Strong Noise Sensitivity and Random Graphs

Jeffrey Steif

Chalmers University of Technology, Gothenburg, Sweden

Workshop on Functional Inequalities in Discrete Spaces

Joint work with Eyal Lubetzky

Jeff Steif (Chalmers/Gothenburg University)

October 3, 2013 1 / 23

• Noise sensitivity of Boolean functions and the Benjamini-Kalai-Schramm Theorem.

- Noise sensitivity of Boolean functions and the Benjamini-Kalai-Schramm Theorem.
- The notion of strong noise sensitivity.

- Noise sensitivity of Boolean functions and the Benjamini-Kalai-Schramm Theorem.
- The notion of strong noise sensitivity.
- (Strong) noise sensitivity in the Erdős-Rényi $\mathcal{G}(n,p)$ model.

- Noise sensitivity of Boolean functions and the Benjamini-Kalai-Schramm Theorem.
- The notion of **strong** noise sensitivity.
- (Strong) noise sensitivity in the Erdős-Rényi $\mathcal{G}(n,p)$ model.
- Some sketch of arguments.

Basic Set up for Noise Sensitivity

$$x := x_1, \dots, x_n \text{ i.i.d.} \begin{cases} 1 \text{ with probability } p_n, \\ 0 \text{ with probability } 1 - p_n. \end{cases}$$

Basic Set up for Noise Sensitivity

$$x := x_1, \dots, x_n \text{ i.i.d.} \begin{cases} 1 \text{ with probability } p_n, \\ 0 \text{ with probability } 1 - p_n. \end{cases}$$

•
$$f: \{0,1\}^n \to \{0,1\}$$

Basic Set up for Noise Sensitivity

$$x := x_1, \dots, x_n \text{ i.i.d.} \begin{cases} 1 \text{ with probability } p_n, \\ 0 \text{ with probability } 1 - p_n. \end{cases}$$

•
$$f: \{0,1\}^n \to \{0,1\}$$

• We will assume f is nondegenerate; i.e. $\delta \leq \mathbb{P}(f = 1) \leq 1 - \delta$.

Basic Set up for Noise Sensitivity

$$x := x_1, \dots, x_n \text{ i.i.d. } \begin{cases} 1 \text{ with probability } p_n, \\ 0 \text{ with probability } 1 - p_n. \end{cases}$$

•
$$f: \{0,1\}^n \to \{0,1\}$$

- We will assume f is nondegenerate; i.e. $\delta \leq \mathbb{P}(f = 1) \leq 1 \delta$.
- x^ε := x₁^ε,..., x_n^ε is a small perturbation of x:
 each x_i is independently resampled with probability ε.

Basic Set up for Noise Sensitivity

$$x := x_1, \dots, x_n \text{ i.i.d.} \begin{cases} 1 \text{ with probability } p_n, \\ 0 \text{ with probability } 1 - p_n. \end{cases}$$

•
$$f: \{0,1\}^n \to \{0,1\}$$

- We will assume f is nondegenerate; i.e. $\delta \leq \mathbb{P}(f = 1) \leq 1 \delta$.
- x^ε := x₁^ε,..., x_n^ε is a small perturbation of x: each x_i is independently resampled with probability ε.
 - x 01011101011

Basic Set up for Noise Sensitivity

$$x := x_1, \dots, x_n \text{ i.i.d.} \begin{cases} 1 \text{ with probability } p_n, \\ 0 \text{ with probability } 1 - p_n. \end{cases}$$

•
$$f: \{0,1\}^n \to \{0,1\}$$

- We will assume f is nondegenerate; i.e. $\delta \leq \mathbb{P}(f = 1) \leq 1 \delta$.
- x^ε := x₁^ε,..., x_n^ε is a small perturbation of x: each x_i is independently resampled with probability ε.
 - x 01011101011

01?111010?1

Basic Set up for Noise Sensitivity

$$x := x_1, \dots, x_n \text{ i.i.d.} \begin{cases} 1 \text{ with probability } p_n, \\ 0 \text{ with probability } 1 - p_n. \end{cases}$$

•
$$f: \{0,1\}^n \to \{0,1\}$$

- We will assume f is nondegenerate; i.e. $\delta \leq \mathbb{P}(f = 1) \leq 1 \delta$.
- x^ε := x₁^ε,..., x_n^ε is a small perturbation of x: each x_i is independently resampled with probability ε.
 - x 01011101011

01?111010?1

 x^{ϵ} 01011101001

Question: Is f(x) and $f(x^{\epsilon})$ very likely to be the same (high correlation) or almost independent (low correlation)?

Question: Is f(x) and $f(x^{\epsilon})$ very likely to be the same (high correlation) or almost independent (low correlation)?

