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Statement

Johnson–Lindenstrauss Flattening Lemma ’84

Given 0 < ε ≤ 1/2 and x1, · · ·xn ∈ RD, there exists a map
f : RD→ Rk with k = O

(
1
ε2 logn

)
such that for all i , j ∈ [n],

(1− ε)‖xi −xj‖22 ≤ ‖f (xi)− f (xj)‖22 ≤ (1 + ε)‖xi −xj‖22

Note that the mapping is into a dimension that is
independent of the original dimension and only depends
on the number of points.
For every n, there exists a set of n points requiring target
dimension k = Ω( 1

ε2 logn/ log(1/ε)) (Alon, 2003).
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JL vis Measure Concentration on Sphere

Original proof:
Random linear map is orthogonal projection on k dim
subspace.
Then use measure concentration on sphere (Dvoretzky’s
Theorem).
Still maybe most intuitive proof, but today elementary
proofs (Indyk–Motwani, Achlioptas, Gupta and Gupta,
Matousek, Naor ...)
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Applications of Johnson–Lindenstrauss

Proximity Problems Computing nearest neighbours in high
dimensions (for example nearest documents to
web queries) can be done in much lower
dimensions.

Online Problems Answering queries on–line
Data Streaming/Storage Large data which cannot be in RAM

arrives sequentially and we can only store
“sketches”.

Compressed Sensing One pixel camera ...
Machine Learning Classification and clustering of high

dimensional data.
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Probabilistic Method

Distributional JL
Given any 0 < ε ≤ 1/2,δ > 0 there is a random linear mapping
A : RD→ Rk with k = O

(
1
ε2 log 1

δ

)
such that for any unit vector

x ∈ RD,
P
[
(1− ε)≤ ‖A(x)‖22 ≤ (1 + ε)

]
≥ 1−δ

Note that the mapping is universal and projected
dimension depends only on ε and δ , not on original
dimension D.
Lower bound of k = Ω( 1

ε2 log 1
δ

) (Jayram–Woodruff,
Kane–Meka–Nelson 2011).
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Distributional implies Deterministic

Take δ = 1/n2 so k = O
(

1
ε2 logn

)
and then for each pair

i , j ∈ [n],

P
[
(1− ε)‖xi −xj‖22 ≤ ‖A(xi)−A(xj)‖22 ≤ (1 + ε)‖xi −xj‖22

]
≥1−1/n2

Hence by a simple union bound, the same statement holds for
all
(n

2

)
pairs i , j ∈ [n] simultaneously with probability at least 1/2.

By a classic application of the probabilistic method this implies
the existence of a determinstic linear mapping which is an
approximate isometry.
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Explicit Mapping

Ultra Simple Linear Map

A(x) :=
1√
k

Mx

where the entries of the k ×D matrix M are

i.i.d. Gaussian

Mi ,j ∼ N(0,1)



university-logo

Johnson–Lindenstrauss Lemma Classification by Support Vector Machines Dual with Kernels as Abstract LP Randomized Approximation of Kernels

Outline I

1 Johnson–Lindenstrauss Lemma

2 Classification by Support Vector Machines

3 Dual with Kernels as Abstract LP

4 Randomized Approximation of Kernels



university-logo

Johnson–Lindenstrauss Lemma Classification by Support Vector Machines Dual with Kernels as Abstract LP Randomized Approximation of Kernels

Input data as Feature vectors

Input in many machine learning problems is in the form of very
high dimensional vectors, often sparse:

Documents as bag of words: xi is no. of occurences of
word i in a document
Network traffic xi ,j is no. of packets sent from i to j
User ratings xi is rating for movie i by a user on Netflix
Streaming Making an update requires computing a sparse
matrix vector product.



university-logo

Johnson–Lindenstrauss Lemma Classification by Support Vector Machines Dual with Kernels as Abstract LP Randomized Approximation of Kernels

