Cost Models for Locality and Parallelism

Harsha Vardhan Simhadri Carnegie Mellon → Lawrence Berkeley Lab

For scalability...

Algorithms need

 Locality

 minimize distance and amount of data moved

Parallelism

maximize number of simultaneous operations

Formal definition in several contexts.

This Talk

Cost Models for

 Distributed Memory, Shared Memory, Hierarchies

- Lower Bounds, Upper Bounds (Algorithms)
- Machine-Centric vs Program-Centric Models

Parallel Program = Directed Acyclic Graph

Communication cost

Cost Model for Time

Assume interconnect has same cost between all nodes

Cost of a DAG for on a schedule on **p** machines
partitioning {X_i},
and mapping **f** : partitions
$$\rightarrow$$
 procs
$$T = \max_{p} \left\{ \sum_{f(X)=p} \mathbb{R} \# \text{instrs} + \begin{subarray}{c} \# \text{words} + \begin{subarray}{c} \# \text{msgs} \\ \# \text{instrs} + \begin{subarray}{c} \# \text{words} + \begin{subarray}{c} \# \text{msgs} \\ \# \text{instrs} + \begin{subarray}{c} \# \text{words} + \begin{subarray}{c} \# \text{msgs} \\ \# \text{instrs} + \begin{subarray}{c} \# \text{words} + \begin{subarray}{c} \# \text{msgs} \\ \# \text{instrs} + \begin{subarray}{c} \# \text{words} + \begin{subarray}{c} \# \text{msgs} \\ \# \text{instra} \\ \# \text{words} + \begin{subarray}{c} \# \text{msgs} \\ \# \text{msggs} \\ \# \text{msgs} \\$$

Parallelizability

Parallelizability

Max #procs where T stops improving (for best partitioning and schedule)

Depends on length of critical path in **Partitioned DAG (effective depth)**

Extensions...

Relatable to some form of graph partitioning

Upper Bounds (Algorithms)

• Upper Bound = Algorithm DAG

+ Schedule (partitioning, mapping)

- Dense Matrix Multiplication (n = M*p)
 - O(n^{1.5}) Instr
 - $O(n^{1.5}/M^{0.5})$ Words
 - O(n^{1.5}/M^{1.5}) Messages
 - $T = n^{1.5} * (\mathbb{R} + /M^{0.5} + ^{\circ}/M^{1.5}) / p$
- Sorting (n = M*p)
 - O(n log n) Instr
 - O(n log n/log M) Words
 - O(n log n/M log M) Messages
 - $T = n \log n f(\mathbb{R} + /\log M + /M \log M) / p$

Lower Bounds

Minimum #Words

Lower Bounds

Minimum #Words

Partition such that in-edges and out-edges < M/2 for each partition

What is the partitioning with fewest transfers?

Matrix Mul.: $\Omega(n^{1.5}/M^{0.5})$ Why? O(M^{1.5}) instr. with M data

Sorting Ω(n log n/log M) Why? O(M log M) info. with M data

So far

- Program = DAG
- Executions = partitions and mapping of DAG
- A cost model for distributed memory
- Lower bounds / Upper bounds

BUT..

Problem: Unwieldy Model

- Cost model is machine-centric
 Cost depends on DAG, Machine & Schedule
- What is the best schedule (partition + mapping) for a DAG?
- If cost is tied to machine and schedule, how to study problem complexity?
- Need a cleaner and more portable cost model

Separate Cost Model & Schedule

Program-Centric Cost Models

- Choose portable program description dynamic Directed Acyclic Graph (DAG)
- Analyze DAG with out reference to processors, caches, connections...
- Examples of program-centric metrics
 - Number of operations (Work, W)
 - Length of Critical Path (Depth, D)
 - Data reuse patterns (Locality)

Do program-centric metrics say anything about performance of realistic machine models?

Realistic Machine Model: Tree of caches

- Models hierarchical locality
- Models resource sharing
- Good approximation for other topologies

Program-Centric Cost Model for Sequential Algorithms

Cache Oblivious Framework [FLPR'99]

Program-Centric Metrics for Parallel Programs

For nested parallel programs on shared memories.