Of course if *n* and *f* are fixed and ϵ is very small, f(x) and $f(x^{\epsilon})$ are very likely to be the same.

Question: Is f(x) and $f(x^{\epsilon})$ very likely to be the same (high correlation) or almost independent (low correlation)?

Of course if *n* and *f* are fixed and ϵ is very small, f(x) and $f(x^{\epsilon})$ are very likely to be the same.

So, we think of ϵ as fixed (and small) and then *n* is taken to be very large.

Question: Is f(x) and $f(x^{\epsilon})$ very likely to be the same (high correlation) or almost independent (low correlation)?

Of course if *n* and *f* are fixed and ϵ is very small, f(x) and $f(x^{\epsilon})$ are very likely to be the same.

So, we think of ϵ as fixed (and small) and then *n* is taken to be very large.

Definition (Benjamini, Kalai, Schramm)

A sequence of Boolean functions $f_n : \{0,1\}^n \to \{0,1\}$ is called **noise** sensitive (NS) (w.r.t. (p_n)) if for any $\epsilon > 0$,

$$\lim_{n\to\infty}\mathbb{P}\big[f_n(x^{\epsilon})=1|f_n(x)=1\big]-\mathbb{P}\big[f_n(x^{\epsilon})=1\big]=0.$$

Question: Is f(x) and $f(x^{\epsilon})$ very likely to be the same (high correlation) or almost independent (low correlation)?

Of course if *n* and *f* are fixed and ϵ is very small, f(x) and $f(x^{\epsilon})$ are very likely to be the same.

So, we think of ϵ as fixed (and small) and then *n* is taken to be very large.

Definition (Benjamini, Kalai, Schramm)

A sequence of Boolean functions $f_n : \{0,1\}^n \to \{0,1\}$ is called **noise** sensitive (NS) (w.r.t. (p_n)) if for any $\epsilon > 0$,

$$\lim_{n\to\infty} \mathbb{P}\big[f_n(x^{\epsilon})=1|f_n(x)=1\big]-\mathbb{P}\big[f_n(x^{\epsilon})=1\big]=0.$$

While not obvious, if this approaches 0 for one ϵ , it does so for all ϵ .

Jeff Steif (Chalmers/Gothenburg University)

• $f_n(x) := x_1$ (Dictator)

• $f_n(x) := x_1$ (Dictator)

Not noise sensitive for any p.

• $f_n(x) := x_1$ (Dictator)

• $f_n(x) := x_1$ (Dictator)

Not noise sensitive for any p. (In fact it is noise stable).

• $f_n(x) := \sum_{i=1}^n x_i \pmod{2}$ (Parity) for $p_n = 1/2$.

• $f_n(x) := x_1$ (Dictator)

Not noise sensitive for any p. (In fact it is noise stable).

• $f_n(x) := \sum_{i=1}^n x_i \pmod{2}$ (Parity) for $p_n = 1/2$. Noise sensitive.

• $f_n(x) := x_1$ (Dictator)

- $f_n(x) := \sum_{i=1}^n x_i \pmod{2}$ (Parity) for $p_n = 1/2$. Noise sensitive.
- f(x) = 1 if and only if $\sum_{i=1}^{n} x_i > n/2$. (Majority Function, n odd).

• $f_n(x) := x_1$ (Dictator)

- $f_n(x) := \sum_{i=1}^n x_i \pmod{2}$ (Parity) for $p_n = 1/2$. Noise sensitive.
- f(x) = 1 if and only if ∑ⁿ_{i=1} x_i > n/2. (Majority Function, n odd).
 Not noise sensitive for any p.

• $f_n(x) := x_1$ (Dictator)

- $f_n(x) := \sum_{i=1}^n x_i \pmod{2}$ (Parity) for $p_n = 1/2$. Noise sensitive.
- f(x) = 1 if and only if ∑_{i=1}ⁿ x_i > n/2. (Majority Function, n odd).
 Not noise sensitive for any p. (In fact it is noise stable).

• $f_n(x) := x_1$ (Dictator)

- $f_n(x) := \sum_{i=1}^n x_i \pmod{2}$ (Parity) for $p_n = 1/2$. Noise sensitive.
- f(x) = 1 if and only if ∑_{i=1}ⁿ x_i > n/2. (Majority Function, n odd).
 Not noise sensitive for any p. (In fact it is noise stable).
- We take an Erdős-Rényi random graph G(n, 1/2) and let f be 1 if and only if there is a clique of size 2 log₂ n - 2 log₂ log₂ n + O(1). The variables correspond to the edges!

• $f_n(x) := x_1$ (Dictator)

Not noise sensitive for any p. (In fact it is noise stable).

