Para-active learning

Alekh Agarwal Microsoft Research

Joint work with Léon Bottou, Miroslav Dudík and John Langford

- Many existing distributed learning approaches
 - Parallelize existing algorithms (e.g. distributed optimization)
 - Variants of existing algorithms (e.g. distributed mini-batches)
 - Bagging, model averaging, ...

- Many existing distributed learning approaches
 - Parallelize existing algorithms (e.g. distributed optimization)
 - Variants of existing algorithms (e.g. distributed mini-batches)
 - Bagging, model averaging, ...
- Model/gradients cheaply communicated, meaningfully averaged

- Many existing distributed learning approaches
 - Parallelize existing algorithms (e.g. distributed optimization)
 - Variants of existing algorithms (e.g. distributed mini-batches)
 - Bagging, model averaging, ...
- Model/gradients cheaply communicated, meaningfully averaged
- Limited use of the statistical problem structure (beyond i.i.d.)

- Models not always parsimoniously described
 - Kernel methods: model/gradient not described without training data
 - High-dimensional/non-parametric models

- Models not always parsimoniously described
 - Kernel methods: model/gradient not described without training data
 - High-dimensional/non-parametric models
- Models not always meaningfully averaged
 - Matrix factorization: M = UV = (-U)(-V)
 - More generic for non-convex models: neural networks, mixture models

Data data everywhere, but

• Not all data points are equally informative

Data data everywhere, but

- Not all data points are equally informative
- Small number of support vectors specify SVM solution

- Active learning identifies informative examples
- Similar idea as support vectors, works more generally
- Efficient algorithms (and heuristics) for typical hypothesis classes

- Active learning identifies informative examples
- Similar idea as support vectors, works more generally
- Efficient algorithms (and heuristics) for typical hypothesis classes
- Examples
 - Query x with probability g(|h(x)|)
 - Query x based on similarity with previously queried samples

Para-active learning

- Sift for informative examples in parallel
- Update model on selected examples

Synchronous para-active learning

- Initial hypothesis h_1 , batch size B, active sifter A, passive updater \mathcal{P}
- For rounds $t = 1, 2, \ldots, T$
 - For all nodes $i = 1, 2, \ldots, k$ in parallel
 - Local dataset of size B/k
 - \mathcal{A} creates subsampled dataset

Synchronous para-active learning

- Initial hypothesis h_1 , batch size B, active sifter \mathcal{A} , passive updater \mathcal{P}
- For rounds $t = 1, 2, \ldots, T$
 - For all nodes $i = 1, 2, \ldots, k$ in parallel
 - Local dataset of size B/k
 - \mathcal{A} creates subsampled dataset
 - Collect subsampled datasets from each node
 - Update h_{t+1} by running passive updater \mathcal{P} on the collected data

- Initial hypothesis h_1 , batch size B, active sifter \mathcal{A} , passive updater \mathcal{P}
- For rounds $t = 1, 2, \ldots, T$
 - For all nodes $i = 1, 2, \ldots, k$ in parallel
 - Local dataset of size B/k
 - $\bullet~\mathcal{A}$ creates subsampled dataset
 - Collect subsampled datasets from each node
 - Update h_{t+1} by running passive updater \mathcal{P} on the collected data
- Example
 - h_t is kernel SVM on examples selected so far
 - \mathcal{A} samples based on $g(|h_t(x)|)$ at round t
 - \mathcal{P} computes h_{t+1} from h_t using online kernel SVM

Asynchronous para-active learning

- Initial hypothesis h_1 , batch size B, active sifter A, passive updater \mathcal{P}
- Initialize $Q_{S}^{i} = \emptyset$ for each node *i*
- For all nodes $i = 1, 2, \ldots, k$ in parallel
 - While Q_5^i is not empty
 - Fetch a selected example from Q_{S}^{i}
 - Update the hypothesis using ${\mathcal P}$ on this example

Asynchronous para-active learning

- Initial hypothesis h_1 , batch size B, active sifter \mathcal{A} , passive updater \mathcal{P}
- Initialize $Q_{S}^{i} = \emptyset$ for each node *i*
- For all nodes $i = 1, 2, \ldots, k$ in parallel
 - While Q_5^i is not empty
 - Fetch a selected example from Q_S^i
 - $\bullet~$ Update the hypothesis using ${\cal P}$ on this example
 - If Q_F^i is non-empty
 - Fetch a candidate example from Q_F^i
 - $\bullet~$ Use ${\cal A}$ to decide whether the example is selected or not
 - If selected, broadcast example for addition to Q_S^j for all j

