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Outline of the talk

Find a natural definition of influences for functions f(W1, . . . ,Wn) where
Wi are i.i.d. standard Gaussians.

Gaussian analogues of many fundamental results of discrete harmonic
analysis.

Kahn-Kalai-Linial (KKL) bound,

Threshold phenomenon for monotone events,

Benjamini-Kalai-Schramm (BKS) noise sensitivity theorem, etc.

Extensions to other probability measures.
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Influences of boolean functions

f ∶ {−1,1}n → {0,1} with product Bernoulli measure on {0,1}n. The
influence of j-th coordinate on f

Ij(f) ∶= P(f(x) ≠ f(τj(x))),

where τj(x) = (x1, . . . ,−xj , . . . , xn).

Examples.
Majority: f(x) = 1{∑nj=1

xi>n/2}. Ij(f) ≍ 1/
√
n for all j.

Dictator: f(x) = x1. I1(f) = 1 and Ij(f) = 0 for j > 1.

Applications in phase transitions, percolation, hardness of approximation,
statistical learning, social choice theory, extremal combinatorics, metric
embeddings, . . .
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Why useful?

Geometric/ Isoperimetric meaning: For set A ⊆ {−1,1}n,

n

∑
j=1

Ij(A) = 1

2(n−1)
#{ edges between A and Ac}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Edge boundary of A

.

KKL’s lower bound on max influence

Connection to Russo’s formula

⋯

⋯
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Kahn - Kalai- Linial (KKL) theorem

f ∶ {−1,1}n → {0,1}

Efron-Stein bound:

Var(f) ≤
n

∑
j=1

Ij(f)

⇒ max
1≤j≤n

Ij(f) ≥
Var(f)
n

Nontrivial bound by KKL (’88):

max
1≤j≤n

Ij(f) ≥ Var(f).Ω( logn

n
)

(also holds for product Ber(p) measure)
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Russo’s formula

Let µp denote the Ber(p).

Clearly if A ⊆ {−1,1}n is increasing then p↦ µ⊗np (A) is monotone
increasing.

Russo’s Lemma: A ⊆ {−1,1}n increasing,

dµ⊗np (A)
dp

=
n

∑
j=1

Ipj (A).
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An application: threshold phenomenon for monotone sets

Theorem (Threshold phenomenon, Friedgut & Kalai ’96)

Let A ⊆ {−1,1}n monotone transitive. Then

µ⊗np (A) ≥ ε ⇒ µ⊗nq (A) ≥ 1 − ε

where q = p + c log(1/2ε)(logn)−1.

Erdös-Rényi random graph: Take a complete graph on n vertices. Let
N = (n

2
). Each of N edges is present independently with probability p.

Graph property: events that are closed under relabeling of the vertices.

A = nontrivial monotone graph property ⊂ {0,1}N .
e.g. connected, triangle-free, hamiltonian, non-planar, ...

Bourgain & Kalai ’97: The threshold interval for monotone graph
properties is ∼ (logn)−2+o(1).
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Influences in continuous probability space

How can we define influences for f ∶ (Rn, µ⊗n)→ {0,1}?
Several existing definitions.

BKKKL influence (Bourgain-Kahn-Kalai-Katznelson-Linial ’92)

P{x ∈ Rn ∶ f is not constant on the fiber (x1, . . . , xi−1, ⋅, xi+1, . . . , xn)}.

KKL bound still holds.

Lacks geometric meaning.

‘Variance’ influence of f (Hatami’09, Mossel-O’Donnell-Oleszkiewicz ’09)

EVari(f ∣x ∖ {xi}).

Reasonable

No KKL type bound.

On [0,1]n, f(x) = 1{maxxi≤1−n
−1}, E[f] = e−1, Ij(f) ≍ n

−1
∀j.