- $f_n(x) := \sum_{i=1}^n x_i \pmod{2}$ (Parity) for $p_n = 1/2$. Noise sensitive.
- f(x) = 1 if and only if ∑_{i=1}ⁿ x_i > n/2. (Majority Function, n odd).
 Not noise sensitive for any p. (In fact it is noise stable).
- We take an Erdős-Rényi random graph G(n, 1/2) and let f be 1 if and only if there is a clique of size 2 log₂ n - 2 log₂ log₂ n + O(1). The variables correspond to the edges!

Noise sensitive.

Percolation on the hexagonal lattice $(p_n = 1/2)$.

Percolation on the hexagonal lattice $(p_n = 1/2)$.

Percolation on the hexagonal lattice $(p_n = 1/2)$.

Theorem (Benjamini, Kalai & Schramm 1999) Percolation crossings are noise sensitive.

Definition

For a Boolean function f, the event that i is pivotal is the event that changing the *i*th bit changes the output of the function f.

Definition

For a Boolean function f, the event that i is pivotal is the event that changing the *i*th bit changes the output of the function f.

The influence of the *i*th bit, $I_i(f)$, is the probability that *i* is pivotal. (Also called the Banzhaf-Penrose index.)

Definition

For a Boolean function f, the event that i is pivotal is the event that changing the *i*th bit changes the output of the function f.

The influence of the *i*th bit, $I_i(f)$, is the probability that *i* is pivotal. (Also called the Banzhaf-Penrose index.)

• Dictator: $l_1(f) = 1$ and other influences are 0. True for all p.

Definition

For a Boolean function f, the event that i is pivotal is the event that changing the *i*th bit changes the output of the function f.

The influence of the *i*th bit, $I_i(f)$, is the probability that *i* is pivotal. (Also called the Banzhaf-Penrose index.)

- Dictator: $l_1(f) = 1$ and other influences are 0. True for all p.
- Parity: All influences are 1. True for all p.

Definition

For a Boolean function f, the event that i is pivotal is the event that changing the *i*th bit changes the output of the function f.

The influence of the *i*th bit, $I_i(f)$, is the probability that *i* is pivotal. (Also called the Banzhaf-Penrose index.)

- Dictator: $l_1(f) = 1$ and other influences are 0. True for all p.
- Parity: All influences are 1. True for all p.
- Majority Function: When p = 1/2, all influences are of order $1/\sqrt{n}$.

Jeff Steif (Chalmers/Gothenburg University)

Definition

For a Boolean function f, the event that i is pivotal is the event that changing the *i*th bit changes the output of the function f.

The influence of the *i*th bit, $I_i(f)$, is the probability that *i* is pivotal. (Also called the Banzhaf-Penrose index.)

- Dictator: $l_1(f) = 1$ and other influences are 0. True for all p.
- Parity: All influences are 1. True for all p.
- Majority Function: When p = 1/2, all influences are of order $1/\sqrt{n}$.
- Clique containment: all influences are of order $(\log n)^2/n^2$.
Theorem (Benjamini, Kalai & Schramm 1999)

If p_n is constant and

$$\sum_{i}I_{i}^{2}(f_{n})\rightarrow0,$$

then (f_n) is noise sensitive.

Theorem (Benjamini, Kalai & Schramm 1999) If p_n is constant and $\sum_i l_i^2(f_n) \to 0$, then (f_n) is noise sensitive.

• The Parity function shows that this condition is not necessary.

Theorem (Benjamini, Kalai & Schramm 1999) If p_n is constant and $\sum_i l_i^2(f_n) \to 0$, then (f_n) is noise sensitive.

- The Parity function shows that this condition is not necessary.
- However, this condition is necessary for monotone (increasing) functions for constant p_n .

Theorem (Benjamini, Kalai & Schramm 1999) If p_n is constant and $\sum_i l_i^2(f_n) \to 0$, then (f_n) is noise sensitive.

- The Parity function shows that this condition is not necessary.
- However, this condition is necessary for monotone (increasing) functions for constant p_n .
- The majority functions just miss satisfying this condition and are an extremal sequence in many respects.

Theorem (Benjamini, Kalai & Schramm 1999) If p_n is constant and $\sum_i l_i^2(f_n) \to 0$, then (f_n) is noise sensitive.

- The Parity function shows that this condition is not necessary.
- However, this condition is necessary for monotone (increasing) functions for constant p_n .
- The majority functions just miss satisfying this condition and are an extremal sequence in many respects.
- The proof uses Fourier analysis and hypercontractivity.

• The BKS Theorem becomes false when p_n approaches 0.

• The BKS Theorem becomes false when p_n approaches 0. For example, consider $\mathcal{G}(n, n^{-2/3})$ and f is "containing a K_4 ".