Computational complexity

- Training time for n examples: T(n)
- Evaluation time per example after n examples: S(n)
- Number of subsampled examples out of n: $\phi(n)$
- Number of nodes: k

	Seq. Passive	Seq. Active	Para-active	
Operations	<i>T</i> (<i>n</i>)			
Time	T(n)			
Broadcasts	0			
$\xrightarrow{T(n)} \mathcal{P} \longrightarrow Model$				

Computational complexity

- Training time for n examples: T(n)
- Evaluation time per example after n examples: S(n)
- Number of subsampled examples out of n: $\phi(n)$
- Number of nodes: k

Computational complexity

- Training time for n examples: T(n)
- Evaluation time per example after n examples: S(n)
- Number of subsampled examples out of n: $\phi(n)$
- Number of nodes: k

- Training time for n examples: T(n)
- Evaluation time per example after n examples: S(n)
- Number of subsampled examples out of *n*: $\phi(n)$
- Number of nodes: k

	Seq. Passive	Seq. Active	Para-active		
Operations	<i>T</i> (<i>n</i>)	$nS(\phi(n)) + T(\phi(n))$	$nS(\phi(n)) + kT(\phi(n))$		
Time	T(n)	$nS(\phi(n)) + T(\phi(n))$	$nS(\phi(n))/k + T(\phi(n))$		
Broadcasts	0	0	$\phi(n)$		
Example 1, kernel SVM:					

•
$$T(n) \sim \mathcal{O}(n^2), \ S(n) \sim \mathcal{O}(n)$$

• Often $\phi(n) \ll n$

•
$$T(n) \gg nS(\phi(n)) \gg nS(\phi(n))/k$$

- Training time for n examples: T(n)
- Evaluation time per example after n examples: S(n)
- Number of subsampled examples out of n: $\phi(n)$
- Number of nodes: k

	Seq. Passive	Seq. Active	Para-active		
Operations	T(n)	$nS(\phi(n)) + T(\phi(n))$	$nS(\phi(n)) + kT(\phi(n))$		
Time	T(n)	$nS(\phi(n)) + T(\phi(n))$	$nS(\phi(n))/k + T(\phi(n))$		
Broadcasts	0	0	$\phi(n)$		
Example 2, neural nets with backprop:					

•
$$T(n) \sim \mathcal{O}(nd), \ S(n) \sim \mathcal{O}(d)$$

• Often $\phi(n) \ll n$

•
$$T(n) \approx nS(\phi(n)) \gg nS(\phi(n))/k$$

- Communication complexity is query complexity of active learning
- Typically assume examples are queried immediately in active learning
- We have a delay before the model is updated
- Theorem: Delay of au leads to query complexity at most $au + \phi(n- au)$

- Large version of MNIST (8.1M examples) with elastic deformations of original images
- Two learning algorithms:
 - Simulation for kernel SVM: RBF kernel, LASVM algorithm
 - Parallel neural nets: 1-hidden layer with 100 nodes
- Active learning: select a point x with probability based on |f(x)| for fixed subsampling rate

- Simulated synchronous para-active learning
- Fixed batch size B, split into portions of size B/k
- Sift each portion in turn, take largest sifting time
- Update model with new examples, take training time
- Used as an estimate of parallel computation time

SVM simulation runtimes

- Classifying {3,1} vs {5,7}
- Running time vs test error

SVM simulated speedup over passive

- Classifying $\{3,1\}$ vs $\{5,7\}$
- Speedup over sequential passive

SVM simulated speedup over delayed active

- Classifying $\{3,1\}$ vs $\{5,7\}$
- Speedup over delayed active

Parallel neural net results

- Classifying 3 vs 5
- Running time vs test error

- General strategy for distributed learning
- Applicable to diverse hypothesis classes and algorithms
- Particularly appealing for non-parametric and/or non-convex models
- Theoretically justified, empirically promising

- General strategy for distributed learning
- Applicable to diverse hypothesis classes and algorithms
- Particularly appealing for non-parametric and/or non-convex models
- Theoretically justified, empirically promising
- Real distributed implementation for kernel SVMs
- Other algorithms and datasets
- Better subsampling strategies