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  For scalability...   

Algorithms need  
•  Locality 

 minimize distance and 
 amount of data moved 

•  Parallelism 
 maximize number of 
 simultaneous operations 
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Formal definition in several contexts. 
Magnetic Disks 
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VLSI Circuits, Systolic Arrays 
[KL’78, Thompson’80, Leighton’84,…] 

Memory Hierarchies 
[AV’88, AACS’87, FLPR’99,…] 
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Distributed Memory 
Machines 
[BSP,LogP,LogGP,MRC,…] 

Shared Memory Machines 
[ACF’93,BFJLR’96,ABB’02,BGM’98, 
 AGS’08,BFGS’11,…] 



This Talk 

•  Cost Models for 
– Distributed Memory, Shared Memory, 

Hierarchies 

•  Lower Bounds, Upper Bounds (Algorithms) 
•  Machine-Centric vs Program-Centric Models 



Parallel Program = Directed Acyclic Graph 

Execution = 
 

Set of vertex partitions 
s.t. partitions “fit” in M memory, 

contiguous in DAG 
(a<b<c,  a,c2X (part.) ) b2X) 

 +  
mapping from partitions to 

processors 
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Communication cost 

Data moved 
 

Amount = #edges across partition 
            (#words, #messages) 

 
Distance = length the edge travel 

     in the interconnect 
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Cost Model for Locality 
(assume uniform internode cost) 

 
¯#words + °#msgs 



Cost Model for Time 

Cost of a DAG for on a schedule on p machines 
 partitioning {Xi}, 
 and mapping f : partitionsàprocs  

T = maxp {∑f(X)=p®#instrs + ¯#words +°#msgs} 

Assume interconnect has same cost between all nodes 



Parallelizability 

Parallelizability  
 

Max #procs where T stops improving 
 (for best partitioning and schedule) 

 
Depends on length of critical path in  

Partitioned DAG (effective depth) 
 

Supernode Data 
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Extensions… 
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Relatable to some form of graph partitioning 



Upper Bounds (Algorithms) 
•  Upper Bound = Algorithm DAG 

      + Schedule (partitioning, mapping) 
•  Dense Matrix Multiplication (n = M*p)  

•  O(n1.5) Instr 
•  O(n1.5/M0.5) Words 
•  O(n1.5/M1.5) Messages 
•   T = n1.5 * (® + ¯/M0.5 + °/M1.5) / p 

•  Sorting (n = M*p) 
•  O(n log n) Instr 
•  O(n log n/log M) Words 
•  O(n log n/M log M) Messages 
•   T = n log n £ (®  + ¯/log M  + °/M log M) / p 

         
 



Lower Bounds 

Instruction Data 
Dependency 

Minimum #Words 
 



Lower Bounds 

Instruction Data 
Dependency 

Minimum #Words 
 

Partition such that 
 in-edges and out-edges < M/2 

for each partition 
 

What is the partitioning  
with fewest transfers? 

 
Matrix Mul.:  
Ω(n1.5/M0.5)   

Why? O(M1.5) instr. with M data 
 

Sorting 
Ω(n log n/log M)   

Why? O(M log M) info. with M data 
 

# In-edges < M/2 

# Out-edges < M/2 



So far 

•  Program = DAG 
•  Executions = partitions and mapping of DAG 
•  A cost model for distributed memory 
•  Lower bounds / Upper bounds 

BUT.. 



Problem: Unwieldy Model 

•  Cost model is machine-centric 
– Cost depends on DAG, Machine & Schedule 

•  What is the best schedule (partition + mapping) 
for a DAG? 

•  If cost is tied to machine and schedule, 
 how to study problem complexity? 

•  Need a cleaner and more portable cost model 



Separate Cost Model & Schedule 

Algorithm designer restructures 
DAG and optimizes for a general 
cost model. 

Scheduler 
Machine  

Runtime designer translates metrics 
to performance: Time, Space, 
Scalability, Communication Costs. 

Scheduler 2 

Machine 
2 



Program-Centric Cost Models 
}  Choose portable program description - 

dynamic Directed Acyclic Graph (DAG) 

}  Analyze DAG with out reference to 
processors, caches, connections…  

}  Examples of program-centric metrics 
}  Number of operations (Work, W) 
}  Length of Critical Path (Depth, D) 
}  Data reuse patterns (Locality) 
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Do program-centric metrics say anything about 
performance of realistic machine models? 



Realistic Machine Model: Tree of caches 
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# processors = p 

•  Models hierarchical locality 
•  Models resource sharing 
•  Good approximation for other 

topologies 
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Program-Centric Cost Model for Sequential Algorithms 

Sequential program 
Memory (infinite size) 

P 

B B B B … B B 

Cache (M,B) 
M: total size 
B: Block size 
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Cache Oblivious Framework [FLPR’99] 

Locality: Cache complexity 
Q1 (M,B) = #Cache Misses 

(don’t use M,B in program) 
 
 

Ci: 
Level-i  
Cache miss 
cost 

Running time = 
 ∑i Q1(Mi,B) X Ci  
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Scan: Q1 (M,B) =  O(n/B) 
Recursive MatMul:Q1 (M,B) =  O(n1.5/BM0.5)  
Distribution Sort: Q1 (M,B) = O(n/B logMn)  

 



Program-Centric Metrics for Parallel Programs 
For nested parallel programs on shared memories. 

