
Cost Models for
Locality and Parallelism

Harsha Vardhan Simhadri
Carnegie Mellon à Lawrence Berkeley Lab

 For scalability...

Algorithms need
•  Locality

 minimize distance and
 amount of data moved

•  Parallelism
 maximize number of
 simultaneous operations

~ 10 GB/s X 32
 (Intel Xeon 7560 four socket)

160
cycles

4
cycles

9
cycles

60
cycles

P P

~ 10 GB/s ??

P

L2

L1

L3

RAM

Disk/Interconnect

~100 GB/s

Formal definition in several contexts.
Magnetic Disks

P

L2

L1

RAM

RAM

L1

PP

L2

L1 L1

PP

L2

L1

Level (h–1) Level (h–1)

VLSI Circuits, Systolic Arrays
[KL’78, Thompson’80, Leighton’84,…]

Memory Hierarchies
[AV’88, AACS’87, FLPR’99,…]

P

M

P

M

P

M

Distributed Memory
Machines
[BSP,LogP,LogGP,MRC,…]

Shared Memory Machines
[ACF’93,BFJLR’96,ABB’02,BGM’98,
 AGS’08,BFGS’11,…]

This Talk

•  Cost Models for
– Distributed Memory, Shared Memory,

Hierarchies

•  Lower Bounds, Upper Bounds (Algorithms)
•  Machine-Centric vs Program-Centric Models

Parallel Program = Directed Acyclic Graph

Execution =

Set of vertex partitions
s.t. partitions “fit” in M memory,

contiguous in DAG
(a<b<c, a,c2X (part.)) b2X)

 +
mapping from partitions to

processors
Instruction Data

Dependency

P

M

P

M

P

M

Interconnect

Communication cost

Data moved

Amount = #edges across partition
 (#words, #messages)

Distance = length the edge travel

 in the interconnect

Instruction Data
Dependency

P

M

P

M

P

M

Interconnect

Cost Model for Locality
(assume uniform internode cost)

¯#words + °#msgs

Cost Model for Time

Cost of a DAG for on a schedule on p machines
 partitioning {Xi},
 and mapping f : partitionsàprocs

T = maxp {∑f(X)=p®#instrs + ¯#words +°#msgs}

Assume interconnect has same cost between all nodes

Parallelizability

Parallelizability

Max #procs where T stops improving
 (for best partitioning and schedule)

Depends on length of critical path in

Partitioned DAG (effective depth)

Supernode Data
Dependency

P

M

P

M

P

M

Interconnect

Extensions…

P

M

P

M

P

M

Interconnect

P

M

P

M

P

M
Interconnect Interconnect

P

M

PP

M

PP

M

P

Different
Interconnect
topologies

Relatable to some form of graph partitioning

Upper Bounds (Algorithms)
•  Upper Bound = Algorithm DAG

 + Schedule (partitioning, mapping)
•  Dense Matrix Multiplication (n = M*p)

•  O(n1.5) Instr
•  O(n1.5/M0.5) Words
•  O(n1.5/M1.5) Messages
•  T = n1.5 * (® + ¯/M0.5 + °/M1.5) / p

•  Sorting (n = M*p)
•  O(n log n) Instr
•  O(n log n/log M) Words
•  O(n log n/M log M) Messages
•  T = n log n £ (® + ¯/log M + °/M log M) / p

Lower Bounds

Instruction Data
Dependency

Minimum #Words

Lower Bounds

Instruction Data
Dependency

Minimum #Words

Partition such that
 in-edges and out-edges < M/2

for each partition

What is the partitioning
with fewest transfers?

Matrix Mul.:
Ω(n1.5/M0.5)

Why? O(M1.5) instr. with M data

Sorting
Ω(n log n/log M)

Why? O(M log M) info. with M data

In-edges < M/2

Out-edges < M/2

So far

•  Program = DAG
•  Executions = partitions and mapping of DAG
•  A cost model for distributed memory
•  Lower bounds / Upper bounds

BUT..

Problem: Unwieldy Model

•  Cost model is machine-centric
– Cost depends on DAG, Machine & Schedule

•  What is the best schedule (partition + mapping)
for a DAG?

•  If cost is tied to machine and schedule,
 how to study problem complexity?

•  Need a cleaner and more portable cost model

Separate Cost Model & Schedule

Algorithm designer restructures
DAG and optimizes for a general
cost model.

Scheduler
Machine

Runtime designer translates metrics
to performance: Time, Space,
Scalability, Communication Costs.

Scheduler 2

Machine
2

Program-Centric Cost Models
}  Choose portable program description -

dynamic Directed Acyclic Graph (DAG)

}  Analyze DAG with out reference to
processors, caches, connections…

}  Examples of program-centric metrics
}  Number of operations (Work, W)
}  Length of Critical Path (Depth, D)
}  Data reuse patterns (Locality)

16

Do program-centric metrics say anything about
performance of realistic machine models?

Realistic Machine Model: Tree of caches

17

processors = p

•  Models hierarchical locality
•  Models resource sharing
•  Good approximation for other

topologies

Level h

L1

PP

L2

L1 L1

PP

L2

L1

Level (h–1) Level (h–1)

Program-Centric Cost Model for Sequential Algorithms

Sequential program
Memory (infinite size)

P

B B B B … B B

Cache (M,B)
M: total size
B: Block size

18

Cache Oblivious Framework [FLPR’99]

Locality: Cache complexity
Q1 (M,B) = #Cache Misses

(don’t use M,B in program)

Ci:
Level-i
Cache miss
cost

Running time =
 ∑i Q1(Mi,B) X Ci

P

L2

L1

L3

RAM

Scan: Q1 (M,B) = O(n/B)
Recursive MatMul:Q1 (M,B) = O(n1.5/BM0.5)
Distribution Sort: Q1 (M,B) = O(n/B logMn)

Program-Centric Metrics for Parallel Programs
For nested parallel programs on shared memories.

