1, . . . , xn)
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How Agents Manage to Optimize Global Network

Problem?

minimize F (x) =
m∑
i=1

fi(x) subject to x ∈ X ⊆ Rn

• Each agent i will generate its own estimate xi(t) of an optimal solution to the problem

• Each agent will update its estimate xi(t) by performing two steps:

• Consensus-like step (mechanism to align agents estimates toward a common point)

• Local gradient-based step (to minimize its own objective function)

C. Lopes and A. H. Sayed, ”Distributed processing over adaptive networks,” Proc. Adaptive Sensor Array Processing Workshop,

MIT Lincoln Laboratory, MA, June 2006.

A. H. Sayed and C. G. Lopes, ”Adaptive processing over distributed networks,” IEICE Transactions on Fundamentals of Electronics,

Communications and Computer Sciences, vol. E90-A, no. 8, pp. 1504-1510, 2007.

A. Nedić and A. Ozdaglar ”On the Rate of Convergence of Distributed Asynchronous Subgradient Methods for Multi-agent

Optimization” Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, USA, 2007, pp. 4711-4716.

A. Nedić and A. Ozdaglar, Distributed Subgradient Methods for Multi-agent Optimization IEEE Transactions on Automatic

Control 54 (1) 48-61, 2009.
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Distributed Optimization Algorithm

minimize F (x) =
m∑
i=1

fi(x) subject to x ∈ X ⊆ Rn

• At time t, each agent i has its own estimate xi(t) of an optimal solution to the

problem

• At time t + 1, agents communicate their estimates to their neighbors and update by

performing two steps:

• Consensus-like step to mix their own estimate with those received from neighbors

wi(t+ 1) =
m∑
j=1

aij(t)xj(t) with aij(t) = 0 when j /∈ Ni(t)

• Followed by a local gradient-based step

xi(t+ 1) = ΠX[wi(t+ 1)− α(t)∇fi(wi(t+ 1))]

where ΠX[y] is the Euclidean projection of y on X, fi is the local objective of

agent i and α(t) > 0 is a stepsize
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Intuition Behind the Algorithm: It can be viewed as a consensus steered by a ”force”:

xi(t+ 1) = wi(t+ 1) + (ΠX[wi(t+ 1)− α(t)∇fi(wi(t+ 1))]− wi(t+ 1))

= wi(t+ 1) + (ΠX[wi(t+ 1)− α(t)∇fi(wi(t+ 1))]−ΠX[wi(t+ 1)])︸ ︷︷ ︸
small stepsize α(t)

≈ wi(t+ 1)− α(t)∇fi(wi(t+ 1))

=
m∑
j=1

aij(t)xj(t)− α(t)∇fi

 m∑
j=1

aij(t)xj(t)


Matrices A that lead to consensus, also yield convergence of an optimization algorithm
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Convergence Result
• Method:

wi(t+ 1) =
m∑
j=1

aij(t)xj(t) aij(t) = 0 when j /∈ Ni(t)

xi(t+ 1) = ΠX[wi(t+ 1)− α(t)∇fi(wi(t+ 1))]

Convergence Result for Time-varying Network Let the problem be convex, fi have

bounded (sub)gradients on X, and
∑∞

t=0 α(t) =∞ and
∑∞

t=0 α
2(t) <∞.

Let the graphs G(t) = ([m], Et) be directed and strongly connected, and the matrices

A(t) be such that aij(t) = 0 if j 6∈ Ni(t), while aij(t) ≥ γ whenever aij(t) > 0, where

γ > 0. Also assume that A(t) are doubly stochastic†.

Then, for some solution x∗ of the problem we have

lim
t→∞

xi(t) = x∗ for all i

†J. N. Tsitsiklis, ”Problems in Decentralized Decision Making and Computation,” Ph.D. Thesis, Department of EECS, MIT,
November 1984; technical report LIDS-TH-1424, Laboratory for Information and Decision Systems, MIT
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Related Papers

• AN and A. Ozdaglar ”Distributed Subgradient Methods for Multi-agent Optimization”

IEEE Transactions on Automatic Control 54 (1) 48-61, 2009.

The paper looks at a basic (sub)gradient method with a constant stepsize

• S.S. Ram, AN, and V.V. Veeravalli ”Distributed Stochastic Subgradient Projection

Algorithms for Convex Optimization.” Journal of Optimization Theory and Applica-

tions 147 (3) 516-545, 2010.