The classification problem setup

Training Data Let P be a (unknown) distribution and

Dn = {(xi ,yi)| i .i .d (xi ,yi)∼ P, i = 1, . . . ,n}

Here xi ∈ RD and yi =±1
Classifier A function f : RD→{−1,+1} constructed using

the data Dn as training set.
Test Data Let (x,y)∼ P. Then want to minimize the

probability of misclassification

R(f ) = P(f (x) 6= y)
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Linear classifiers

Linear classifiers
y = sign(w>x + b)

require satisfying

yi(w>xi + b)≥ 1 i = 1, . . . ,m
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Good classifiers: Margins

Can be many linear classifiers:
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Max Margin

One can work with parallel hyperplanes

w>x + b = 1, w>x + b =−1

with the classifier fixed at w>x + b = 0. Maximize the margin,
2/‖w‖, the distance betwen the hyperplanes!

Intuitive and also strong theoretical justification from learning
theory (Vapnis).
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The SVM formulation

Classifier
f (x) = sign(w>x + b)

minimizew,b
1
2‖w‖

2 (1)
s.t. yi(w>xi + b)≥ 1 i = 1, . . . ,m (2)
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SVMs represent data as Convex hulls

minimize‖z1−z2‖2

z1 ∈ Conv ({xi |yi = 1})

z2 ∈ Conv ({xi |yi =−1})

SVMs computes the
distance between
Convex hulls
Will exploit this later
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The Dual formulation

maximizeα −
1
2 ∑

ij
αiαjyiyjx>i xj +

m

∑
i=1

αi

subject to 0≤ αi ,∑
i

αiyi = 0

KKT conditions

∂L
∂w

= 0 =⇒ w = ∑
i

αiyixi

∂L
∂b

= 0 =⇒
m

∑
i=1

αiyi = 0

αi(yi(w>xi + b)−1) = 0, αi ≥ 0
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Support vectors and separating hyperplane

Support vectors correspond to {i |αi > 0}.
Consequence of KKT conditions

αi > 0 =⇒ yi(w>xi + b) = 1

The separating hyperplane is given as

∑
αi>0

αiyixT
i x + w0 = 0,

or
∑

αi>0
αiyiK (xi ,x) + w0 = 0.

That is, be computed only in terms of the dot products or
the kernel.
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SVMs as non-linear classifiers

Sometimes data may not be separable by a linear classifier
... but may be linearly separable after embedding in higher
dimensions.
Example in 2 dimensions (x1,x2) that is not linearly
separable but becomes separable after embedding:

x = (x1,x2) 7→ Φ(x) := (x2
1 ,
√

2x1x2,x2
2 ).
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The Kernel Trick

Note that we only need Ki ,j := Φ(xi)
T Φ(xj) for our SVM

solver.
Thus one can implicitly define the embedding via the
matrix K .

Mercer’s Condition
The matrix K is defined by an embedding into a Hilbert space
iff K is positive semi–definite.



university-logo

Johnson–Lindenstrauss Lemma Classification by Support Vector Machines Dual with Kernels as Abstract LP Randomized Approximation of Kernels

Popular Kernels

Linear K (x,z) := xT z corresponding to Φ being identity.
Quadratic K (x,z) := (xT z)2 or (1 + xT z)2.

Polynomial K (x,z) := (xT z)d or (1 + xT z)d .
Radial Basis Functions K (x,z) := exp

(
−γ‖x−z‖22

)
correspomds to an infinite dimensional
embedding.

Often data may be presented only via a similarity kernel in the
form of a psd matrix with embedding implicit and which may be
high or infinite dimensional. hence important to be able to work
only with kernel representation.
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Running Time of SVM Solvers

SVM-light O(n2d) (dual QP)
Lib-Lin O(nd log(1/ρ) (dual coordinate descent).

Pegasos O(d/λρ) (primal, stochastic gradient/subgradient)

Parameters:
n number of data points in training set.
d dimension
ρ optimization tolerance
λ regularization parameter
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JL and SVMs: Take 1

Approximate Max Margin

If a set of n points in RD is separable with margin γ, then the
projected set of points to Rk with k = O( 1

ε2 log n
δ

) is separable
with margin at least (1− ε)γ with probability at least 1−δ .