}  Parallel Cache Complexity Framework [BFGS’11]
}  Parallel Cache Complexity: Q*

 For locality
}  Effective Cache Complexity: Q*®

 For locality + load balance cost
 Leads to definition of parallelizability

RAM: Level h

L1

P P

L2

L1 L1

P P

L2

L1

L(h–1) L(h–1)

Efficiently mapped

Nested Parallel DAGs
a.k.a. Fork-Join Parallel DAGs
a.k.a Series-Parallel DAGs
Recursive definition :
}  A task consists of alternating

strands and parallel blocks.
}  A strand is a sequential

computation (chain of
instructions).

}  A parallel block is a parallel
composition of tasks.

Task

Parallel
block

Strand

No data dependencies between
Parallel subtasks 20

}  Decompose task into maximal
subtasks that fit in space M and glue
operations.
}  Decomposition unique and easy to find

for nested-parallel DAGs
}  Parallel Cache Complexity:
 Q*(M,B) =
 Σ Space for M-fitting subtasks
 + Σ Cache miss for every access

 in glue

M

Locality: Parallel Cache Complexity

M

21

M

Scheduling on Tree of Caches
}  Annotate tasks with size, schedule

based on size

Li: Mi, B

Mi-1,B

Size(T) ~ Mi : Unroll until subtasks have size ~Mi-1

T pinned to Level-i

Schedule subtasks
on subclusters
(parallel depth-first)

22

Scheduling: Cost Model to Machines

Nested wavefronts based on hierarchy

Level h

L1

PP

L2

L1 L1

PP

L2

L1

Level (h–1) Level (h–1)

L2
L1

Scheduler specifies Size, number and location of
wavefronts based on working set size of tasks

Schedule preserves locality
}  Communication Costs:

Cache misses at level-i <= Q*(Mi, B)

24

}  Time?
}  # Processors assigned to a task tied to its space
}  Schedulers are good if computation is balanced:
 Work, Parallelism related to space

Effective Cache Complexity [BFGS’11]
Extend Q* to include cost of “imbalance”

} Long strands (Amdahl’s law)

} Parallelism-Space Imbalance

25

Width = Estimated Parallelism = f (space)

Effective
Depth =

Work
Parallelism

Given n® processors (input size: n),
 Q*®(n; M,B) = Q*(n; M,B) + the extra cost of imbalance

Definition based solely on Q* and the
composition rules of nested-paralel DAGs

Parallelizability of algorithm

26

Ltn→∞

Q*α (n; M,B)
Q*(n; M,B)

α

Parallelizability of an algorithm,

Samplesort: 1; Recursive MatMul: 1.5

Effective cache complexity and parallelizability
subsume all previous metrics: W,D,Q,….

If algorithm has O(nw) work, O(nd) depth, imbalanced “only in parts”
 Q*®= O(Q*) if and only if ®<w-d

1

Mapping Cost model to
Communication Cost, Time & Space [S.-Thesis’13]

}  Communication Cost: Q*(Mi,B)
}  Can execute a task t on a machine with ¯ parallelism (¯<®)

on h level tree of caches with running time at most

}  Also space Bounds

For most “reasonable” algorithms, the asymptotic running time is

Q*(Mi ,B)×Ci
i=1

h

∑
p

27

The scheduler preserves locality (matches Q*®) and
 is good at load balancing

Low-Depth Cache-Oblivious Algorithms [BGS’10]

28

Problem Parallelizability Parallel Cache Complexity

Prefix Sums 1 O(n/B)

Merge 1 O(n/B)

Sort (deterministic) 1 O(n/B logM n)

Sort (randomized; bounds are w.h.p.) 1 O(n/B logM n)

Sparse Matrix X Vector (m entries, nk separators) <1 O(m/B + n/M1-k)

Matrix transpose (n X m size) 1 O(nm/B)

Parallel overdesign (polylog depth, ®è1) improves performance

Algorithms scale really well in practice, even on tree of caches!

Low depth + good Parallel Cache Complexity Q*
 =

 good Effective Cache Complexity Q*®

Low-Depth Cache-Oblivious Algorithms [BGS’10]

29

Graph Algorithms
Problem Parallelizability Parallel Cache Complexity

List Ranking 1 O(Qsort (n))
Euler Tour on Trees 1 O(Qsort (n))
Tree Contraction 1 O(Qsort (n))
Least Common Ancestors (k queries) 1 O((k/n)Qsort (n))
Connected Components 1 O(Qsort(|E|) log(|V|/M1/2))
Minimum Spanning Forest 1 O(Qsort(|E|) log(|V|/M1/2))

Problem Parallelizability Parallel Cache Complexity

Set Cover (1+ε)-log n approx [BST’12] 1 O(Qsort (n))

Combinatorial

Summary
}  Important to quantify locality and parallelism.

}  Program-centric models are more portable
}  Scheduler design a separate problem

}  Parallel Cache Complexity Framework [S.-thesis’13]
}  Translatable to performance on realistic machine models
}  Optimal algorithms can be designed
}  Theory works well in practice

}  Locality and parallelism design translates across models

Questions?

31