Arnab Sen Influences in Gaussian Space



Our definition : Geometric influence

The geometric influence of the j-th coordinate on A ⊆ (Rn, ν⊗n) is

IGj (A) ∶= ∫ ν+(Axj )ν⊗n(dx) ∈ [0,+∞]

where
Axj ∶= {y ∈ R ∶ (x1, . . . , xj−1, y, xj+1, . . . , xn) ∈ A}

and

ν+(Axj ) ∶= lim inf
r↓0

ν(Axj + [−r, r]) − ν(Axj )
r

.

is the surface measure (lower Minkowski content) of the section Axj .

e.g. ν+([a, b]) = φ(a) + φ(b), when ν has a density φ.

IGj (A) = ∫ ∣∂j1A∣ν⊗n(dx) ( L1-norm of ∂j1A).

The definition of IGj (A) does not depend on the product structure of the
measure ν⊗n.
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Geometric interpretation : connection to L∞ boundary

Lemma

Let ν be a probability measure on R with a ’nice’ density. Let A ⊂ Rn be a
monotone set. Then

lim inf
r↓0

ν⊗n(A + [−r, r]n) − ν⊗n(A)
r

=
n

∑
i=1

IGi (A).

In literature, lim infr↓0
ν⊗n(A+[−r,r]n)−ν⊗n(A)

r
is called boundary under

uniform enlargement.

Also true for convex sets. But not for general sets, e.g. Qn.
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KKL-type bound for Gaussian measure

Theorem (Keller-Mossel-S-12)

Consider the product spaces Rn endowed with the product Gaussian measure
µ⊗n . Then for any Borel-measurable set A ⊂ Rn with µ⊗n(A) = t

max
1≤i≤n

IGi (A) ≥ ct(1 − t)
√

logn

n
,

where c > 0 is a universal constant.
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KKL-type bound for Gaussian measure

Theorem (Keller-Mossel-S-12)

Consider the product spaces Rn endowed with the product Boltzmann
measure µ⊗nρ . Then for any Borel-measurable set A ⊂ Rn with µ⊗n(A) = t

max
1≤i≤n

IGi (A) ≥ ct(1 − t)(logn)1−1/ρ

n
,

where c > 0 is a universal constant.

The Boltzmann measure µρ with parameter ρ ≥ 1 is given by

µρ(dx) ∶= Cρe−∣x∣
ρ

dx, x ∈ R.
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KKL-type bound for Gaussian measure

Theorem (Keller-Mossel-S-12)

Consider the product spaces Rn endowed with the product . Then for any
Borel-measurable set A ⊂ Rn with µ⊗n(A) = t

max
1≤i≤n

IGi (A) ≥ ct(1 − t)(logn)1−1/ρ

n
,

where c > 0 is a universal constant.

The Boltzmann measure µρ with parameter ρ ≥ 1 is given by

µρ(dx) ∶= Cρe−∣x∣
ρ

dx, x ∈ R.

The proof uses isoperimetric inequality for Boltzmann measures

Isoperimetric function: Iµρ(t) ≥ cmin(t,1 − t)(− log min(t,1 − t))1−1/ρ

+ the original KKL bound via h-influences.
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Tightness

Example: Semi-infinite box.

Let Bn ∶= [−∞, bn]n where bn is chosen such that µ⊗nρ (Bn) = t < 1/2
fixed. Then

IGj (Bn) ≤ ct
(logn)1−1/ρ

n
,

for all 1 ≤ j ≤ n.
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Talagrand’s variance bound

Theorem (Talagrand ’94)

For any f ∶ {−1,1}n → R with product Bernoulli measure ν⊗n

Var(f) ≤ C
n

∑
j=1

∥Djf∥22
1 + log(∥Djf∥2/∥Djf∥1)

Djf(x) ∶= f(τjx) − f(x).

If f = 1A with ν⊗n(A) = t, then the above inequality becomes

t(1 − t) ≤ C′
n

∑
j=1

Ij(A)
− log Ij(A)

(∥Djf∥22 = Ij(A), ∥Djf∥1 = Ij(A)).

⇒ KKL bound.