- The BKS Theorem becomes false when p_n approaches 0. For example, consider $\mathcal{G}(n, n^{-2/3})$ and f is "containing a K_4 ".
- For varying p, Keller and Kindler have a result which extends the BKS Theorem into the regime $p_n = n^{-o(1)}$.

- The BKS Theorem becomes false when p_n approaches 0. For example, consider $\mathcal{G}(n, n^{-2/3})$ and f is "containing a K_4 ".
- For varying p, Keller and Kindler have a result which extends the BKS Theorem into the regime $p_n = n^{-o(1)}$.
- However, in many cases the critical p_n is polynomially small in the number of variables, e.g.:

- The BKS Theorem becomes false when p_n approaches 0. For example, consider $\mathcal{G}(n, n^{-2/3})$ and f is "containing a K_4 ".
- For varying p, Keller and Kindler have a result which extends the BKS Theorem into the regime $p_n = n^{-o(1)}$.
- However, in many cases the critical p_n is polynomially small in the number of variables, e.g.:
 - Connectivity of $\mathcal{G}(n,p)$ occurs at $p = \frac{\log n}{n}$

- The BKS Theorem becomes false when p_n approaches 0. For example, consider $\mathcal{G}(n, n^{-2/3})$ and f is "containing a K_4 ".
- For varying p, Keller and Kindler have a result which extends the BKS Theorem into the regime $p_n = n^{-o(1)}$.
- However, in many cases the critical p_n is polynomially small in the number of variables, e.g.:
 - Connectivity of $\mathcal{G}(n,p)$ occurs at $p=rac{\log n}{n}$
 - Hamiltonicity of $\mathcal{G}(n,p)$ occurs at $p = \frac{\log n + \log \log n}{n}$

- The BKS Theorem becomes false when p_n approaches 0. For example, consider $\mathcal{G}(n, n^{-2/3})$ and f is "containing a K_4 ".
- For varying p, Keller and Kindler have a result which extends the BKS Theorem into the regime $p_n = n^{-o(1)}$.
- However, in many cases the critical p_n is polynomially small in the number of variables, e.g.:
 - Connectivity of $\mathcal{G}(n,p)$ occurs at $p = \frac{\log n}{n}$
 - Hamiltonicity of $\mathcal{G}(n, p)$ occurs at $p = \frac{\log n + \log \log n}{n}$
 - The giant component of $\mathcal{G}(n,p)$ emerges at p=1/n

- The BKS Theorem becomes false when p_n approaches 0. For example, consider $\mathcal{G}(n, n^{-2/3})$ and f is "containing a K_4 ".
- For varying p, Keller and Kindler have a result which extends the BKS Theorem into the regime $p_n = n^{-o(1)}$.
- However, in many cases the critical p_n is polynomially small in the number of variables, e.g.:
 - Connectivity of $\mathcal{G}(n,p)$ occurs at $p = \frac{\log n}{n}$
 - Hamiltonicity of $\mathcal{G}(n, p)$ occurs at $p = \frac{\log n + \log \log n}{n}$
 - The giant component of $\mathcal{G}(n,p)$ emerges at $\stackrel{\,\,{}_\circ}{p}=1/n$
- Don't worry that p_n sometimes refers to the p used when the number of variables is n and sometimes refers to the edge probability for $\mathcal{G}(n, p)$ which has $\binom{n}{2}$ variables.

2. Witnesses and Strong Noise sensitivity

Our functions are now always assumed to be monotone.

Definition

A 1-witness (1-certificate or "min-term") is a minimal subset of the variables with the property that if all these bits are 1, then the function is guaranteed to be 1.

2. Witnesses and Strong Noise sensitivity

Our functions are now always assumed to be monotone.

Definition

A 1-witness (1-certificate or "min-term") is a minimal subset of the variables with the property that if all these bits are 1, then the function is guaranteed to be 1.

• Example: If f is the property that a graph is connected, then a 1-witness would be a spanning tree.

2. Witnesses and Strong Noise sensitivity

Our functions are now always assumed to be monotone.

Definition

A 1-witness (1-certificate or "min-term") is a minimal subset of the variables with the property that if all these bits are 1, then the function is guaranteed to be 1.

- Example: If f is the property that a graph is connected, then a 1-witness would be a spanning tree.
- Let $W_1 = W_1(f)$ denote the set of 1-witnesses of some monotone Boolean function f and similarly for $W_0 = W_0(f)$.