}  Parallel Cache Complexity Framework [BFGS’11] 
}  Parallel Cache Complexity: Q* 

 For locality 
}  Effective Cache Complexity: Q*® 

 For locality + load balance cost 
 Leads to definition of parallelizability 
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Efficiently mapped 



Nested Parallel DAGs 
a.k.a. Fork-Join Parallel DAGs 
a.k.a Series-Parallel DAGs 
Recursive definition : 
}  A task consists of alternating 

strands and parallel blocks. 
}  A strand is a sequential 

computation (chain of 
instructions).  

}  A parallel block is a parallel 
composition of tasks. 

Task 

Parallel 
block 

Strand 

No data dependencies between  
Parallel subtasks 20 



}  Decompose task into maximal 
subtasks that fit in space M and glue 
operations. 
}  Decomposition unique and easy to find 

for nested-parallel DAGs 
}  Parallel Cache Complexity: 
   Q*(M,B) =  
    Σ Space for M-fitting subtasks 
 + Σ Cache miss for every access 

 in glue 

M 

Locality: Parallel Cache Complexity  

M 
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Scheduling on Tree of Caches 
}  Annotate tasks with size, schedule 

based on size 

Li:  Mi, B  

Mi-1,B 

Size(T) ~ Mi  : Unroll until subtasks have size ~Mi-1 

T pinned to Level-i  

Schedule subtasks 
on subclusters 
(parallel depth-first) 
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Scheduling: Cost Model to Machines  

Nested wavefronts based on hierarchy 
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Scheduler specifies Size, number and location of 
wavefronts based on working set size of tasks 



Schedule preserves locality 
}  Communication Costs: 

Cache misses at level-i  <= Q*(Mi, B) 

24 

}  Time?  
}  # Processors assigned to a task tied to its space 
}  Schedulers are good if computation is balanced: 
 Work, Parallelism related to space 



Effective Cache Complexity [BFGS’11] 
Extend Q* to include cost of “imbalance” 

} Long strands (Amdahl’s law) 

 
} Parallelism-Space Imbalance  
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Width = Estimated Parallelism = f (space) 

Effective 
Depth = 
 
Work 
Parallelism 

Given n® processors (input size: n), 
  Q*®(n; M,B) = Q*(n; M,B) + the extra cost of imbalance 

Definition based solely on Q*  and the 
composition rules of nested-paralel DAGs 



Parallelizability of algorithm 
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Ltn→∞

Q*α (n; M,B) 
Q*(n; M,B)

 
α 

Parallelizability of an algorithm, 
 
Samplesort: 1;     Recursive MatMul: 1.5 

Effective cache complexity and parallelizability 
subsume all previous metrics: W,D,Q,…. 

If algorithm has O(nw) work, O(nd) depth, imbalanced “only in parts” 
   Q*®= O(Q*) if and only if ®<w-d 

1 



Mapping Cost model to 
Communication Cost, Time & Space [S.-Thesis’13] 

}  Communication Cost: Q*(Mi,B) 
}  Can execute a task t on a machine with ¯ parallelism (¯<®) 

on h level tree of caches with running time at most 

}  Also space Bounds 

  
 

For most “reasonable” algorithms, the asymptotic running time is 
 
 

 
  

Q*(Mi ,B)×Ci
i=1

h

∑
p
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The scheduler preserves locality (matches Q*®) and 
 is good at load balancing 



Low-Depth Cache-Oblivious Algorithms [BGS’10] 
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Problem Parallelizability Parallel Cache Complexity 

Prefix Sums 1 O(n/B) 

Merge 1 O(n/B) 

Sort (deterministic)  1 O(n/B logM n) 

Sort (randomized; bounds are w.h.p.) 1 O(n/B logM n) 

Sparse Matrix  X Vector (m entries, nk separators)  <1 O(m/B + n/M1-k) 

Matrix transpose (n X m size) 1 O(nm/B) 

Parallel overdesign (polylog depth, ®è1 ) improves performance 

Algorithms scale really well in practice, even on tree of caches! 

Low depth + good Parallel Cache Complexity Q* 
 = 

 good Effective Cache Complexity Q*® 



Low-Depth Cache-Oblivious Algorithms [BGS’10] 
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Graph Algorithms 
Problem Parallelizability Parallel Cache Complexity 

List Ranking 1 O(Qsort (n)) 
Euler Tour on Trees 1 O(Qsort (n)) 
Tree Contraction 1 O(Qsort (n)) 
Least Common Ancestors (k queries) 1 O((k/n)Qsort (n)) 
Connected Components 1 O(Qsort(|E|) log(|V|/M1/2)) 
Minimum Spanning Forest 1 O(Qsort(|E|) log(|V|/M1/2))  

Problem Parallelizability Parallel Cache Complexity 

Set Cover (1+ε)-log n approx [BST’12] 1 O(Qsort (n)) 

Combinatorial 



Summary 
}  Important to quantify locality and parallelism. 

}  Program-centric models are more portable 
}  Scheduler design a separate problem 

}  Parallel Cache Complexity Framework [S.-thesis’13] 
}  Translatable to performance on realistic machine models 
}  Optimal algorithms can be designed 
}  Theory works well in practice 

}  Locality and parallelism design translates across models 



Questions? 
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