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Outline of talk

Noise sensitivity of Boolean functions and the
Benjamini-Kalai-Schramm Theorem.

The notion of strong noise sensitivity.
(Strong) noise sensitivity in the Erd8s-Rényi G(n, p) model.

Some sketch of arguments.
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1. Boolean functions and Noise sensitivity

Basic Set up for Noise Sensitivity

. .. 1 with probability p,,
X=X X b, { 0 with probability 1 — p,.

e f:{0,1}" — {0,1}

e We will assume f is nondegenerate; i.e. § <P(f =1) <1 —4.

® X“:=Xi,...,X5 is a small perturbation of x:

each x; is independently resampled with probability e.

x 01011101011
01711101071
x¢ 01011101001
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Formal definition of noise sensitivity

Question: Is f(x) and f(x¢) very likely to be the same (high correlation) or
almost independent (low correlation)?
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Formal definition of noise sensitivity

Question: Is f(x) and f(x¢) very likely to be the same (high correlation) or
almost independent (low correlation)?

Of course if n and f are fixed and € is very small, f(x) and f(x€) are very
likely to be the same.

So, we think of € as fixed (and small) and then n is taken to be very large.

Definition (Benjamini, Kalai, Schramm)

A sequence of Boolean functions 7, : {0,1}" — {0, 1} is called noise
sensitive (NS) (w.r.t. (pn)) if for any € > 0,

nli_)n;OP[fn(xe) = 1]fa(x) = 1] —=P[f(x) = 1] =0.

While not obvious, if this approaches 0 for one ¢, it does so for all e.
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4 examples

fa(x) :=x1  (Dictator)

Not noise sensitive for any p. (In fact it is noise stable).

fo(x) :=>_7_; xi (mod 2) (Parity) for p, =1/2.

Noise sensitive.

f(x)=1if and only if > 7 ; x; > n/2. (Majority Function, n odd) .
Not noise sensitive for any p. (In fact it is noise stable).

We take an Erd6s-Rényi random graph G(n,1/2) and let f be 1 if and
only if there is a clique of size 2log, n — 2log, log, n + O(1).
The variables correspond to the edges!
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Percolation on the hexagonal lattice (p, = 1/2).

w T P
enoised

Theorem (Benjamini, Kalai & Schramm 1999) J

Percolation crossings are noise sensitive.
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Pivotality and Influences (A key player)

Definition
For a Boolean function f, the event that / is pivotal is the event that
changing the ith bit changes the output of the function f.
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Pivotality and Influences (A key player)

Definition
For a Boolean function f, the event that / is pivotal is the event that
changing the ith bit changes the output of the function f.

The influence of the ith bit, /;(f), is the probability that / is pivotal. (Also
called the Banzhaf-Penrose index.)

Dictator: /1(f) =1 and other influences are 0. True for all p.

Parity: All influences are 1. True for all p.

Majority Function: When p = 1/2, all influences are of order 1/+/n.

Clique containment: all influences are of order (log n)?/n?.
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Influences are relevant for noise sensitivity

Theorem (Benjamini, Kalai & Schramm 1999)

If p, is constant and
Z Ii2(fn) — 0,
i

then (f,) is noise sensitive.

e The Parity function shows that this condition is not necessary.

e However, this condition is necessary for monotone (increasing)
functions for constant p,.

e The majority functions just miss satisfying this condition and are an
extremal sequence in many respects.

e The proof uses Fourier analysis and hypercontractivity.
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The small p problem.

The BKS Theorem becomes false when p, approaches 0.
For example, consider G(n, n_2/3) and f is “containing a K".

For varying p, Keller and Kindler have a result which extends the BKS
Theorem into the regime p, = n—°().

However, in many cases the critical p, is polynomially small in the
number of variables, e.g.:

logn

e Connectivity of G(n, p) occurs at p =
o Hamiltonicity of G(n, p) occurs at p = ‘&rtloglogn
e The giant component of G(n, p) emerges at p =1/n

Don’t worry that p, sometimes refers to the p used when the number
of variables is n and sometimes refers to the edge probability for
G(n, p) which has (J) variables.
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2. Witnesses and Strong Noise sensitivity

Our functions are now always assumed to be monotone.

Definition

A 1-witness (1-certificate or “min-term”) is a minimal subset of the
variables with the property that if all these bits are 1, then the
function is guaranteed to be 1.
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2. Witnesses and Strong Noise sensitivity

Our functions are now always assumed to be monotone.

Definition

A 1-witness (1-certificate or “min-term”) is a minimal subset of the
variables with the property that if all these bits are 1, then the
function is guaranteed to be 1.

o Example: If f is the property that a graph is connected, then a
1-witness would be a spanning tree.

e Let Wi = Wi (f) denote the set of 1-witnesses of some monotone
Boolean function f and similarly for Wy = Wy (f).
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Noise sensitivity and Strong Noise sensitivity
Recall:
Definition
A sequence of Boolean functions f, : {0,1}" — {0,1} is called noise
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sensitive (NS) (w.r.t. (p,)) if for any € > 0,

nli_)n;OP[fn(xe) = 1|fa(x) = 1] —=P[f,(x) = 1] =0.