Recall:

Definition

A sequence of Boolean functions $f_n : \{0, 1\}^n \to \{0, 1\}$ is called **noise** sensitive (NS) (w.r.t. (p_n)) if for any $\epsilon > 0$,

$$\lim_{n\to\infty}\mathbb{P}\big[f_n(x^{\epsilon})=1|f_n(x)=1\big]-\mathbb{P}\big[f_n(x^{\epsilon})=1\big]=0$$

Recall:

Definition

A sequence of Boolean functions $f_n : \{0,1\}^n \to \{0,1\}$ is called **noise** sensitive (NS) (w.r.t. (p_n)) if for any $\epsilon > 0$,

$$\lim_{n\to\infty}\mathbb{P}\big[f_n(x^{\epsilon})=1|f_n(x)=1\big]-\mathbb{P}\big[f_n(x^{\epsilon})=1\big]=0$$

Definition

A sequence of monotone Boolean functions $f_n : \{0, 1\}^n \to \{0, 1\}$ is called **1-strongly noise sensitive** (StrSens₁) (w.r.t. (p_n)) if for any $\epsilon > 0$,

$$\lim_{n\to\infty}\max_{W\in\mathcal{W}_1}\mathbb{P}\big[f_n(x^{\epsilon})=1\mid x_W\equiv 1\big]-\mathbb{P}\big[f_n(x^{\epsilon})=1\big]=0.$$

Jeff Steif (Chalmers/Gothenburg University)

Recall:

Definition

A sequence of Boolean functions $f_n : \{0,1\}^n \to \{0,1\}$ is called **noise** sensitive (NS) (w.r.t. (p_n)) if for any $\epsilon > 0$,

$$\lim_{n\to\infty}\mathbb{P}\big[f_n(x^{\epsilon})=1|f_n(x)=1\big]-\mathbb{P}\big[f_n(x^{\epsilon})=1\big]=0$$

Definition

A sequence of monotone Boolean functions $f_n : \{0,1\}^n \to \{0,1\}$ is called **1-strongly noise sensitive** (StrSens₁) (w.r.t. (p_n)) if for any $\epsilon > 0$,

$$\lim_{n\to\infty} \max_{W\in\mathcal{W}_1} \mathbb{P}\big[f_n(x^{\epsilon})=1 \mid x_W\equiv 1\big] - \mathbb{P}\big[f_n(x^{\epsilon})=1\big] = 0.$$

0-strongly noise sensitive (StrSens₀) is defined analogously.

Jeff Steif (Chalmers/Gothenburg University)

October 3, 2013 11 / 23

• StrSens₁ implies noise sensitive (but not vice-versa).

- StrSens₁ implies noise sensitive (but not vice-versa).
 - Moreover, even quantitatively for $\epsilon = \epsilon(n)$.

- StrSens₁ implies noise sensitive (but not vice-versa).
 - Moreover, even quantitatively for $\epsilon = \epsilon(n)$.
- The notion of StrSens₁ is intimately connected to the structure of the set of witnesses.

- StrSens₁ implies noise sensitive (but not vice-versa).
 - Moreover, even quantitatively for $\epsilon = \epsilon(n)$.
- The notion of StrSens₁ is intimately connected to the structure of the set of witnesses.
- StrSens₁ \Leftrightarrow StrSens₀: W_1 and W_0 can differ greatly (like 3-SAT).

- StrSens₁ implies noise sensitive (but not vice-versa).
 - Moreover, even quantitatively for $\epsilon = \epsilon(n)$.
- The notion of StrSens₁ is intimately connected to the structure of the set of witnesses.
- StrSens₁ \Leftrightarrow StrSens₀: W_1 and W_0 can differ greatly (like 3-SAT).
- Unlike NS, the defining condition of StrSens₁ can depend upon ϵ .

Partition $\{1, 2, ..., n\}$ into disjoint blocks of length $\log_2 n - \log_2 \log_2 n$.

Partition $\{1, 2, ..., n\}$ into disjoint blocks of length $\log_2 n - \log_2 \log_2 n$. Let f be 1 if there is some block which is all 1's.

Partition $\{1, 2, ..., n\}$ into disjoint blocks of length $\log_2 n - \log_2 \log_2 n$. Let f be 1 if there is some block which is all 1's. We also take $p_n = 1/2$.

Partition $\{1, 2, ..., n\}$ into disjoint blocks of length $\log_2 n - \log_2 \log_2 n$. Let f be 1 if there is some block which is all 1's. We also take $p_n = 1/2$. A 1-witness:

[???????????], [??????????], [11111111], . . . , [???????????]

Partition $\{1, 2, ..., n\}$ into disjoint blocks of length $\log_2 n - \log_2 \log_2 n$. Let f be 1 if there is some block which is all 1's. We also take $p_n = 1/2$. A 1-witness:

[???????????], [??????????], [11111111], ..., [???????????]

A 0-witness:

[???0[?]????????], [????????⁰??], [??????⁰??????], ..., [0[?]?????????????]

• It is easy to see that $\mathbb{P}(f = 1)$ is nondegenerate.