The paper looks at stochastic (sub)gradient method with diminishing stepsizes and

constant as well

• S.S. Ram, A.N, and V.V. Veeravalli ”A New Class of Distributed Optimization

Algorithms: Application to Regression of Distributed Data,” Optimization Methods

and Software 27(1) 71–88, 2012.

The paper looks at extension of the method for other types of network objective

functions
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Other Extensions

wi(t+ 1) =
m∑
j=1

aij(t)xj(t) (aij(t) = 0 when j /∈ Ni(t))

xi(t+ 1) = ΠX[wi(t+ 1)− α(t)∇fi(wi(t+ 1))]

Extensions include

• Gradient directions ∇fi(wi(t+ 1)) can be erroneous

xi(t+ 1) = ΠX[wi(t+ 1)− α(t)(∇fi(wi(t+ 1) + ϕi(t+ 1))]

[Ram, Nedić, Veeravali 2009, 2010, Srivastava and Nedić 2011]

• The links can be noisy i.e., xj(t) is sent to agent i, but the agent receives xj(t)+εij(t)

[Srivastava and Nedić 2011]

• The updates can be asynchronous; the edge set E (t) is random [Ram, Nedić, and

Veeravalli - gossip, Nedić 2011]

• The set X can be X = ∩mi=1Xi where each Xi is a private information of agent i

xi(t+ 1) = ΠXi
[wi(t+ 1)− α(t)∇fi(wi(t+ 1))]

[Nedić, Ozdaglar, and Parrilo 2010, Srivastava‡ and Nedić 2011, Lee and AN 2013]

‡Uses different weights
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• Different sum-based functional structures [Ram, Nedić, and Veeravalli 2012]

S. S. Ram, AN, and V.V. Veeravalli, ”Asynchronous Gossip Algorithms for Stochastic

Optimization: Constant Stepsize Analysis,” in Recent Advances in Optimization and its

Applications in Engineering, the 14th Belgian-French-German Conference on Optimization

(BFG), M. Diehl, F. Glineur, E. Jarlebring and W. Michiels (Eds.), 2010, pp. 51-60.

A. Nedić ”Asynchronous Broadcast-Based Convex Optimization over a Network,” IEEE

Transactions on Automatic Control 56 (6) 1337-1351, 2011.

S. Lee and A. Nedić ”Distributed Random Projection Algorithm for Convex Optimization,”

IEEE Journal of Selected Topics in Signal Processing, a special issue on Adaptation and

Learning over Complex Networks, 7, 221-229, 2013

K. Srivastava and A. Nedić ”Distributed Asynchronous Constrained Stochastic Optimiza-

tion,” IEEE Journal of Selected Topics in Signal Processing 5 (4) 772-790, 2011.
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Revisited Example: Support Vector Machine (SVM)

Centralized Case
Given a data set {(zj, yj), j = 1, . . . , p}, where zj ∈ Rd and yj ∈ {+1,−1}

jξ

x
!

1

1

!

"

• Find a maximum margin separating hyperplane x?

Centralized (not distributed) formulation

min
x∈Rd,ξ∈Rp

F (x, ξ) ,
1

2
‖x‖2 + C

p∑
j=1

ξj

s.t. (x, ξ) ∈ X , {(x, ξ) | yj〈x, zj〉 ≥ 1− ξj, ξj ≥ 0, j = 1, . . . , p}
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Often Reformulated as: Data Classification
Given a set of data points {(zj, yj), j = 1, . . . , p}, find a vector (x, u) that

minimizes
λ

2
‖x‖2 +

p∑
j=1

max{0,1− yj(〈x, zj〉+ u)}

Suppose that the data is distributed at m locations, with each location having data points

{(z`, y`), ` ∈ Si}, with Si being the index set

The problem can be written as:

minimize
m∑
i=1

 λ

2m
‖x‖2 +

∑
`∈Ji

max{0,1− y`(〈x, z`〉+ u)}


︸ ︷︷ ︸

fi(x)

over x = (x, u) ∈ Rn×R

Distributed algorithm has the form:

wi(t+ 1) = xi(t)− η(t)
m∑
j=1

rijxj(t) (rij = 0 when j /∈ Ni)

xi(t+ 1) = wi(t+ 1)− α(t) gi(wi(t+ 1))︸ ︷︷ ︸
subgradient of fi

Algorithm is discussed in K. Srivastava and AN ”Distributed Asynchronous Constrained Stochastic Optimization” IEEE Journal

of Selected Topics in Signal Processing 5 (4) 772-790, 2011.
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Case with perfect communications