Definition

A sequence of monotone Boolean functions f, : {0,1}" — {0,1} is called
1-strongly noise sensitive (StrSens;) (w.r.t. (p,)) if for any € > 0,

nll_)rr;o Vrvrg/)\(]lIP[fn(xe) =1|xw=1] —P[f(x)=1] =0.

0O-strongly noise sensitive (StrSensy) is defined analogously.
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Noise sensitivity vs. Strong Noise sensitivity
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Noise sensitivity vs. Strong Noise sensitivity

StrSens; implies noise sensitive (but not vice-versa).

o Moreover, even quantitatively for ¢ = ¢(n).

The notion of StrSensjis intimately connected to the structure of the
set of witnesses.

StrSens; ¢4 StrSensg: W; and W) can differ greatly (like 3-SAT).

Unlike NS, the defining condition of StrSens; can depend upon e.
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An enlightening example: Tribes (Ben-Or and Linial)

Partition {1,2,..., n} into disjoint blocks of length log, n — log, log, n.
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An enlightening example: Tribes (Ben-Or and Linial)

Partition {1,2,..., n} into disjoint blocks of length log, n — log, log, n.
Let  be 1 if there is some block which is all 1's. We also take p, = 1/2.

A 1-witness:
[22222702277027], [22772227272227277], [111111111], ... [?272222°2227777
A 0-witness:
[777022772227707], [727272722727270720727], [777727270772727277], ..., [0772727722727727727
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log n

e This example was of interest since the influences are of order =2

which was later shown to be optimal by Kahn, Kalai and Linial.
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log n
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This example was of interest since the influences are of order
which was later shown to be optimal by Kahn, Kalai and Linial.

One can easily show that the sequence is noise sensitive.

It is also easy to see that the sequence is StrSensy; this easily follows
from the fact that the 1-witnesses are pairwise disjoint.
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An enlightening example: Tribes (Ben-Or and Linial)

It is easy to see that P(f = 1) is nondegenerate.

log n
n

This example was of interest since the influences are of order
which was later shown to be optimal by Kahn, Kalai and Linial.

One can easily show that the sequence is noise sensitive.

It is also easy to see that the sequence is StrSensy; this easily follows
from the fact that the 1-witnesses are pairwise disjoint.

However, one can show that the sequence is not StrSensp; the effect
of conditioning on a 0-witness to be 0 is much more drastic. Note also
the 0-witnesses have much pairwise overlap.
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3. Quantitative noise sensitivity results for the Erdés-Rényi
random graph model.

Theorem

The event that there exists a cycle of length contained in [n'/3,2n/3] is
noise sensitive at p, = 1/n and is in fact 1-strong noise sensitive:
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3. Quantitative noise sensitivity results for the Erdés-Rényi
random graph model.

Theorem

The event that there exists a cycle of length contained in [n'/3,2n/3] is
noise sensitive at p, = 1/n and is in fact 1-strong noise sensitive:

More precisely:

o cp > n Y3 implies

V%%lp[fn(xf") =1|xw =1] —P[f(x") =1] = o(1).

o cp < n Y3 implies

P[fa(x") = 1|fo(x) = 1] =1 —o(1) noise stability

e ¢, = n~1/3 implies neither noise sensitivity nor noise stability.
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Noise sensitivity and the critical window

e The quantitative result involving n=1/3 matches the critical window
for the Erd6s-Rényi random graph; intuitively:

e ¢, = O(n~%/3): noised graph stays within the critical window
(correlation).
e ¢, > n~1/3: noised graph leaves the critical window (decorrelates).
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e The quantitative result involving n=1/3 matches the critical window
for the Erd6s-Rényi random graph; intuitively:
e ¢, = O(n~%/3): noised graph stays within the critical window
(correlation).
e ¢, > n~1/3: noised graph leaves the critical window (decorrelates).

e The argument of the first result is based on a second moment

calculation involving the number of 1-witnesses which are satisfied for
x and x€.
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Minimum degree at least k is O-strong noise sensitive

Theorem
The event that each vertex has degree at least k is noise sensitive at

| k—1) log | - : -
, = Jogn( n) %808" and is in fact O-strong noise sensitive:

(Chalmers/Gothenburg University) October 3, 2013 17 / 23



Minimum degree at least k is O-strong noise sensitive

Theorem
The event that each vertex has degree at least k is noise sensitive at

| k—1) log | .. . .
, = Jogn( n) %808" and is in fact O-strong noise sensitive:

More precisely:
® ¢, > 1

log n

implies

V%%op[fn(xe") =0|xw =0] —P[fp(x) =0] =o(1).