One can obtain a near–optimal classifier in the original
space by solving an SVM in the projected space.
However need to account for computation time for
projection: naively takes time O(kD) per data point.
Recall that input data is high dimensional i.e. large D, but
is often sparse s := ‖x‖0 << D non–zero coordinates in
any input point.
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JL Sparser and Faster

Achlioptas ’01 Mi ,j = 0 with prob. 1/3.
Ailon–Chazele ’06 x 7→ PHDx (P is sparse random matrix, H is

Hadamard transform and D is diagonal ±1.
O(D logD + k3).

Ailon–Liberty ’08 O(d logk + k2) also using Hadamard
transform.

Ailon–Liberty, Krahmer-Ward ’11 O(D logD) but sub–optimal
k = O( 1

ε2 logn log4 D).(Uses [Rudelson–Vershynin
’08], Dudley inequality etc.)

Kane–Nelson 2010

Dimension k = O( 1
ε2 log 1

δ
)

Sparsity each column of matrix has at most s = O(1
ε

log 1
δ

)
non–zero entries.

Computing time O(s‖x‖0).
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Concentration for Faster JL

Challenge is that the hashing based construction of Kane
and Nelson (2010) involves dependent random variables.
How can we salvage concentration when there is
dependence?
Kane and Nelson (2010) use an explicit and elaborate
combinatorial computation of higher moments.
Can we prove similar results with a unified machinery?
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Negative Dependence and Concentration

The hashing based construction of Kane and Nelson
involves random variables with a natural negative
dependence property.
Many classical concentration results are valid under
various negative dependence properties e.g. negative
association:

E [f (Xi , i ∈ I)g(Xj , j ∈ J]≤ E [f (Xi , i ∈ I)]E [g(Xj .j ∈ J)]

for disjoint index sets I,J and non–decresing functions f ,g.

Negative Association in Kane-Nelson

The coordinates of the projected vector V1, · · · ,Vk for an input
point x ∈ RD with non–negative coordinates in the
Kane–Nelson hashing construction are negatively associated,
and each coordinate is sub–Gaussian, hence the same
concentration results apply as in the i.i.d. case.
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Data as Kernels

However, if data is only given in the form of similarity
kernels, then the associated mapping Φ may be very high
dimensional or even infinite ...
Instead an approach via LP type abstract optimization
problems.
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Random sampling for LP

Take a random sample of constraints (much smaller than
full set).
Solve LP problem on random sample of constraints and
retain basis that determines optimum.
If some constraint outside sample is violated, update basis.
Seidel’s linear time algorithm for LP in constant dimension.
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Abstract LP type problems

Smallest enclosing ball of a set of points
Smallest enclosing ellipsoid of aset of points
Smallest enclosing annulus of a set of points.
Distance between two polyhedra (SVM!)
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What is common?

Small basis Optimal solution determined by a small number δ

of input objects (points, linear inequalities ..)
independent of total number of input objects.

Monotonicity Solution value only increases (or decreases) as
you add more input objects

Locality If solution increases (or decreases) by adding
more input objects, it does so already by adding to
the at δ objects in the basis.
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LP Type problem: abstract framework

A pair (H,w)

H finite set of constraints (or points)
w : 2H → R∪{−∞,∞} objective function.

For any F ⊆G ⊆ H
Monotonicity w(F )≤ w(G)

Locality if w(F ) = w(G) 6=−∞,

w(G∪{h}) > w(G) → w(F ∪{h}) > w(F )

Interpretation: w(G) is minimum value subject to constraints in
G
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Basis and Combinatorial Dimension

(H.w) LP-type problem.
Basis A basis of F ⊆ H is a minimal subset B ⊆ F such

that w(B) = w(F ).
Combinatorial Dimension Size of largest basis,∆
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Examples: Combinatorial dimension

Smallest enclosisng ball D + 1.
Linear prog D + 1.
Distance between hyperplanes D + 2
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SVMs represent data as Convex hulls

minimize‖z1−z2‖2

z1 ∈ Conv ({xi |yi = 1})

z2 ∈ Conv ({xi |yi =−1})

