Para-active learning

Alekh Agarwal Microsoft Research

Joint work with Léon Bottou, Miroslav Dudík and John Langford

- Many existing distributed learning approaches
	- Parallelize existing algorithms (e.g. distributed optimization)
	- Variants of existing algorithms (e.g. distributed mini-batches)
	- \bullet Bagging, model averaging, ...
- Many existing distributed learning approaches
	- Parallelize existing algorithms (e.g. distributed optimization)
	- Variants of existing algorithms (e.g. distributed mini-batches)
	- \bullet Bagging, model averaging, ...
- Model/gradients cheaply communicated, meaningfully averaged
- Many existing distributed learning approaches
	- Parallelize existing algorithms (e.g. distributed optimization)
	- Variants of existing algorithms (e.g. distributed mini-batches)
	- \bullet Bagging, model averaging, ...
- Model/gradients cheaply communicated, meaningfully averaged
- Limited use of the statistical problem structure (beyond i.i.d.)
- Models not always parsimoniously described
	- Kernel methods: model/gradient not described without training data
	- High-dimensional/non-parametric models
- Models not always parsimoniously described
	- Kernel methods: model/gradient not described without training data
	- High-dimensional/non-parametric models
- Models not always meaningfully averaged
	- Matrix factorization: $M = UV = (-U)(-V)$
	- More generic for non-convex models: neural networks, mixture models

Data data everywhere, but ...

• Not all data points are equally informative

Data data everywhere, but ...

- Not all data points are equally informative
- Small number of support vectors specify SVM solution

- Active learning identifies informative examples
- Similar idea as support vectors, works more generally
- Efficient algorithms (and heuristics) for typical hypothesis classes
- Active learning identifies *informative examples*
- Similar idea as support vectors, works more generally
- Efficient algorithms (and heuristics) for typical hypothesis classes
- **•** Examples
	- Query x with probability $g(|h(x)|)$
	- Query x based on similarity with previously queried samples
- Sift for informative examples in parallel
- Update model on selected examples

Synchronous para-active learning

- Initial hypothesis h_1 , batch size B, active sifter A, passive updater P
- For rounds $t = 1, 2, \ldots, T$
	- For all nodes $i = 1, 2, ..., k$ in parallel
		- Local dataset of size B/k
		- A creates subsampled dataset

Synchronous para-active learning

- Initial hypothesis h_1 , batch size B, active sifter A, passive updater P
- For rounds $t = 1, 2, \ldots, T$
	- For all nodes $i = 1, 2, ..., k$ in parallel
		- Local dataset of size B/k
		- \bullet $\mathcal A$ creates subsampled dataset
	- Collect subsampled datasets from each node
	- Update h_{t+1} by running passive updater P on the collected data

- Initial hypothesis h_1 , batch size B, active sifter A, passive updater P
- For rounds $t = 1, 2, \ldots, T$
	- For all nodes $i = 1, 2, ..., k$ in parallel
		- Local dataset of size B/k
		- \bullet $\mathcal A$ creates subsampled dataset
	- Collect subsampled datasets from each node
	- Update h_{t+1} by running passive updater P on the collected data
- Example
	- h_t is kernel SVM on examples selected so far
	- A samples based on $g(|h_t(x)|)$ at round t
	- \bullet P computes h_{t+1} from h_t using online kernel SVM

Asynchronous para-active learning

- Initial hypothesis h_1 , batch size B, active sifter A, passive updater P
- Initialize $Q_S^i = \emptyset$ for each node *i*
- For all nodes $i = 1, 2, ..., k$ in parallel
	- While Q_S^i is not empty
		- Fetch a selected example from Q^i_S
		- Update the hypothesis using P on this example