Illustration uses a simple graph of 4 nodes organized in a ring-network

λ = 6

α(t) = 1
t

η(t) = 0.8

−5 −4 −3 −2 −1 0 1 2 3 4 5
−8

−6

−4

−2

0

2

4

6

8

After 20 iterations After 500 iterations
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Case with imperfect communications

minimize
m∑
i=1

 λ

2m
‖x‖2 +

∑
`∈Ji

max{0,1− y`(〈x, z`〉+ u)}


︸ ︷︷ ︸

fi(x)

over x = (x, u) ∈ Rn×R

wi(t+ 1) = xi(t)− η(t)
m∑
j=1

rij(xj(t) + ξij(t)︸ ︷︷ ︸
noise

)

with rij = 0 when j /∈ Ni, η(t) > 0 is a noise-damping stepsize

xi(t+ 1) = wi(t+ 1)− α(t)gi(wi(t+ 1))

Noise-damping stepsize η(t) has to be coordinated with sub-gradient related stepsize α(t)∑
t

α(t) =∞,
∑
t

α2(t) <∞∑
t

η(t) =∞,
∑
t

η2(t) <∞

∑
t

α(t)η(t) <∞,
∑
t

α2(t)

η(t)
<∞
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Case with imperfect communications

Illustration uses a simple graph of 4 nodes organized in a ring-network

λ = 6

α(t) = 1
t

η(t) = 1
t0.55

After 1 iteration After 500 iterations
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Advantages/Disadvantages

• Network can be used to diffuse information to all the nodes in that is not ”globally

available”

• The speed of the information spread depends on networks connectivity as well as

communication protocols that are employed

• Mixing can be slow but it is stable

• Error/rate estimates are available and scale as m3/2 at best in the size m of the

network

• Problems with special structure - may have better rates - Jakovetić, Xavier, Moura†§

• Drawback: Doubly stochastic weights are required:

• Can be accomplished with some additional ”weights” exchange in bi-directional

graphs

• Difficult to ensure in directed graphs¶¶

§† D. Jakovetić, J. Xavier, J. Moura ”Distributed Gradient Methods” arxiv 2011
¶¶B. Gharesifard and J. Cortes, ”Distributed strategies for generating weight-balanced and doubly stochastic digraphs,”

European Journal of Control, 18 (6), 539-557, 2012
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Push-Sum Based Computational Model

Part III

Distributed Optimization in Directed Networks

• Motivated by work of M. Rabbat, K.I. Tsianos and S. Lawlor

• The need to eliminate doubly stochastic weights and practical issues with bi-directional

communications
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Model without Doubly Stochastic Weights
Joint recent work with A. Olshevsky

Push-Sum Model for Consensus for Time-Varying Directed Graphs

Every node i maintains scalar variable xi(t) and yi(t)

These quantities will be updated by the nodes according to the rules,

xi(t+ 1) =
∑

j∈N in
i

(t)

xj(t)

dj(t)
,

yi(t+ 1) =
∑

j∈N in
i

(t)

yj(t)

dj(t)
,

zi(t+ 1) =
xi(t+ 1)

yi(t+ 1)
(1)

• Each node i ”knows” its out degree di(t) (includes itself) at every time t

• N in
i (t) is the ”in”-degree of node i at time t

• The method†‖ is initiated with wi(0) = zi(0) = 1 and yi(0) = 1 for all i.
‖D. Kempe, A. Dobra, and J. Gehrke ”Gossip-based computation of aggregate information” In Proceedings of the 44th Annual

IEEE Symposium on Foundations of Computer Science, pages 482491, Oct. 2003
F. Benezit, V. Blondel, P. Thiran, J. Tsitsiklis, and M. Vetterli ”Weighted gossip: distributed averaging using non-doubly
stochastic matrices” In Proceedings of the 2010 IEEE International Symposium on Information Theory, Jun. 2010.
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Convergence Result

Consider the sequences {zi(t)}, i = 1, . . . ,m, generated by the push-sum method.