1
log n

o ), K

implies
P[fa(x“") = 0|fp(x) = 0] =1 — o(1) noise stability

- 1 . . . . e . e
® €n = iogn implies neither noise sensitivity nor noise stability.
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“Proof” and Consequences of 0-strong noise sensitivity for
Minimum degree at least k

e Proof idea for establishing that minimum degree k is 0-strong noise
sensitive.
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e Proof idea for establishing that minimum degree k is 0-strong noise
sensitive.

e Tribes was StrSens; due to the fact the 1-witnesses are disjoint.

e The O-witnesses for “minimum degree at least k" are almost disjoint
which leads to the above.

Corollary
(1). For G(n, b—%—") the events “Connectivity” and “containing a perfect
matching” are noise sensitive and even the same quantitative (; Oé ~) results

hold.
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“Proof” and Consequences of 0-strong noise sensitivity for
Minimum degree at least k

e Proof idea for establishing that minimum degree k is 0-strong noise
sensitive.

e Tribes was StrSens; due to the fact the 1-witnesses are disjoint.

e The O-witnesses for “minimum degree at least k" are almost disjoint
which leads to the above.

Corollary

(1). For G(n, b—%—") the events “Connectivity” and “containing a perfect

matching” are noise sensitive and even the same quantitative (; Oé ~) results
hold.

(2). For G(n, w), the event “containing a Hamiltonian cycle” is

noise sensitive and even the same quantitative (@) result hold.
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Noise sensitivity for containing a graph

We have already seen the event of clique containment. More generally,
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Noise sensitivity for containing a graph

We have already seen the event of clique containment. More generally,

Question: Let H, be a graph on at most n vertices and let f, be the
indicator function that G(n, p) contains H,. Is (f,) noise sensitive?

If H, is a triangle for every n, then certainly NO.

If H, is a union of log n disjoint edges, then NO (essentially because it is a
Majority function).

Definition

A graph is called strictly balanced if its edge/vertex ratio is strictly larger
than all of its subgraphs.
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Noise sensitivity for containing a graph

Theorem

1. If H, is strictly balanced with 1 < ¢, < (Iog’ﬁ)gn)l/z edges, then (f,) is

noise sensitive, and furthermore, it is 1-strong noise sensitive.
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Noise sensitivity for containing a graph

Theorem

1. If H, is strictly balanced with 1 < ¢, < (Iog’ﬁ)gn)l/z edges, then (f,) is
noise sensitive, and furthermore, it is 1-strong noise sensitive.
2. There exists a sequence of strictly balanced graphs H, with £, < logn

edges for which (f,) is not noise sensitive.
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Noise sensitivity for containing a graph

Theorem

1. If H, is strictly balanced with 1 < ¢, < (Iog’ﬁ)gn)l/z edges, then (f,) is
noise sensitive, and furthermore, it is 1-strong noise sensitive.
2. There exists a sequence of strictly balanced graphs H, with £, < logn

edges for which (f,) is not noise sensitive.

One takes p, = A/n where A > 4 and H to be two triangles connected by a
path of length 3 logy n].

(Chalmers/Gothenburg University) October 3, 2013 20/ 23



Some final differences between NS and StrSens;:
Dependence on ¢

Recall in noise sensitivity,
lim P[fo(x°) = 1/fa(x) = 1] = P[fa(x)=1] =0

does not depend on e.
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Some final differences between NS and StrSens;:
Dependence on ¢

Recall in noise sensitivity,

lim P[fo(x°) = 1/fa(x) = 1] = P[fa(x)=1] =0

n—oo
does not depend on e.

1-strongly noise sensitive (StrSens;) (w.r.t. (p,)) if for any € > 0,

im We%lp[fn(xe) =1|xw=1] -P[f(x)=1] =0.

It turns out the above quantity going to 0 can depend on the value of e.
One composes iterated 5-majority with tribes.
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Some final differences between NS and StrSens;:
Superstability

Definition (Benjamini, Kalai, Schramm)

A sequence of Boolean functions f, : {0,1}" — {0,1} is called noise
stable (w.r.t. (pn)) if

|inBsup]P’[f,,(xe) =0/fa(x) =1] =0.
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Some final differences between NS and StrSens;:
Superstability

Definition (Benjamini, Kalai, Schramm)

A sequence of Boolean functions f, : {0,1}" — {0,1} is called noise
stable (w.r.t. (pn)) if

|inBsupIP’[f,,(xe) =0/fa(x) =1] =0.

However, one has P[f,(x¢) = 0|f(x) = 1] > ce.

Example: Iterated 3-Majority
For all n and €, P[fp(x%) =0 | xw = 1] = ¢/2.

Example: Iterated 5-Majority
For all ¢, IimnqooIP’[f,,(xE) =0|xwy = 1] =0.
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Thank you very much!
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