Asynchronous para-active learning

- Initial hypothesis h_1 , batch size B, active sifter A, passive updater P
- Initialize $Q_S^i = \emptyset$ for each node *i*
- For all nodes $i = 1, 2, ..., k$ in parallel
	- While Q_S^i is not empty
		- Fetch a selected example from Q^i_S
		- Update the hypothesis using $\mathcal P$ on this example
	- If Q_F^i is non-empty
		- Fetch a candidate example from Q_F^i
		- Use $\mathcal A$ to decide whether the example is selected or not
		- If selected, broadcast example for addition to Q_S^j for all j

Computational complexity

- Training time for *n* examples: $T(n)$
- Evaluation time per example after n examples: $S(n)$ \bullet
- Number of subsampled examples out of *n*: $\phi(n)$ \bullet
- \bullet Number of nodes: k

Computational complexity

- Training time for *n* examples: $T(n)$
- Evaluation time per example after n examples: $S(n)$ \bullet
- Number of subsampled examples out of *n*: $\phi(n)$ \bullet
- \bullet Number of nodes: k

Computational complexity

- Training time for *n* examples: $T(n)$ \bullet
- Evaluation time *per example* after *n* examples: $S(n)$ \bullet
- Number of subsampled examples out of $n: \phi(n)$ \bullet
- Number of nodes: k ٠

- Training time for *n* examples: $T(n)$
- Evaluation time *per example* after *n* examples: $S(n)$ \bullet
- Number of subsampled examples out of *n*: $\phi(n)$ \bullet
- \bullet Number of nodes: k

$$
\bullet \ \mathcal{T}(n) \sim \mathcal{O}(n^2), \ S(n) \sim \mathcal{O}(n)
$$

• Often $\phi(n) \ll n$

$$
\bullet \ \mathcal{T}(n) \gg n \mathcal{S}(\phi(n)) \gg n \mathcal{S}(\phi(n))/k
$$

- Training time for *n* examples: $T(n)$
- Evaluation time *per example* after *n* examples: $S(n)$ \bullet
- Number of subsampled examples out of *n*: $\phi(n)$ \bullet
- \bullet Number of nodes: k

- Often $\phi(n) \ll n$
- \bullet $\mathcal{T}(n) \approx n\mathcal{S}(\phi(n)) \gg n\mathcal{S}(\phi(n))/k$
- Communication complexity is query complexity of active learning
- Typically assume examples are queried immediately in active learning
- We have a delay before the model is updated
- **Theorem:** Delay of τ leads to query complexity at most $\tau + \phi(n \tau)$
- Large version of MNIST (8.1M examples) with elastic deformations of original images
- Two learning algorithms:
	- Simulation for kernel SVM: RBF kernel, LASVM algorithm
	- Parallel neural nets: 1-hidden layer with 100 nodes
- Active learning: select a point x with probability based on $|f(x)|$ for fixed subsampling rate
- Simulated synchronous para-active learning
- Fixed batch size B, split into portions of size B/k
- Sift each portion in turn, take largest sifting time
- Update model with new examples, take training time
- Used as an estimate of parallel computation time

SVM simulation runtimes

- Classifying $\{3, 1\}$ vs $\{5, 7\}$
- Running time vs test error

Running time v/s test error for SVM

SVM simulated speedup over passive

- Classifying $\{3, 1\}$ vs $\{5, 7\}$
- Speedup over sequential passive

SVM simulated speedup over delayed active

- Classifying $\{3, 1\}$ vs $\{5, 7\}$
- Speedup over delayed active

Parallel neural net results

- Classifying 3 vs 5
- Running time vs test error

- General strategy for distributed learning
- Applicable to diverse hypothesis classes and algorithms
- Particularly appealing for non-parametric and/or non-convex models
- Theoretically justified, empirically promising
- General strategy for distributed learning
- Applicable to diverse hypothesis classes and algorithms
- Particularly appealing for non-parametric and/or non-convex models
- Theoretically justified, empirically promising
- Real distributed implementation for kernel SVMs
- Other algorithms and datasets
- • Better subsampling strategies