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• It is also easy to see that the sequen
e is StrSens1; this easily followsfrom the fa
t that the 1-witnesses are pairwise disjoint.
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an show that the sequen
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tof 
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3. Quantitative noise sensitivity results for the Erd®s-Rényirandom graph model.TheoremThe event that there exists a 
y
le of length 
ontained in [n1/3, 2n1/3] isnoise sensitive at pn = 1/n and is in fa
t 1-strong noise sensitive:
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Noise sensitivity and the 
riti
al window
• The quantitative result involving n−1/3 mat
hes the 
riti
al windowfor the Erd®s-Rényi random graph; intuitively:

• ǫn = O(n−1/3): noised graph stays within the 
riti
al window(
orrelation).
• ǫn ≫ n−1/3: noised graph leaves the 
riti
al window (de
orrelates).
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Minimum degree at least k is 0-strong noise sensitiveTheoremThe event that ea
h vertex has degree at least k is noise sensitive atpn = log n+(k−1) log log nn and is in fa
t 0-strong noise sensitive:
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�Proof� and Consequen
es of 0-strong noise sensitivity forMinimum degree at least k
• Proof idea for establishing that minimum degree k is 0-strong noisesensitive.
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Theorem1. If Hn is stri
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ed with 1 ≪ ℓn ≤

( log nlog log n)1/2 edges, then (fn) isnoise sensitive, and furthermore, it is 1-strong noise sensitive.2. There exists a sequen
e of stri
tly balan
ed graphs Hn with ℓn ≍ log nedges for whi
h (fn) is not noise sensitive.One takes pn = λ/n where λ > 4 and H to be two triangles 
onne
ted by apath of length ⌊32 logλ n⌋.
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Some �nal di�eren
es between NS and StrSens1:Dependen
e on ǫRe
all in noise sensitivity,limn→∞
P
[fn(xǫ) = 1|fn(x) = 1] − P

[fn(xǫ) = 1] = 0does not depend on ǫ.
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Some �nal di�eren
es between NS and StrSens1:SuperstabilityDe�nition (Benjamini, Kalai, S
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