- It is easy to see that $\mathbb{P}(f = 1)$ is nondegenerate.
- This example was of interest since the influences are of order $\frac{\log n}{n}$ which was later shown to be optimal by Kahn, Kalai and Linial.

- It is easy to see that $\mathbb{P}(f = 1)$ is nondegenerate.
- This example was of interest since the influences are of order $\frac{\log n}{n}$ which was later shown to be optimal by Kahn, Kalai and Linial.
- One can easily show that the sequence is noise sensitive.

- It is easy to see that $\mathbb{P}(f = 1)$ is nondegenerate.
- This example was of interest since the influences are of order $\frac{\log n}{n}$ which was later shown to be optimal by Kahn, Kalai and Linial.
- One can easily show that the sequence is noise sensitive.
- It is also easy to see that the sequence is StrSens₁; this easily follows from the fact that the 1-witnesses are pairwise disjoint.

- It is easy to see that $\mathbb{P}(f = 1)$ is nondegenerate.
- This example was of interest since the influences are of order $\frac{\log n}{n}$ which was later shown to be optimal by Kahn, Kalai and Linial.
- One can easily show that the sequence is noise sensitive.
- It is also easy to see that the sequence is StrSens₁; this easily follows from the fact that the 1-witnesses are pairwise disjoint.
- However, one can show that the sequence is not StrSens₀; the effect of conditioning on a 0-witness to be 0 is much more drastic. Note also the 0-witnesses have much pairwise overlap.

3. Quantitative noise sensitivity results for the Erdős-Rényi random graph model.

Theorem

The event that there exists a cycle of length contained in $[n^{1/3}, 2n^{1/3}]$ is noise sensitive at $p_n = 1/n$ and is in fact 1-strong noise sensitive:
3. Quantitative noise sensitivity results for the Erdős-Rényi random graph model.

Theorem

The event that there exists a cycle of length contained in $[n^{1/3}, 2n^{1/3}]$ is noise sensitive at $p_n = 1/n$ and is in fact 1-strong noise sensitive:

More precisely:

•
$$\epsilon_n \gg n^{-1/3}$$
 implies

$$\max_{W\in\mathcal{W}_1}\mathbb{P}\big[f_n(x^{\epsilon_n})=1\mid x_W\equiv 1\big]-\mathbb{P}\big[f_n(x^{\epsilon_n})=1\big]=o(1)\,.$$

• $\epsilon_n \ll n^{-1/3}$ implies

$$\mathbb{P}[f_n(x^{\epsilon_n}) = 1 | f_n(x) = 1] = 1 - o(1)$$
 noise stability

• $\epsilon_n \simeq n^{-1/3}$ implies neither noise sensitivity nor noise stability.

Noise sensitivity and the critical window

- The quantitative result involving $n^{-1/3}$ matches the critical window for the Erdős-Rényi random graph; intuitively:
 - $\epsilon_n = O(n^{-1/3})$: noised graph stays within the critical window (correlation).
 - $\epsilon_n \gg n^{-1/3}$ noised graph leaves the critical window (decorrelates).

Noise sensitivity and the critical window

- The quantitative result involving $n^{-1/3}$ matches the critical window for the Erdős-Rényi random graph; intuitively:
 - $\epsilon_n = O(n^{-1/3})$: noised graph stays within the critical window (correlation).
 - $\epsilon_n \gg n^{-1/3}$ noised graph leaves the critical window (decorrelates).
- The argument of the first result is based on a second moment calculation involving the number of 1-witnesses which are satisfied for x and x^ϵ.

Minimum degree at least k is 0-strong noise sensitive

Theorem

The event that each vertex has degree at least k is noise sensitive at $p_n = \frac{\log n + (k-1) \log \log n}{n}$ and is in fact 0-strong noise sensitive:

Minimum degree at least k is 0-strong noise sensitive

Theorem

The event that each vertex has degree at least k is noise sensitive at $p_n = \frac{\log n + (k-1) \log \log n}{n}$ and is in fact 0-strong noise sensitive: More precisely: • $\epsilon_n \gg \frac{1}{\log n}$ implies $\max_{W \in \mathcal{W}_n} \mathbb{P}\big[f_n(x^{\epsilon_n}) = 0 \mid x_W \equiv 0\big] - \mathbb{P}\big[f_n(x^{\epsilon_n}) = 0\big] = o(1).$ • $\epsilon_n \ll \frac{1}{\log n}$ implies $\mathbb{P}[f_n(x^{\epsilon_n}) = 0 | f_n(x) = 0] = 1 - o(1)$ noise stability • $\epsilon_n \simeq \frac{1}{\log n}$ implies neither noise sensitivity nor noise stability.