Assuming that the graph sequence {G(t)} is B-uniformly strongly connected, the following

statements hold: For all t ≥ 1 we have∣∣∣∣zi(t+ 1)−
1′x(t)

n

∣∣∣∣ ≤ 8

δ

(
λt‖x(0)‖1 +

t∑
s=1

λt−s‖ε(s)‖1

)
,

where δ > 0 and λ ∈ (0,1) satisfy

δ ≥
1

nnB
, λ ≤

(
1−

1

nnB

)1/B

.

Define matrices A(t) by Aij(t) = 1/dj(t) for j ∈ N in
i (t) and 0 otherwise

If each of the matrices A(t) are doubly stochastic, then

δ = 1, λ ≤

{(
1−

1

4n3

)1/B

,max
t≥0

√
σ2(A(t))

}
.
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Optimization

The subgradient-push method can be used for minimizing F (z) =
∑m

i=1 fi(z) over

z ∈ Rd

Every node i maintains scalar variables xi(t),wi(t) in R, as well as an auxiliary scalar

variable yi(t), initialized as yi(0) = 1 for all i. These quantities will be updated by the

nodes according to the rules,

wi(t+ 1) =
∑

j∈N in
i

(t)

xj(t)

dj(t)
,

yi(t+ 1) =
∑

j∈N in
i

(t)

yj(t)

dj(t)
,

zi(t+ 1) =
wi(t+ 1)

yi(t+ 1)
,

xi(t+ 1) = wi(t+ 1)− α(t+ 1)gi(t+ 1), (2)

where gi(t+ 1) is a subgradient of the function fi at zi(t+ 1). The method is initiated

with wi(0) = zi(0) = 1 and yi(0) = 1 for all i.
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The stepsize α(t+ 1) > 0 satisfies the following decay conditions
∞∑
t=1

α(t) =∞,
∞∑
t=1

α2(t) <∞, α(t) ≤ α(s) for all t > s ≥ 1. (3)

We note that the above equations have simple broadcast-based implementation: each

node i broadcasts the quantities xi(t)/di(t), yi(t)/di(t) to all of the nodes in its out-

neighborhood∗∗, which simply sum all the messages they receive to obtain wi(t+ 1) and

yi(t + 1). The update equations for zi(t + 1),xi(t + 1) can then be executed without

any further communications between nodes during step t.

∗∗We note that we make use here of the assumption that node i knows its out-degree di(t).
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Related Work: Static Network

• A.D. Dominguez-Garcia and C. Hadjicostis. Distributed strategies for average consensus

in directed graphs. In Proceedings of the IEEE Conference on Decision and Control,

Dec 2011.
• C. N. Hadjicostis, A.D. Dominguez-Garcia, and N.H. Vaidya, ”Resilient Average

Consensus in the Presence of Heterogeneous Packet Dropping Links” CDC, 2012
• K.I. Tsianos. The role of the Network in Distributed Optimization Algorithms: Conver-

gence Rates, Scalability, Communication / Computation Tradeoffs and Communication

Delays. PhD thesis, McGill University, Dept. of Electrical and Computer Engineering,

2013.
• K.I. Tsianos, S. Lawlor, and M.G. Rabbat. Consensus-based distributed optimization:

Practical issues and applications in large-scale machine learning. In Proceedings of the

50th Allerton Conference on Communication, Control, and Computing, 2012.
• K.I. Tsianos, S. Lawlor, and M.G. Rabbat. Push-sum distributed dual averaging for

convex optimization. In Proceedings of the IEEE Conference on Decision and Control,

2012.
• K.I. Tsianos and M.G. Rabbat. Distributed consensus and optimization under com-

munication delays. In Proc. of Allerton Conference on Communication, Control, and

Computing, pages 974982, 2011.
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Convergence

Our first theorem demonstrates the correctness of the subgradient-push method for an

arbitrary stepsize α(t) satisfying Eq. (3).

Theorem 1 Suppose that:

(a) The graph sequence {G(t)} is uniformly strongly connected.

(b) Each function fi(z) is convex and the set Z∗ = arg min
z∈Rd

∑m
i=1 fi(z) is nonempty.

(c) The subgradients of each fi(z) are uniformly bounded, i.e., there is Li <∞ such that

‖gi‖2 ≤ Li for all subgradients gi of fi(z) at all points z ∈ Rd.

