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Outline of talk
• Noise sensitivity of Boolean funtions and theBenjamini-Kalai-Shramm Theorem.
• The notion of strong noise sensitivity.
• (Strong) noise sensitivity in the Erd®s-Rényi G(n, p) model.
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1. Boolean funtions and Noise sensitivityBasi Set up for Noise Sensitivity
• x := x1, . . . , xn i.i.d. { 1 with probability pn ,0 with probability 1− pn .
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Formal de�nition of noise sensitivityQuestion: Is f (x) and f (xǫ) very likely to be the same (high orrelation) oralmost independent (low orrelation)?
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P
[fn(xǫ) = 1|fn(x) = 1] − P
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Perolation on the hexagonal lattie (pn = 1/2).
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In�uenes are relevant for noise sensitivityTheorem (Benjamini, Kalai & Shramm 1999)If pn is onstant and
∑i I 2i (fn) → 0,then (fn) is noise sensitive.

Je� Steif (Chalmers/Gothenburg University) Otober 3, 2013 8 / 23



In�uenes are relevant for noise sensitivityTheorem (Benjamini, Kalai & Shramm 1999)If pn is onstant and
∑i I 2i (fn) → 0,then (fn) is noise sensitive.

• The Parity funtion shows that this ondition is not neessary.
Je� Steif (Chalmers/Gothenburg University) Otober 3, 2013 8 / 23



In�uenes are relevant for noise sensitivityTheorem (Benjamini, Kalai & Shramm 1999)If pn is onstant and
∑i I 2i (fn) → 0,then (fn) is noise sensitive.

• The Parity funtion shows that this ondition is not neessary.
• However, this ondition is neessary for monotone (inreasing)funtions for onstant pn.

Je� Steif (Chalmers/Gothenburg University) Otober 3, 2013 8 / 23



In�uenes are relevant for noise sensitivityTheorem (Benjamini, Kalai & Shramm 1999)If pn is onstant and
∑i I 2i (fn) → 0,then (fn) is noise sensitive.

• The Parity funtion shows that this ondition is not neessary.
• However, this ondition is neessary for monotone (inreasing)funtions for onstant pn.
• The majority funtions just miss satisfying this ondition and are anextremal sequene in many respets.Je� Steif (Chalmers/Gothenburg University) Otober 3, 2013 8 / 23



In�uenes are relevant for noise sensitivityTheorem (Benjamini, Kalai & Shramm 1999)If pn is onstant and
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• The Parity funtion shows that this ondition is not neessary.
• However, this ondition is neessary for monotone (inreasing)funtions for onstant pn.
• The majority funtions just miss satisfying this ondition and are anextremal sequene in many respets.
• The proof uses Fourier analysis and hyperontrativity.Je� Steif (Chalmers/Gothenburg University) Otober 3, 2013 8 / 23
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• Connetivity of G(n, p) ours at p = log nn
• Hamiltoniity of G(n, p) ours at p = log n+log log nn
• The giant omponent of G(n, p) emerges at p = 1/n

• Don't worry that pn sometimes refers to the p used when the numberof variables is n and sometimes refers to the edge probability for
G(n, p) whih has (n2) variables.Je� Steif (Chalmers/Gothenburg University) Otober 3, 2013 9 / 23
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• Example: If f is the property that a graph is onneted, then a1-witness would be a spanning tree.
• Let W1 = W1(f ) denote the set of 1-witnesses of some monotoneBoolean funtion f and similarly for W0 = W0(f ).Je� Steif (Chalmers/Gothenburg University) Otober 3, 2013 10 / 23
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[fn(xǫ) = 1 | xW ≡ 1] − P
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Noise sensitivity vs. Strong Noise sensitivity
• StrSens1 implies noise sensitive (but not vie-versa).
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• The notion of StrSens1is intimately onneted to the struture of theset of witnesses.
• StrSens1 6⇔ StrSens0: W1 and W0 an di�er greatly (like 3-SAT).
• Unlike NS, the de�ning ondition of StrSens1 an depend upon ǫ.
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An enlightening example: Tribes (Ben-Or and Linial)Partition {1, 2, . . . , n} into disjoint bloks of length log2 n − log2 log2 n.
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[?????????????], [?????????????], [111111111], . . . , [?????????????]A 0-witness:

[???0?????????], [??????????0??], [??????0??????], . . . , [0????????????]
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• It is easy to see that P(f = 1) is nondegenerate.
• This example was of interest sine the in�uenes are of order log nnwhih was later shown to be optimal by Kahn, Kalai and Linial.
• One an easily show that the sequene is noise sensitive.
• It is also easy to see that the sequene is StrSens1; this easily followsfrom the fat that the 1-witnesses are pairwise disjoint.
• However, one an show that the sequene is not StrSens0; the e�etof onditioning on a 0-witness to be 0 is muh more drasti. Note alsothe 0-witnesses have muh pairwise overlap.Je� Steif (Chalmers/Gothenburg University) Otober 3, 2013 14 / 23



3. Quantitative noise sensitivity results for the Erd®s-Rényirandom graph model.TheoremThe event that there exists a yle of length ontained in [n1/3, 2n1/3] isnoise sensitive at pn = 1/n and is in fat 1-strong noise sensitive:
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3. Quantitative noise sensitivity results for the Erd®s-Rényirandom graph model.TheoremThe event that there exists a yle of length ontained in [n1/3, 2n1/3] isnoise sensitive at pn = 1/n and is in fat 1-strong noise sensitive:More preisely:
• ǫn ≫ n−1/3 impliesmaxW∈W1 P

[fn(xǫn) = 1 | xW ≡ 1] − P
[fn(xǫn) = 1] = o(1) .