Theorem (Gaussian analogue)

Consider Rn with the product Boltzmann measure µ⊗nρ . Let A ⊂ Rn.
If µ⊗n(A) = t, then

t(1 − t) ≤ C
n

∑
j=1

IGj (A)
(− log IGj (A))1−1/ρ

.
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Talagrand’s bound in Markov semigroup (Cordero-Erausquin, Ledoux)

Let Pt be reversible Markov semigroup on X with generator L and µ is
the invariant probability measure. The associated Dirichlet form

E(f, g) = −∫ fLgdµ.

Suppose

E(f, f) =
n

∑
i=1
∫
X

Γi(f)2dµ,

and for some κ ∈ R,

Γi(Pt(f)) ≤ eκtPt(Γi(f)).
Suppose L also satisfies log-Sobolev inequality

ρEnt(f2) ≤ 2E(f, f).

Theorem (Cordero-Erausquin, Ledoux ’12)

Varµ(f) ≤ C(ρ, κ)
n

∑
i=1

∥Γif∥22
1 + log(∥Γif∥2/∥Γif∥1)

,

where C(ρ, κ) = 4e(1+κ/ρ)+/ρ.

L1 norm of Γi(f) serves as a natural candidate for ‘influence’ of f in the i-th
direction.
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Examples

Bonami-Beckner semigroup. µ = uniform measure on {−1,1}n.
E(f, f) = 1

4 ∫ ∑
n
i=1 ∣Dif ∣2dµ. κ = 0 and ρ = 1.

Gaussian case (Ornstein-Uhlenbeck semigroup).
µ(dx) = ⊗ni=1e−Vi(x)dx on Rn. The semigroup is generated by
L = ∑ni=1 ∂2

i − V ′
i (x)∂i.

E(f, f) = 1

4 ∫
n

∑
i=1

∣∂if ∣2dµ.

Under the assumption V ′′
i ≥ c > 0, κ = −c and ρ = c.

Transposition walk on Sn. µ = uniform measure on Sn. T = set of
transpositions.

E(f, f) = 1

∣T ∣ ∫ ∑
s∈T

∣Dsf ∣2dµ, Dsf(σ) = f(sσ) − f(σ).

κ = 0 and ρ ∼ (n logn)−1.
O’Donnell-Wimmer ’09, O’Donnell-Wimmer ’13
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Talagrand’s bound for sets

In the Gaussian set-up, when f = 1A, the meaning of ∥∂if∥2 is not clear.

Cordero-Erausquin and Ledoux proved that for all ∥f∥∞ ≤ 1,

Varµ(f) ≤ C
n

∑
i=1

∥∂if∥1(1 + ∥∂if∥1)√
1 + log+(1/∥∂if∥1)

which implies KKL bound for Gaussian measures.

Useful fact: For every ∥f∥∞ ≤ 1 and every 0 < t < 1/2,

∥∂iPtf∥∞ ≤ 1√
t

Pt = OU semigroup.

It helps to bound ∥∂iPtf∥p, p > 1 by ∥∂iPtf∥1.
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Russo’s formula and threshold

Lemma

Let µθ = N(θ,1). Let A ⊆ Rn be increasing.

dµθ
⊗n(A)
dθ

=
n

∑
j=1

IGj (A)

Proof.
d

dθ
Ef(X1+θ, . . . ,Xn+θ) =

n

∑
i=1

E∂if(X1+θ, . . . ,Xn+θ), Xi ∼ N(0,1).

Corollary

Let µθ = N(θ,1). Let A ⊂ Rn be an increasing and transitive

µ⊗nθ0 (A) > ε ⇒ µ⊗nθ1 (A) > 1 − ε

where θ1 = θ0 + c log(1/2ε)(logn)−1/2.

Threshold window is tight for A = {maxiXi ≥ Median(maxiXi)}.
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Noise Sensitivity in discrete cubes

Let X be uniform on {−1,1}n and Xη be a η-noisy copy of X.

Xη
j = { Xj w.p. 1 − η

X ′
j w.p. η

, independently for each j.