Jeff Steif (Chalmers/Gothenburg University)

October 3, 2013 17 / 23

• Proof idea for establishing that minimum degree k is 0-strong noise sensitive.

- Proof idea for establishing that minimum degree k is 0-strong noise sensitive.
 - Tribes was StrSens1 due to the fact the 1-witnesses are disjoint.

- Proof idea for establishing that minimum degree k is 0-strong noise sensitive.
 - Tribes was StrSens₁ due to the fact the 1-witnesses are disjoint.
 - The 0-witnesses for "minimum degree at least k" are almost disjoint which leads to the above.

- Proof idea for establishing that minimum degree k is 0-strong noise sensitive.
 - Tribes was StrSens1 due to the fact the 1-witnesses are disjoint.
 - The 0-witnesses for "minimum degree at least k" are almost disjoint which leads to the above.

Corollary

(1). For $\mathcal{G}(n, \frac{\log n}{n})$, the events "Connectivity" and "containing a perfect matching" are noise sensitive and even the same quantitative $(\frac{1}{\log n})$ results hold.

- Proof idea for establishing that minimum degree k is 0-strong noise sensitive.
 - Tribes was StrSens₁ due to the fact the 1-witnesses are disjoint.
 - The 0-witnesses for "minimum degree at least k" are almost disjoint which leads to the above.

Corollary

(1). For $\mathcal{G}(n, \frac{\log n}{n})$, the events "Connectivity" and "containing a perfect matching" are noise sensitive and even the same quantitative $(\frac{1}{\log n})$ results hold.

(2). For $\mathcal{G}(n, \frac{\log n + \log \log n}{n})$, the event "containing a Hamiltonian cycle" is noise sensitive and even the same quantitative $(\frac{1}{\log n})$ result hold.

We have already seen the event of clique containment. More generally,

We have already seen the event of clique containment. More generally, Question: Let H_n be a graph on at most n vertices and let f_n be the indicator function that $\mathcal{G}(n, p)$ contains H_n .

We have already seen the event of clique containment. More generally, Question: Let H_n be a graph on at most *n* vertices and let f_n be the indicator function that $\mathcal{G}(n, p)$ contains H_n . Is (f_n) noise sensitive?

We have already seen the event of clique containment. More generally, Question: Let H_n be a graph on at most n vertices and let f_n be the indicator function that $\mathcal{G}(n, p)$ contains H_n . Is (f_n) noise sensitive? If H_n is a triangle for every n, then certainly NO.

We have already seen the event of clique containment. More generally,

Question: Let H_n be a graph on at most n vertices and let f_n be the indicator function that $\mathcal{G}(n, p)$ contains H_n . Is (f_n) noise sensitive?

If H_n is a triangle for every n, then certainly NO.

If H_n is a union of log n disjoint edges, then NO

We have already seen the event of clique containment. More generally,

Question: Let H_n be a graph on at most n vertices and let f_n be the indicator function that $\mathcal{G}(n, p)$ contains H_n . Is (f_n) noise sensitive?

If H_n is a triangle for every n, then certainly NO.

If H_n is a union of log *n* disjoint edges, then NO (essentially because it is a Majority function).

We have already seen the event of clique containment. More generally,

Question: Let H_n be a graph on at most n vertices and let f_n be the indicator function that $\mathcal{G}(n, p)$ contains H_n . Is (f_n) noise sensitive?

If H_n is a triangle for every n, then certainly NO.

If H_n is a union of log *n* disjoint edges, then NO (essentially because it is a Majority function).

Definition

A graph is called **strictly balanced** if its edge/vertex ratio is strictly larger than all of its subgraphs.

Theorem

1. If H_n is strictly balanced with $1 \ll \ell_n \leq \left(\frac{\log n}{\log \log n}\right)^{1/2}$ edges, then (f_n) is noise sensitive, and furthermore, it is 1-strong noise sensitive.

Theorem

1. If H_n is strictly balanced with $1 \ll \ell_n \leq \left(\frac{\log n}{\log \log n}\right)^{1/2}$ edges, then (f_n) is noise sensitive, and furthermore, it is 1-strong noise sensitive. 2. There exists a sequence of strictly balanced graphs H_n with $\ell_n \asymp \log n$ edges for which (f_n) is not noise sensitive.

Theorem

1. If H_n is strictly balanced with $1 \ll \ell_n \leq \left(\frac{\log n}{\log \log n}\right)^{1/2}$ edges, then (f_n) is noise sensitive, and furthermore, it is 1-strong noise sensitive. 2. There exists a sequence of strictly balanced graphs H_n with $\ell_n \asymp \log n$ edges for which (f_n) is not noise sensitive.

One takes $p_n = \lambda/n$ where $\lambda > 4$ and H to be two triangles connected by a path of length $\lfloor \frac{3}{2} \log_{\lambda} n \rfloor$.