• ǫn ≪ n−1/3 implies
P
[fn(xǫn) = 1|fn(x) = 1] = 1− o(1) noise stability

• ǫn ≍ n−1/3 implies neither noise sensitivity nor noise stability.Je� Steif (Chalmers/Gothenburg University) Otober 3, 2013 15 / 23



Noise sensitivity and the ritial window
• The quantitative result involving n−1/3 mathes the ritial windowfor the Erd®s-Rényi random graph; intuitively:

• ǫn = O(n−1/3): noised graph stays within the ritial window(orrelation).
• ǫn ≫ n−1/3: noised graph leaves the ritial window (deorrelates).
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• The quantitative result involving n−1/3 mathes the ritial windowfor the Erd®s-Rényi random graph; intuitively:

• ǫn = O(n−1/3): noised graph stays within the ritial window(orrelation).
• ǫn ≫ n−1/3: noised graph leaves the ritial window (deorrelates).

• The argument of the �rst result is based on a seond momentalulation involving the number of 1-witnesses whih are satis�ed forx and xǫ.
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Minimum degree at least k is 0-strong noise sensitiveTheoremThe event that eah vertex has degree at least k is noise sensitive atpn = log n+(k−1) log log nn and is in fat 0-strong noise sensitive:
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Minimum degree at least k is 0-strong noise sensitiveTheoremThe event that eah vertex has degree at least k is noise sensitive atpn = log n+(k−1) log log nn and is in fat 0-strong noise sensitive:More preisely:
• ǫn ≫ 1log n impliesmaxW∈W0 P

[fn(xǫn) = 0 | xW ≡ 0] − P
[fn(xǫn) = 0] = o(1) .

• ǫn ≪ 1log n implies
P
[fn(xǫn) = 0|fn(x) = 0] = 1− o(1) noise stability

• ǫn ≍ 1log n implies neither noise sensitivity nor noise stability.Je� Steif (Chalmers/Gothenburg University) Otober 3, 2013 17 / 23



�Proof� and Consequenes of 0-strong noise sensitivity forMinimum degree at least k
• Proof idea for establishing that minimum degree k is 0-strong noisesensitive.
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Noise sensitivity for ontaining a graphWe have already seen the event of lique ontainment. More generally,Question: Let Hn be a graph on at most n verties and let fn be theindiator funtion that G(n, p) ontains Hn. Is (fn) noise sensitive?If Hn is a triangle for every n, then ertainly NO.If Hn is a union of log n disjoint edges, then NO (essentially beause it is aMajority funtion).De�nitionA graph is alled stritly balaned if its edge/vertex ratio is stritly largerthan all of its subgraphs.Je� Steif (Chalmers/Gothenburg University) Otober 3, 2013 19 / 23



Noise sensitivity for ontaining a graph
Theorem1. If Hn is stritly balaned with 1 ≪ ℓn ≤

( log nlog log n)1/2 edges, then (fn) isnoise sensitive, and furthermore, it is 1-strong noise sensitive.
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Noise sensitivity for ontaining a graph
Theorem1. If Hn is stritly balaned with 1 ≪ ℓn ≤

( log nlog log n)1/2 edges, then (fn) isnoise sensitive, and furthermore, it is 1-strong noise sensitive.2. There exists a sequene of stritly balaned graphs Hn with ℓn ≍ log nedges for whih (fn) is not noise sensitive.One takes pn = λ/n where λ > 4 and H to be two triangles onneted by apath of length ⌊32 logλ n⌋.
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Some �nal di�erenes between NS and StrSens1:Dependene on ǫReall in noise sensitivity,limn→∞
P
[fn(xǫ) = 1|fn(x) = 1] − P

[fn(xǫ) = 1] = 0does not depend on ǫ.
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[fn(xǫ) = 1] = 0does not depend on ǫ.1-strongly noise sensitive (StrSens1) (w.r.t. (pn)) if for any ǫ > 0,limn→∞
maxW∈W1 P

[fn(xǫ) = 1 | xW ≡ 1] − P
[fn(xǫ) = 1] = 0 .It turns out the above quantity going to 0 an depend on the value of ǫ.One omposes iterated 5-majority with tribes.Je� Steif (Chalmers/Gothenburg University) Otober 3, 2013 21 / 23



Some �nal di�erenes between NS and StrSens1:SuperstabilityDe�nition (Benjamini, Kalai, Shramm)A sequene of Boolean funtions fn : {0, 1}n → {0, 1} is alled noisestable (w.r.t. (pn)) iflim
ǫ→0 supn P

[fn(xǫ) = 0|fn(x) = 1] = 0 .
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Thank you very muh!
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