For f ∶ {−1,1}n → R and η ∈ (0,1), the noise sensitivity of f ,

VAR(f, η) = E[f(X)f(Xη)] − E[f(X)]E[f(Xη)].
fk ∶ {−1,1}nk → R is asymptotically noise-sensitive if

VAR(fk, η)
k→∞→ 0 ∀η > 0

(⇔ ∑
0<∣S∣≤d

f̂k(S)2
k→∞→ 0 ∀d ≥ 1)

Example: The event of having a L-R crossing in the box [0, n]2 for the
critical percolation in Z2.

Benjamini, Kalai, Schramm (1999): Ak ⊆ {−1,1}nk is asymptotically
noise-sensitive if

∑
j

Ij(Ak)2
k→∞→ 0.
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Gaussian Noise Sensitivity

W,W ′ ∼ N(0, I) independent and W ρ =
√

1 − ρ2W + ρW ′.

For f ∶ Rn → R and ρ ∈ (0,1), the Gaussian noise sensitivity of f ,

VARG(f, ρ) = E[f(W )f(W ρ)] − E[f(W )]E[f(W ρ)].

Gaussian BKS theorem (Keller, Mossel, S. ’13): Ak ⊆ Rnk is
asymptotically Gaussian noise-sensitive if

∑
j

IGj (Ak)
2 k→∞→ 0.
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Quantitive BKS

Theorem (Keller and Kindler (2013))

For f ∶ {−1,1}n → [0,1] and η ∈ (0,1)

VAR(f, η) ≤ C(∑
j

Ij(f)2)
cη

.

Theorem (Gaussian analogue)

For f ∶ Rn → [0,1] and ρ ∈ (0,1),

VARG(f, ρ) ≤ C(∑
j

∥∂jf∥21)
cρ2

.
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Proof of Quantitive Gaussian BKS

For simplicity take n = 1 and f ∶ R→ [0,1] in C1.

Use CLT to approximate (W,W ρ) by (X1+...+Xm√
m

,
X
η
1
+...+Xηm√
m

) with

η = 1 −
√

1 − ρ2 and m→∞.

Use Quantitive BKS to f(X1+...+Xm√
m

) ∶ {−1,1}m → R.

VAR(f(X1+...+Xm√
m

), η) m→∞→ VARG(f(W ), ρ) as m→∞.

Observation.

m

∑
j=1

I2j (f(
X1 + . . . +Xm√

m
))→ 4∥f ′∥21 = 4IG(f)2.

Proof.
√

mI1(f(
X1 + . . . +Xm

√

m
)) =

√

mE ∣f(
1 + . . . +Xm

√

m
) − f(

−1 + . . . +Xm
√

m
)∣

≈

√

m
2

√

m
E ∣f ′(

X2 + . . . +Xm
√

m
)∣

≈ 2E∣f ′(W )∣
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Gaussian BKS using semigroup techniques

Bouyrie (2013) gave a direct proof using standard semigroup tools.

For any f on the Gaussian space and t > 0,

VAR(f,
√

1 − e−4t) = Var(Ptf) ≤ 4e−t(
n

∑
j=1

∥∂jf∥21)
1−e−t

2 ∥f∥1+e
−t

2 .

[Pt = OU semigroup.]
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Correlation of increasing sets

Theorem (Talagrand’ 96)

For any pair of increasing subsets A,B ⊆ {−1,1}n,

ν⊗n(A ∩B) − ν⊗n(A)ν⊗n(B) ≥ cϕ(
n

∑
i=1

Ii(A)Ii(B)),

where ν⊗n = product Bernoulli measure and ϕ(x) = x/ log(e/x).

Theorem (Gaussian analogue)

For any pair of increasing subsets A,B ⊆ Rn,

µ⊗n(A ∩B) − µ⊗n(A)µ⊗n(B) ≥ cϕ(
n

∑
i=1

IGi (A)IGi (B)),

where µ⊗n = standard Gaussian measure and ϕ(x) = x/ log(e/x).

Is there a direct semigroup proof?
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Thank You !!
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