- Parallel Cache Complexity Framework [BFGS'11]
 - Parallel Cache Complexity: Q*
 For locality
 - Effective Cache Complexity: Q*_®
 - For locality + load balance cost

Leads to definition of parallelizability

Nested Parallel DAGs

a.k.a. Fork-Join Parallel DAGs a.k.a Series-Parallel DAGs Recursive definition :

- A task consists of alternating strands and parallel blocks.
- A strand is a sequential computation (chain of instructions).
- A parallel block is a parallel composition of tasks.

No data dependencies between Parallel subtasks

Locality: Parallel Cache Complexity

- Decompose task into maximal subtasks that fit in space M and glue operations.
 - Decomposition unique and easy to find for nested-parallel DAGs
- Parallel Cache Complexity:

Q*(M,B) =

- Σ Space for M-fitting subtasks
- + Σ Cache miss for every access

in glue

Scheduling on Tree of Caches

 Annotate tasks with size, schedule based on size

Scheduling: Cost Model to Machines

Nested wavefronts based on hierarchy

Scheduler specifies Size, number and location of wavefronts based on working set size of tasks

Schedule preserves locality

Communication Costs:
 Cache misses at level-i <= Q*(M_i, B)

Time?

- # Processors assigned to a task tied to its space
- Schedulers are good if computation is balanced:
 Work, Parallelism related to space

Parallelizability of algorithm

If algorithm has $O(n^w)$ work, $O(n^d)$ depth, imbalanced "only in parts" $Q^*_{\mathbb{R}} = O(Q^*)$ if and only if $\mathbb{R} < w$ -d

Mapping Cost model to Communication Cost, Time & Space [S.-Thesis'13]

The scheduler preserves locality (matches $Q^*_{\mathbb{R}}$) and is good at load balancing

Communication Cost: Q*(M_i,B)

For most "reasonable" algorithms, the asymptotic running time is $\sum_{i=1}^{h} Q^*(M_i, B) \times C_i$

Also space Bounds

Low-Depth Cache-Oblivious Algorithms [BGS'10]

Low depth + good Parallel Cache Complexity Q*

good Effective Cache Complexity $Q*_{\mathbb{R}}$

Problem	Parallelizability	Parallel Cache Complexity
Prefix Sums	1	0(n/B)
Merge	1	0(n/B)
Sort (deterministic)	1	O(n/B log _M n)
Sort (randomized; bounds are w.h.p.)	1	O(n/B log _M n)
Sparse Matrix X Vector (m entries, n ^k separators)	<1	O(m/B + n/M ^{1-k})
Matrix transpose (n X m size)	1	O(nm/B)

Parallel overdesign (*polylog* depth, $\mathbb{R} \rightarrow 1$) improves performance

Algorithms scale really well in practice, even on tree of caches!

Low-Depth Cache-Oblivious Algorithms [BGS'10]

Graph Algorithms

Problem	Parallelizability	Parallel Cache Complexity
List Ranking	1	O(Q _{sort} (n))
Euler Tour on Trees	1	O(Q _{sort} (n))
Tree Contraction	1	O(Q _{sort} (n))
Least Common Ancestors (k queries)	1	$O((k/n)Q_{sort}(n))$
Connected Components	1	$O(Q_{sort}(E) \log(V /M^{1/2}))$
Minimum Spanning Forest	1	$O(Q_{sort}(E) \log(V /M^{1/2}))$

Combinatorial

Problem	Parallelizability	Parallel Cache Complexity
Set Cover (1+ε)-log n approx [BST'12]	1	O(Q _{sort} (n))

Summary

Important to quantify locality and parallelism.

- Program-centric models are more portable
 - Scheduler design a separate problem
- Parallel Cache Complexity Framework [S.-thesis'13]
 - Translatable to performance on realistic machine models
 - Optimal algorithms can be designed
 - Theory works well in practice
- Locality and parallelism design translates across models

Questions?