Some final differences between NS and StrSens₁: Dependence on ϵ

Recall in noise sensitivity,

$$\lim_{n\to\infty} \mathbb{P}\big[f_n(x^{\epsilon}) = 1 | f_n(x) = 1\big] - \mathbb{P}\big[f_n(x^{\epsilon}) = 1\big] = 0$$

does not depend on ϵ .

Some final differences between NS and StrSens₁: Dependence on ϵ

Recall in noise sensitivity,

$$\lim_{n\to\infty}\mathbb{P}\big[f_n(x^{\epsilon})=1|f_n(x)=1\big]-\mathbb{P}\big[f_n(x^{\epsilon})=1\big]=0$$

does not depend on ϵ .

1-strongly noise sensitive (StrSens₁) (w.r.t. (p_n)) if for any $\epsilon > 0$,

$$\lim_{n\to\infty}\max_{W\in\mathcal{W}_1}\mathbb{P}\big[f_n(x^{\epsilon})=1\mid x_W\equiv 1\big]-\mathbb{P}\big[f_n(x^{\epsilon})=1\big]=0\,.$$

Jeff Steif (Chalmers/Gothenburg University)

Some final differences between NS and StrSens₁: Dependence on ϵ

Recall in noise sensitivity,

$$\lim_{n\to\infty} \mathbb{P}\big[f_n(x^{\epsilon}) = 1 | f_n(x) = 1\big] - \mathbb{P}\big[f_n(x^{\epsilon}) = 1\big] = 0$$

does not depend on ϵ .

1-strongly noise sensitive (StrSens₁) (w.r.t. (p_n)) if for any $\epsilon > 0$,

$$\lim_{n\to\infty}\max_{W\in\mathcal{W}_1}\mathbb{P}\big[f_n(x^{\epsilon})=1\mid x_W\equiv 1\big]-\mathbb{P}\big[f_n(x^{\epsilon})=1\big]=0\,.$$

It turns out the above quantity going to 0 can depend on the value of ϵ . One composes iterated 5-majority with tribes.

Jeff Steif (Chalmers/Gothenburg University)

Definition (Benjamini, Kalai, Schramm)

A sequence of Boolean functions $f_n : \{0,1\}^n \to \{0,1\}$ is called **noise** stable (w.r.t. (p_n)) if

$$\lim_{\epsilon\to 0}\sup_{n}\mathbb{P}\big[f_n(x^{\epsilon})=0|f_n(x)=1\big]=0.$$

Definition (Benjamini, Kalai, Schramm)

A sequence of Boolean functions $f_n : \{0,1\}^n \to \{0,1\}$ is called **noise** stable (w.r.t. (p_n)) if

$$\lim_{\epsilon\to 0}\sup_{n}\mathbb{P}\big[f_n(x^{\epsilon})=0|f_n(x)=1\big]=0.$$

However, one has $\mathbb{P}[f_n(x^{\epsilon}) = 0 | f_n(x) = 1] \ge c\epsilon$.

Definition (Benjamini, Kalai, Schramm)

A sequence of Boolean functions $f_n : \{0,1\}^n \to \{0,1\}$ is called **noise** stable (w.r.t. (p_n)) if

$$\lim_{\epsilon\to 0}\sup_{n}\mathbb{P}\big[f_n(x^{\epsilon})=0|f_n(x)=1\big]=0.$$

However, one has $\mathbb{P}[f_n(x^{\epsilon}) = 0 | f_n(x) = 1] \ge c\epsilon$.

Example: Iterated 3-Majority For all *n* and ϵ , $\mathbb{P}[f_n(x^{\epsilon}) = 0 \mid x_W \equiv 1] = \epsilon/2$.

Jeff Steif (Chalmers/Gothenburg University)

Definition (Benjamini, Kalai, Schramm)

A sequence of Boolean functions $f_n : \{0,1\}^n \to \{0,1\}$ is called **noise** stable (w.r.t. (p_n)) if

$$\lim_{\epsilon\to 0}\sup_{n}\mathbb{P}\big[f_n(x^{\epsilon})=0|f_n(x)=1\big]=0.$$

However, one has $\mathbb{P}[f_n(x^{\epsilon}) = 0 | f_n(x) = 1] \ge c\epsilon$.

Example: Iterated 3-Majority For all *n* and ϵ , $\mathbb{P}[f_n(x^{\epsilon}) = 0 \mid x_W \equiv 1] = \epsilon/2$.

Example: Iterated 5-Majority For all ϵ , $\lim_{n\to\infty} \mathbb{P}[f_n(x^{\epsilon}) = 0 \mid x_W \equiv 1] = 0.$

Thank you very much!