Finding max margin
hyperplane is finding
distance between
two convex
polytopes.
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Solving LP type problems

Two primitives needed (B is a basis and h a constraint)
Violation test w(B∪h) > w(B)?
Basis update B′← basis(B∪h).



university-logo

Johnson–Lindenstrauss Lemma Classification by Support Vector Machines Dual with Kernels as Abstract LP Randomized Approximation of Kernels

Random Sampling Algorithm for LP Type

Input: (H,w), Output: A basis B of H so w∗ = w(B)
S = random subset of H of size ∆
B = basis( /0,S), V =violators(G−S,B)
While (|V |> 0)
R = choose a random subset of size ∆−|B| from V
B = basis(B,R)
V = violators(G−R,B)
end while
return B
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Sub–Exponential Algorithm for LP-type

Matousek, Sharir, Welzl
The expected running time of the algorithm lp-type is
O(n ·2

√
∆ log∆).

Linear time for LP in constant dimension.
What about SVM?
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JL for SVMs: Take 2

Input: D(Dataset), Output: SV, set of Support vectors
S = random subset of D of size ∆
SV = svmsolver({ },S), V = KKT violators ofD−S
While (|V |> 0)
R = choose a random subset of size r −|SV | from V
SV ′ = svmsolver(SV,R), SV = SV ′

V = KKT violators from non-sampled dataset
end while
return SV
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Running time for SVM

For dimension D data, the combinatorial dimension for
SVMs is D + 2 and running time is O(n ·2

√
D logD).

.... but if we’re willing to accept near–optimal margin we
can work in much lower dimension: k = ( 1

ε2 logn) and still
retain margin at least (1− ε)γ∗

... and running time becomes O(n ·2
√

logn log logn) = o(n2).
Moreover we do not need to explicitly project: All
computations can be done with data presented only in
kernel form – very important for SVM methods!
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Back to the Primal

Number of support vectors can grow linearly with size of
training set
Makes kernel methods with dual formulation expensive for
large scale problems
Many recent advances in first order methods for the primal
leading to extremely fast algorithms that scale to very large
problems.
But for a given kernel, how can we get hold of
corresponding embedding – may even be infnite
dimensional!
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Random sampling!

Mercer’s Theorem
Any positive definite kernel can be expanded as

k(x ,y) =
∫

z
p(z)λz < φ

∗
z (x),φz(y) > dz

Randomly sample i with prob. proportional to λi

Use approximation

k̂(x ,y) =

∫
z p(z)dz

n

n

∑
i=1

< φ
∗
zi

(x),φzi (y) >
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Invarant kernels

Kernels invariant under action of a symmetric group.
Fourier basis gives infinite expansion.

Gaussian RBF kernel

k(x ,y) = exp
(
−‖x−y‖2

σ2

)
.

Basis functions φz(x) = ei<z,x>

k(x ,y) = Ez [< φ ∗z (x),φz(y) >]
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Random Kitchen Sinks for Gaussian RBF

Rahimi–Recht 2007

Let Z ∈ Rn×d with
n = O( 1

ε2 d log 1
δ

)

Zi ,j i.i.d N (0,σ2).
Then with the approximation with basis functions
φj(x) = 1√

n ei(Zx)j

k̂(x ,y) =
1
n

n

∑
j=1

ei(Zxj−Zyj )

P
(
|k(x ,y)− k̂(x ,y)|> ε

)
< δ .

Follows by measure concentration for Lipschitz functions with
Gaussian measure.
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JL for SVMs, Take 3: Faster approximation

Le, Sarlos and Smola (2013) give a faster approximation of
the kernel using a different matrix which is a product of
Hadamard, binary and permutation matrices.
Reduces multiplication time from nD to n logD.
For a special case they prove a concentration result using
an adaptation of Gaussian concentration of Lipschitz
functions.
Applies to other kernels that depend on ‖x−y‖
Conjecture: same is true with Kane–Nelson construction
reducing multiplication time to s‖x‖0.
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Open Problems

Develop methods for concentration with negative
dependence.
Can faster JL constructions (Kane and Nelson) be used to
approximate kernels?
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