Then, the distributed subgradient-push method of Eq. (2) with the stepsize satisfying the

conditions in Eq. (3) has the following property

lim
t→∞

zi(t) = z∗ for all i and for some z∗ ∈ Z∗.
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Convergence Rate

Our second theorem makes explicit the rate at which the objective function converges to

its optimal value. As standard with subgradient methods, we will make two tweaks in order

to get a convergence rate result:

(i) we take a stepsize which decays as α(t) = 1/
√
t (stepsizes which decay at faster rates

usually produce inferior convergence rates),

(ii) each node i will maintain a convex combination of the values zi(1), zi(2), . . . for

which the convergence rate will be obtained.

We then demonstrate that the subgradient-push converges at a rate of O(ln t/
√
t). The

result makes use of the matrix A(t) that captures the weights used in the construction of

wi(t+ 1) and yi(t+ 1) in Eq. (2), which are defined by

Aij(t) =

{
1/dj(t) whenever j ∈ N in

i (t),

0 otherwise.
(4)
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Convergence Rate

Theorem 2 Suppose all the assumptions of Theorem 1 hold and, additionally, α(t) =

1/
√
t for t ≥ 1. Moreover, suppose that every node i maintains the variable z̃i(t) ∈ Rd

initialized at time t = 1 to z̃i(1) = zi(1) and updated as

z̃i(t+ 1) =
α(t+ 1)zi(t+ 1) + S(t)z̃i(t)

S(t+ 1)
,

where S(t) =
∑t−1

s=0 α(s+ 1). Then, we have that for all t ≥ 1, i = 1, . . . , n, and any

z∗ ∈ Z∗,

F (z̃i(t))− F (z∗) ≤
n

2

‖x̄(0)− z∗‖1√
t

+
n

2

(∑n
i=1Li

)2

4

(1 + ln t)√
t

+
16

δ(1− λ)

(
n∑
i=1

Li

)∑n
j=1 ‖xj(0)‖1
√
t

+
16

δ(1− λ)

(
n∑
i=1

L2
i

)
(1 + ln t)√

t

where

x̄(0) =
1

n

n∑
i=1

xi(0),

and the scalars λ and δ are functions of the graph sequence G(1), G(2), . . . , which

have the following properties:
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(a) For any B-connected graph sequence

δ ≥
1

nnB
,

λ ≤
(

1−
1

nnB

)1/(nB)

.

(b) If each of the graphs G(t) is regular then

δ = 1

λ ≤ min

{(
1−

1

4n3

)1/B

,max
t≥1

√
σ2(A(t))

}

where A(t) is defined by Eq. (4) and σ2(A) is the second-largest singular value of a

matrix A.

Several features of this theorem are expected: it is standard††‡‡ for a distributed subgra-

dient method to converge at a rate of O(ln t/
√
t) with the constant depending on the

††S.S. Ram, A. Nedić, and V.V. Veeravalli, ”Distributed Stochastic Subgradient Projection Algorithms for Convex Optimization,”
Journal of Optimization Theory and Applications,147 (3) 516–545, 2010
‡‡J.C. Duchi, A. Agarwal, and M.J. Wainwright, ”Dual Averaging for Distributed Optimization: Convergence Analysis and

Network Scaling,” IEEE Transactions on Automatic Control, 57(3) 592–606, 2012

35



Simons Institute, UC Berkeley, Parallel and Distributed Algorithms for Inference and Optimization Oct 21-24, 2013

subgradient-norm upper bounds Li, as well as on the initial conditions xi(0). Moreover,

it is also standard for the rate to involve λ, which is a measure of the connectivity of the

directed sequence G(1), G(2), . . .; namely, the closeness of λ to 1 measures the speed at

which a consensus process on the graph sequence {G(t)} converges.

However, our bounds also include the parameter δ, which, as we will later see, is a measure

of the imbalance of influences among the nodes. Time-varying directed regular networks

are uniform in influence and will have δ = 1, so that δ will disappear from the bounds

entirely; however, networks which are, in a sense to be specified, non-uniform will suffer a

corresponding blow-up in the convergence time of the subgradient-push algorithm.
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Simulations

The details are in:

AN and Alex Olshevsky, ”Distributed optimization over time-varying directed

graphs,” http://arxiv.org/abs/1303.2289
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